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Abstract The loss probabilities of the Glx /GI/I/A: queues, which means the batch arrival GI/CI/I/k 
queues, are compared when the queues have a common waiting capacity k, a common batch size distributions 
and a common traffic intensity. We prove that, if the interarrival time and service time distributions are 
NBUE (NWUE), then the loss probabilities are not greater (less) than those of the corresponding M X /M/I/k 
queues. The stron~:er results are obtained for the M /G/I/k queues with single arrivals. 

1. Introduction 
In analyses of queueing models, the exponential assumptions, which means that the 

exponential distributions are assumed for the interarrival times, the service times and so 
on, have been used widely. It seems to have been believed that, if these distribution are 
less random than the exponential ones, the exponential assumptions give safety bounds for a 
large class of queues with respect to stationary characteristics, for example, the queue length. 
However, it has been verified only for a small class of queues. The problem is a special case 
of stochastic comparison of queues, but we need to compare queues with a common t.raffic 
intensity. 

Stoyan and Stoyan [l1J introduced the new stochastic order and studied the waiting 
times of the GI/GI/1 queues. Miyazawa [6J took a different approach and gave the classes 
of the GI/GI/1 queues for which the exponential assumptions provide safety bounds with 
respect to the system queue length distributions, where the system queue length means the 
number of customers in the system. Related problems of stochastic comparison have been 
studied widely for the GI /GI /1 queues (for example see Stoyan [10]). However, we have 
only a few results for queues other than GI/GI/l. Especially, for queues with finite waiting 
capacity, only special cases such as pure loss systems have been studied (see Section '7.5 of 
Stoyan [10]). 

In this paper, we discuss comparison of t.he Glx /GI /l/k queues, which means the 
batch arrival GI/GI/1/k queues, where k denotes the number of the waiting positions not 
including a service position. The detailed description of our Glx /GI /1/ k is given in Section 
2. There are two typical models on the batch acceptance policy. One is called a partially 
rejected model, in which all free waiting positions are occupied by customers in an arriving 
batch and the remained customers in the batch are lost. The other is called a totally rejected 
model, in which all customers in an arriving batch are lost if the number of free positions 
are less than the batch size (see Baba [1]). We are only concerned with a partially rejected 
model. Unfortunately, the similar argument is not enough for applying to the totally rejected 
model (see Section 5). We compare loss probabilities in the steady state, i.e., the stationary 
probability of the event that arriving customers can not enter the system. It will be noticed 
that this is equivalent to consider the time-stationary probability of the system being empty. 
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The approach taken in this paper is a similar to Miyazawa [6]' which is based on the 
relationships between time and customer stationary characteristics. In this paper, we derive 
them by using the so called basic equations, which are recently developed by Miyazawa 
[7, 8, 9]. To handle multiple arrivals of customers in a formal way, we define conditional 
probabilities at arrival and departure epochs of batches and customers in terms of point 
processes. We discuss them in Section 2. In Section 3, we consider the case of M/GI/1/k, 
i. e., the single and Poisson arrivals case. The main result is obtained in Section 4. It is 
proved that, if the interarrival time and service time distributions are NBUE (NWUE), then 
the loss probabilities are not greater (less) than that of MX /M/1/k for a fixed batch size 
distribution and a fixed traflic intensity. Here NBUE (NWUE) denoted a distribution F 
satisfying: 

[+00 
it (1 -- F(u))du ~ (2)mF(1- F(t)) (Vi 2 0), 

where mF is the mean of F. Refer to Stoyan [10] for the details of NBUE and NWUE 
distributions. In Section 5, we give remarks on a totally rejected model and on the effect of 
a batch size distribution. 

2. The basic equations 
For the G I X / G I /1/ k queue, we assume that the batch size of arriving customers, the 

interarrival times and the service times are i.i.d. sequences of random variables, respectively, 
and those sequences are independent of one another. Accepted customers by the system are 
served by a single server. FCFS (First Come First Served) is a typical service discipline for 
this queue, but it is not nece:3sary because the system queue length is only concerned with. 
We assume that the service discipline is non-preemptive and the server is busy as far as there 
are customers in the system. Since we assume a partially rejected model, k + 1 - n customers 
in an arriving batch can enter the system when the batch finds n customers in the system. 

In this section, we consider some of relationships between time and customer stationary 
characteristics in the G I X / G 1/1/ k queue, which are called the basic equations. In Section 
4, more detailed relationships will be discussed. 

Let F, G and H be the interarrival time, service time and batch size distributions, re­
spectively. T, 5, and X denote random variables subjected to F, G, and H, respectively. We 
assume that X 2 1 a.s and that E(T), E(5) and E(X) are positive and finite, where E 
denotes the expectation, which will be used in the restrictive sense later. Define the arrival 

rate of customers Ac = m~?' the arrival rate of batches Ab = em and the traffic intensity 
p = AcE(5). The key assumptions of this paper are that there exists a steady slcate for a 
given p > 0 and finite k and that arrival of a batch and completion of service do not occur 
at once w.p.l. These are satisfied at least when F has density. 

Denote the stationary departure rate of customers by Ad, where lost customers are not 
counted as departure from the queue on the contrary to Franken et al. [3] and Miyazawa 
[9]. This definition of Ad leads somewhat different expressions from their ones. Let let), u(t) 
and r(t) be the system queue length, the residual arrival time and the residual service time 
at time t, respectively. All of those characteristic are defined in the steady state. Hence, 
Yet) = (u(t), r(t), let)) is a stationary processes, and it is Markov by our assumptions. 
Without loss of generality, we can assume that yet) is right continuous w.p.l. 

To get the basic equations on {Yet)}, we need the distributions at the arriving epochs 
of customers and batches, and at the service completion epochs denoted by Pc, Fb and Pd, 
respectively. Since the distributions Pc and Pb play important roles in our discussion, we give 
their formal definitions. Let tn be the arrival time of the nth batch. We number customers 
in the nth batch as (n,i) (i = 1,2", .,Xn), where Xn is the size of the nth batch. Let 
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tn,i be the arrival time of the customer (n, i). Of course, tn = tn,i for all i but we assume 
that the (n,i)th customer sees the system in which the customers from (n,I) to (n,i -1) 
have arrived. This convention is useful to treat. the partial rejected model in a formal way. 
From our assumptions, we can assume that all random quantities are defined in a suitable 
probability space (n, .1', P) with a time-shift operator {T.} on n, and that P is stationary 
with respect to {T.}. We now define Pc and Pb by: 

where E denotes the expectation by P, lA is an indicator function of a set A and T.f(w) = 
f(Tsw) for a function f defined on n. Pd can be defined in a similar way using the departure 
epochs of customers. The meaning of these definitions are clear. For example, if we let 
A = n, then the expectations of the right-hand terms just counts customers and batches, 
respectively, arri ved in the time interval (0,1]. Hence they should be Ac and Ab, respectively. 
We remark that Pc, Pb and Pd express the conditional probability measures of P under the 
conditions that a customer arrives at the system at time 0, that the batch of customers arrive 
at time 0 and that the service of a customer is completed at time 0, respectively. Please 
refer Miyazawa [7, 8) or Franken et al. [3] for background of those definitions. 

Let A = {/- = j} (0::; j::; k) in the definition Pc, where I;; = In(O-). Then we ha,ve: 

Xn 

AcPc{/- = j} = E( L L l{l;;+i_l=j}) 
O<tn:$l i==l 

= E( L l{j+l-X,,:$l;;<i+l}) 
O<tn:$l 

= AbPb{j + 1 - X ~ 1- < j + I} (j = 0,1" .. ,k). (2.1) 

The intuitive meaning of the equation (2.1) is dear since the event of the probability of the 
right-hand term is that there are customers in a batch who find 1- equal to j. However, we 
should be careful of normalizing constants Ac and Ab. By using the formal definitions, we 
can avoid those cumbersome things. 

We are now in a position to give the basic equations. Let f be a bounded function from 
R3 to R, and define Z(t) = f(Y(t)). Then the rate of state change of the real valued process 
{Z(t)} is composed of two parts, the derivative of its continuous part and the difference at 
its jump epochs. Since {Z(t)} is stationary, the expected rate of the total change must be 
zero. Hence we can get the following lemma, whose formal proof is given in Miyazawa [7, 8]. 

Lemma 2.1 If Z(t) has the right-hand derivative Z'(t) for any t, we have: 

(2.2) 

where Eb and Ed denote the expectations by PI> and Pd respectively. 
The equation (2.2) is a general form of the basic equation. In the following, we choose 

suitable 1's or equivalently Z(t)'s for our purpose. Similarly as I;;, we let 1- = 1(0-), 1= 1(0) 
and 1+ = 1(0+). Define, for j = 0,1, ... ,k + 1, 

Z(t) = l{j(t)~j}. 
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Since Z'(t) = 0, we have, from Lemma 2.1, 

Ab[Pt,{I+ ~ n - Pdl- ~ nl = Ad[Pd{l- ~ n - Pd{l+ ~ nl (j = 0,1,···, k + 1) (2.3) 

Since 1+ :::; 1- + X a.s Pt, and 1+ = 1- - 1 a.s Pd, we have, from (2.3), 

AbPb{j - X:::; r- < n = AdPd{l+ =j -I} (j = 1,2,·· ·,k + 1). (2.4) 

From (2.1) and (2.4), we have: 

AcPc{l- = n = AdPd{l+ = n (j = 0,1,···, k). (2.5) 

This is a finite version of Finch's formula. Let Ploss = Pc{ 1- = k + I}, which is the loss 
probability of arriving customers. By summing up (2.5) for all j, we have: 

(2.6) 

or equivalently Ploss = 1 - ~. 
Next, we apply Lemma 2.1 for Z(t) = r(t)I{I(t»O}. Since Z'(t) = -1{I(t»O}, we have: 

-(1 - Po) = J..b( -Eb(Sj 1- = 0)) + Ad( -Ed(Sj 1+ > 0)), 

where Po = P{1 = O} and Ed(Sj 1+ > 0) = Ed(SI{l+>o}). We will use the later notation for 
other expectations. Note that Eb(S) = Ed(S) = E(S). Hence, using (2.4) for j = 1 and 
(2.6), we get: 

1 - po = E(S)[AdPd{l+ = O} + AdPd{l+ > O}l 
= J..dE(S) 

= p(I - Ploss). (2.7) 

The equation (2.7) is a very simple relation but we will see that it plays a key role in the 
next section. 

Remark 2.1 Since (2.7) is a version of Little's formula, more direct derivation is possible. 
We have not done it to show that our formulas are derived from (2.2) in a unified way. We 
also remark that (2.7) was obtained for the non-batch CI/CI/I/k queue in Miyazawa [9J. 

Finally, we express Ploss in terms of Pb. This can be calculated by (2.4) and (2.;», but we 
directly derive it here. Let A = {1- = k + I} in the definition of Pc. Since the ith customer 
in an arriving batch find min(i- + i-I, k + 1) customers in the system, 

Xn 

AcPloss = E( L L l{k+l~l-+i-l}) 
O<tn~1 i=1 

X 

= AbEb(I: l{k+2-i~I-}) 
i,=1 

+00 n 

= Ab L L Pb{k + 2 - i :::; 1-}P{X = n} 
n=1 ;=1 

+00 +00 
= Ab L ·L Pb { k + 2 - i :::; 1-} P {X = n} 

i=1 n=i 
+00 

= Ab L Pd k + 2 - i :::; 1-} P {X ~ i} 
i=1 

+00 k+1 
= Ab{ I: P{X ~ i} + L Pb{k + 2 - i :::; 1-}P{X ~ i}}. (2.8) 

i=k+2 i=1 
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For M X /Gl /1/ k, Baba [1] gave a equivalent expression to (2.8) (see (3.30) of his paper). 

3. M/GI/l/k with single arrivals 
In this section, we briefly consider the M/GI/1/k queue without batch arrivals. In this 

special case, results are more detailed than in it general case, which is discussed in the next 
section. Let dn := Pd{l+ = n}. We use the following well-known facts. 

(i) If P < 1, then 

dn = k
qn 

(n=O,l, ... ,k), 
Li=oqi 

where {qn} is the system queue length distribution at arbitrary time of the M/GI/1 
queue with the same arrival rate .A and the same service time distribution G. 
(ii) Denote M/GI/1 with a service time distribution Gi by M/G;!1. For any two dis­
tributions G'l and G2, we define Gl :::;st G2 if 1 - Gl(t) :::; 1 - G2 (t) for all t > 0, and 
GI :::;c G2 if ft""(l - GI(x))dx :::; ftOO(l - G2(x))dx for all t > o. ':::;st' and ':::;00' are 
called stocha.stic and convex orders, respectively. Suppose that the traffic intensity Pi 
of M/G;!l is less than 1 for i = 1,2 and PI = P2. Then GI :::;c G2 and mCl = mC2 

imply that {q!} :::;st {q~}, where mc; and {q~} are the mean of Gi and the system queue 
length distribution of M/G;!l, respectively (i = 1,2). 
(i) is given in Cohen [2] and Tijrns [12]. (ii) can be obtained from (5.0.16) and Theorem 

5.2.3 of Stoyan \10]. From (i) and qo = 1 - p, we have: 

I-p 
do = --~-. 

L:;;=o qi 

Then, from (2.5) for j = 0, (2.7) and the fact that Pc{l- = O} = P{l = O}, which comes 
from Poisson property (see also (4.8) in the next section), we have: 

(3.1 ) 

Remark 3.1 (3.1) is obtained in a different way in Tijms [12]. For M/M/l/k, (3.1) 
agrees with the well-known loss formula Ploss = qk+I/(L~~OI qi) since qi = (1- p)pi. However, 
this formula for J110ss does not hold for M / G 1/1/ k in general because the system queue length 
distribution just before the arrival is different from the one just after the departure (see (2.5)). 

From (3.1) and (ii), we have the next proposition. 

Proposition 3.1 If PI = P2 < 1, GI :::;c G2 and mCl = mc2 , then Ploss of M / Gt/l / k is less 
than Ploss of M/G2/1/k. 

Remark 3.2 IfG2(Gl) is an exponential distribution, GI :::;c G2 is equivalent to that Gl(G2) 
is NBUE(NWUE) (see Proposition 1.6.1 of Stoyan [10]). 

It is a natural question whether or not the condition Pi < 1 is essential in Proposition 
3.1. From the analytic expression of {dn } (see (6.24) of Cohen [2]), Proposition 3.1 seems 
to be true for any Pi> 0 but we have not proved it yet. We here give this direction's result 
but for special cases. 

Proposition 3.2 Let Ploss( Em) be the loss probability of customers in M / Em/1 / k and sup­
pose that M / Eml1 I k has a traffic intensity p, where Em denotes the mth order Erlang 
distribution. Then, for all P > 0, Ploss(Em) is non-increasing in m = 1,2,···. 

The proof of this proposition is given in Appendix. For M/GI/l/k with a common 
traffic intensity, it is interesting to see that (2.7) implies that we can not compare {p~} with 
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{p;} in the sense of ':Sst', i.e., their distribution functions cross at least one time, if their 
loss probabilities are different. This is the case of Proposition 3.1 if Cl :f. C2 • In Table 3.1, 
we give numerical examples for such cases. From numerical experience, we conjecture that 
{p;} :Sc {p;} if Cl :Sc C2 , but it seems hard to prove it. 

Table 3.1 The system queue length distributions of M/ Em/I/k 

- - -k = 5, p = 0.30 - --

m Plo .. E(I) p{l ~; O} p{l::; 1} p{l ::; 2} p{l::; 3} p{l ::;} p{l ::; 5} 
0.00051 0.427 0.70015 0.91020 0.97321 0.99212 0.99779 0.£19949 

2 0.00013 0.396 0.70004 0.92580 0.98286 0.99618 0.99919 0.£19987 
3 0.00007 0.386 0.70002 0.93173 0.98602 0.99728 0.99950 0.99993 
4 0.00005 0.380 0.70001 0.93485 0.98757 0.99777 0.99962 0.£19995 
5 0.00004 0.377 0.70001 0.93677 0.98849 0.99804 0.99969 0.99996 

- - -k = 5, p = 0.70 - --

m Plo .. E(I) p{l ~; O} p{l::; 1} p{l::; 2} p{l::; 3} p{l ::;} p{l ::; 5} 
0.03846 1.705 0.32692 0.55577 0.71596 0.82810 0.90659 0.£16154 

2 0.02245 1.586 0.31572 0.57539 0.75030 0.86236 0.93309 0.£17755 
3 0.01737 1.533 0.31216 0.58562 0.76627 0.87688 0.94315 0.98263 
4 0.01494 1.504 0.31046 0.59177 0.77545 0.88487 0.94840 0.98506 
5 0.01353 1.485 0.30947 0.59586 0.78140 0.88991 0.95162 0.£18647 

4. Main results 
We back to a general case. We first derive two relationships from the basic equation 

(Lemma 2.1). Define, for any x> 0 and j = 0,1,···, k + 1, 

Z(t) = min(x,u(t))I{/(t)=j}. 

Since Z'(t) = -1 if 0 < u(t) ::; x, we have, from Lemma 2.1, 

-P{I =j,u:S x} = -..\bEb(min(x,T)jl+ =j) 
+ ..\d[Ed(min(x,u)j 1- = j) - Ed(min(x,u)j 1+ = j)] 

(x>O, j=I,2, .. ·,k+I), ( 4.1) 

where u = u(O). In the derivation of (4.1), we have used the fact that u(O-) = u(O+) = 
u(O) a.s Pd. By summing up (4.1) from j to k + 1, we have: 

P{ 1 ? j, u :s x} = ..\bBb(min(x, T))Pd 1+ ? j} - ..\dEd(min(x, u)j 1+ = j - 1) 
(x>O, j=I,2,· .. ,k+1). (4.2) 

Note that the left-hand side and the first term of the right-hand side of (4.2) are bounded in 
x. Hence, the last term of the right-hand side is also bounded in x. Consequently, by letting 
x tend to infinity, we have: 

We next define, for any x > 0 and j = 0,1,···, k + 1, 

Z( t) = min(x, r( t) )I{/(t)=j}. 
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By the similar argument, we have: 

-P{/ = j, r :s x} = Ab[Eb(min(x, r); /- = j) - Eb(min(x, r); /+ = j)] 
-AdEd(min(x,S);I"+=j) (x>O, j=1,2,···,k+1), (4.4) 

where r = r(O), ,md it implies: 

Remark 4.1 For the non-batch arrival case, (4.1) and (4.4) with x = +00 correspond to 
(4.3.19) and (4.;1.44) of Franken et al. [3], for which they did not mind the finiteness of 
Ed(U; /- = j - 1). Similar things can be said for the argument in Miyazawa [6]. The above 
discussion shows that those expectations are certainly finite. 

Remark 4.2 In the derivation of (4.3) a~d (4.!5), we have used the i.i.d. assumption of the 
interarrival and service times only for splitting Eb(min(x, T)) and Ed(min(x, S)). Hence, if 
we do not so, we can have a similar equation for the GX /G/1/k queue, i.e., the batch arrival 
single server finite queue with a stationary input. 

We now assume that the distributions F and G are NBUE. Then, the conditional ex­
pectations of the residual interarrival time and service time given any events determined by 
the past information are not greater than their unconditional ones, respectively. Hence, we 
have, for j = 1,2" .. , k + 1 

Eb(r;j - X :s 1- < j) :s E(S)Pb{j - X :s 1- < n· 
We have, from (4.3) and (4.6), 

Hence, we have, from (2.4) and the fact that 1-+ ~ j if and only if 1- ~ j - X, 

P {I ~ n ~ Pb {/- ~ j - X} - Pb {j - X :s 1- < n 
=Pb{/-~j} (j=1,2, ... ,k+l), 

Similarly, from (2.4), (4.5) and (4.7), we have: 

P{I ~ j} :s AdE(S)Pd{/+ ~ j -I} 
HI 

( 4.6) 

( 4.7) 

( 4.8) 

= AbE(S) L Pb{i - X::; 1- < i} (j = 1,2"", k + 1). (4.9) 
;=j 

Define a = AbE(S). From (4.8) and (4.9), we get: 

HI 
Ph{/- ~ j}:S a L Pb{i -X:S /- < i} (j = 1,2, .. ·,k+ 1). 

;=j 
(UO) 

We note that the equalities hold in (4.8), (4.9) and (4.10) if F and G are exponential 
distributions. 
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For convenience of calculation, let us introduce the following notations. 

Since 

I 

+ L:(P{Z- ~ i - n} - P{Z- ~ i})P{X = n} 
n=1 

i-I 

= L: Bi-nVn + Vi - Bi, 
n=1 

we get from (4.10) after som3 calculation: 

HI j-I HI 

Bj+QL:BnVk+2-n~Q{L:BnYj-n+L:Vn} (j=1,2,···,k+1). (4.11) 
n=1 n=1 n=j 

On the other hand, from (2.8), we have: 

k+1 +00 
ACPloss = Ab {L: Bn Vk+2-n + L: Vn} ( 4.12) 

n=1 n=k+2 

Hence, we have, from (4.11), 

j-I +00 

Bj+PPloss~Q{L:BnYj-n+L:Vn} (j=1,2,.··,k+1). (4.13) 
n=1 n=j 

Multiplying Vk+2-j to the both sides of (4.13) and summing up it from j = 1 to k + 1, we 
have, by (4.12), 

HI 

[E(X)+p L: VnJploss 
n=1 

k+l j-I +00 +00 

~ Q L: Yk+2-j[L: Bn Yj-n + L: VnJ + L: Vn 
j=1 n=1 n=j n=k+2 

k k+1 k+l+oo +00 

= Q{L: Bn L: Vj-n VH2-j + L: L: VnVH2 - j } + L: Vn (4.14) 
n=1 j=n+1 j=1 n=j n=k+2 

For k = 0, we have, from (4.14), 

PI 
< E(X) + p - 1 _ 1 _ ~_1,.--_ 

oss - E(X) + p - E(X) + p. (4.15 ) 

The equality of this equation holds when F and G are exponentially distributed. Note that 
the last term of (4.15) agrees with the loss probability of M X /M/l/k. For k ~ 1, we have, 
from (4.13) for j = 1, 

BI ~ p(1 - Ploss). 

This inequality and (4.13) for j = 2 follows: 
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B2 + p(1 + O:)Ploss ::; p(1 + 0:) - 0:. 

In a similar way, we have Bj + {3jPloss ::; Ij j = 1,2"" ,k repeatedly using (4.13), where 
/3j and Ij are positive constants not depending Bi (i = 1,2"", k + 1). Substituting those 
inequalities into (4.14), we finally obtain that Ploss ::; (positive constant), and this positive 
constant must be Ploss of the corresponding M X /M/l/k queue because the equalities hold 
in the all inequa.lities when F and Care exponentially distributed. In case F and G are 
NWUE, all inequalities are reversed. Thus we have the next theorem. 

Theorem 4.1 For the CIX /CI /1/ k queue, if the interarrival and service time distribut.ions, 
F a.nd C, are NBUE (NWUE), then the loss probability Ploss is not greater (less) than the 
one of the batch arrival M/M/l/k queue with the same traffic intensities p and 0: and the 
same batch size distribution H. 

Remark 4.9 By rewriting (4.11) as: 

HI j-I HI 

Bj + 0: I: En Vk+2-n ::; o:{ I: Bn(Vj-n - Vk+2-n) + I: Vn} (j = 1,2"", k + 1), 
n=j n=I n=j 

we can see that Bk+l, which is the probability that all customers in an arriving batch are 
lost, is also not g,reater than the one of the corresponding M X / M/I / k. 

Remark 4.4 By (2.7), the time stationary probability of the system empty is also not greater 
(less) than the one of the corresponding MX /M/I/k if F and Care NBUE (NWUE). 

Remark 4.5 (4.13) and (4.14) give a procedure to calculate Ploss of M X /M/I/k in finite 
steps. 

5. Concluding remarks 
We give two remarks. First remark is on the effect of the batch size distribution H to the 

loss probability. One may conjecture that, if IlJ ::;c H2 and if all other characteristics are 
fixed, then the pIo.s ::; p~oss for the Cl X / C I /1/ k queue, where p}oss is the loss probability 
for the queue with the batch size distribution Hi (i = 1,2). This seems true at least for 
M X /M/l/k, for which we can get explicit formula from (4.13) and (4.14). For example, we 
have for k == 1,2,3 

1 E(X) 
Ploss(1) = 1 - P + p[E(X) + p(I + V2 + 0:)]' 

1 E(X) 
Ploss(2) = 1 - P + p[E(X) + p{l + V2 + V3 + (1 + 2V2)0: + 0:2}]' 

1 
Ploss(3) = 1 - -

P 
E(X) 

where Ploss(k) is the loss probability for M X /M/l/k. Hence, Ploss(k) for k = 1,2,3 are 
functions of V2, "2 + V3, V2 + V3 + V4 , and not increasing with respect to them. We now 
suppose that two batch size distributions HI and H2 satisfy HI ::;c H2 and have a common 
mean. We denote {Vn} and Ploss(k) of the queue with the batch size distribution Hi by {V~} 
and p}oss(k), respectively. Since E;~ V; = E;.~ V;, HI ::;c H2 is equivalent to: 
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vl + vl + ... + ~2 ~ vl + vl + ... + ~l (j = 2,3, ... ). 

Hence we conclude that pfoss(k) ~ pfoss(k) for k = 1,2,3. For a general k, the expression 
of P/oss is very complicated and we need more detailed discussions. This will be given in a 
forthcoming paper. 

Finally we briefly consider the totally rejected model. Let X· be the number of customers 
accepted by the system when a batch arrives. If [- + X ~ k + 1, X· = X, and otherwise 
X· = 0, where [- and X are the same notations as used in Sections 2 and 4. The equations 
(2.3), (2.4), (2.7), (4.3) and (4.5) are true if we replace X by X·. Hence, if F and G are 
NBUE, then we have (4.10) in which X is replaced by X·. However, the equations (2.1) 
and hence (2.5) is not true in general. The loss probabilities of customers and batches are 
calculated in a similar way as (2.8). For example, let ptoss be the batch loss probability. 
Then we have: 

AbPtoss = E( L: I{H2~/-+X}) 

On the other hand, we have: 

O<tn~I 

+00 
= Ab L: Pb {[- 2: k + 2 - n} P {X = n} 

n=I 

HI 
= Ab{ L: B nVk+2-n + Vk+2}' 

n=1 

i-I 

Pb{i - X· ::; [- < i} = L: Bi-nVn + Vi - Bi - (1 - BdVH2. 
n=1 

Thus, similarly as (4.11), we get, for j = 1,2"", k + 1, 

k+l j-l k+1 

(5.1 ) 

(5.2) 

Bj + a L: B n(VH2-n - Vk+2 ) ~ a{L: Bn(l'i-n - Vk+2-n) + L:(Vn - Vk+2)}. (5.3) 
n=j n=1 

Hence, from (5.1), we have, f'Jr j = 1,2"", k + 1, 

k+l 
Bj + a{ptoss + L:Bn(Vk+3-n - VH2 )} 

n=j 

n=j 

j-I k+l 
:::; a{L: Bn(V,-n - Vk+3-n) + VH2 + L:(Vn - VH2)} (5.4) 

n=1 n=j 

Consequently, we have Theorem 4.1 concerning Bk+l, which is the probability that an arriv­
ing batch finds the system full (see Remark 4.3). Once we have inequalities Bj + (3jPloss ~ ,j 
for each j as we did in Section 4, then we also have Theorem 4.1 concerning ptoss. However, it 
seems difficult to derive such inequalities from U>.4) since the left hand term of (.'>.4) contains 
BH1, Bj+2,"', Bk+1' We conjecture that Theorem 4.1 holds also for the totally rejected 
model, but our argument in Section 4 is not applicable to prove it. 
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Appendix 

We prove Proposition 3.2. We can assume that an arriving customers brings m service 
phases each of which is exponentially distributed. Let h(t) be the number of phases in the 
system at time t. Similarly as l(t), we define h-, hand h+. Analogously as (2.5), (4.a) and 
(4.5), we have: 

AcPc{h- = j} = AdPd{h+ = j} (j = 0,1"", km) (A.l) 

P{h ~ j} = Pc{h+ ~ j} - AdE(T)Pd(h+ = j -1) (j = 1,2"", (k + l)m), (A.2) 

P{h ~ j} = AdE(S)Pd{h+ ~ j - I} + AcE(S) Pc(h+ ~ j > h-) 
m 

(j=1,2, .. ·,(k+l)m), (A.3) 

where we have used the fact that u and rare exponentially distributed. Let aj = P{ h ~ 
j} for j = O,l,···,(k+ l)m. Note that Plo.IS = akm+l. Then, after some calculations, 
(A.l), (A.2) and (A.3) imply: 

aj = {a}_m - ~ (aj - aj+I~ (1~:]:S km) (A.4) 

aJ - m + aJ - Ploss - -(aJ _. aJ+l) (km + 1 :S j :S (k + l)m) 
m 

or, equivalently, 
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p 
aj = -(aj-m + ... + aj-l) - PP/oss 

m 

= .!!...(aj-m + ... + aj_I) - al + P (1::; j ::; (k + l)m), 
m 

(A.5) 

where aj = 1 for j ::; 0 and the last equality is obtained from (2.7). Note that (A.5) agrees 
with (4.5) of Miyazawa (1976) when k = +00. Let aj = P{h ~ j} (j = 0,1"", (m + 1)(k + 
1)) for M/Em+I/l/k. Proposition 3.2 is obtained if we prove that al ::; a~. Suppose that 
al > a~. Then, we can prove the following inequality by the similar argument as in Section 
4 of Miyazawa (1976). 

m-j+l, j-l, , 
aim+j - al ~ m ai(m+l)+j + ---;;-ai(m+l)+i+l - al (i = 0,1"", k, j = 1"," m). 

Hence, we have: 
> ' , akm+l - al _ ak(m+l)+l - al' 

This inequality and (2.7) imply that al ::; a~, which contradict the supposition. 
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