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Abstmct A real valued discrete time Markov process {Xn} is defined to be uniformly monotone in the 
negative (positive) direction if P(z,y) = Pr{Xn+l :S y I Xn = z}(P(z,y) = Pr{Xn+1 2: y I Xn = 
z}, respectively) is totally positive of order 2 in -00 < z, y < 00 (see Shaked and Shanthikumar (1988) 
and Shanthikumar (1988». The uniform monotonicity is a stronger notion than the ordinary stochastic 
monotonicity. A monotonicity theorem of the same form as in Daley (1968) is first established. Based on 
this theorem, uniform monotonicity as well as IFR and DFR properties in the Lindley waiting time processes, 
Markov jump processes and the associated counting processes is discussed. Uniform comparison of (random) 
sums of random variables is also made. Finally, some applications are given to demonstrate a potential use 
of this study. 

1 Introduction 

In the two decades, a series of papers was published in which monotonicity and compa­

rability of random processes with respect to some partial orderings were studied, see e.g. 

[3, 7, 15, 20]. The results obtained there have been successfully used in the study of applied 

probability such as queueing theory [4, 5, 20] and reliability theory [20]. Partial orderings 

being considered in the literature are mostly the stochastic ordering -<d, the convex or­

dering -<c and the concave ordering -<cv (see e.g. [20] for the definitions and properties). 

Other important orderings are the uniform orderings -«_) and -«+) which are introduced 

in Whitt [21] and further studied in Keilson and Sumita [11]. These orderings are poten­

tially useful notions, and indeed they are now quite frequently used in applications, see e.g. 

[13,16,21,22]. 

When the process of interest is a temporally homogeneous Markov process, the mono­

tonicity is stated in terms of the Markov operator T governing the process. In [3], Daley 

introduced the notion of stochastically monotone Markov operators for the ordering -<d. 

Then, as the mOllotonicity theorem, he showed that T Pt -<d T P2 for any pair of probability 

measures Pt and P2 with Pt -<d P2 if and only if (iff) T is stochastically monotone. For the 

orderings -<c and -<cv, theorems of similar type have been built. For the uniform ordering, 

Shaked and Shanthikumar [18] and Shanthikumar [19] have introduced Markov processes 

that are increasing with respect to the ordering -«+). Our first task is therefore to give 
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a definition of uniformly monotone Markov operators and to reformulate their result as a 

monotonicity theorem of the uniform orderings. These together with some related topics are 

discussed in Section 3. Section 2 is devoted to some preliminaries. 

Based on the results in Sections 2 and 3, we then consider particular Markov processes. 

The Lindley waiting time process is a spatially homogeneous Markov process modified by a 

retaining boundary at zero. A sufficient condition under which the Lindley process is uni­

formly monotone is derived in Section 4. The DFR property of the number served during a 

busy period is also given there as a byproduct. In Section 5, Markov jump processes and the 

associated counting processes are considered. Especially, we are interested in uniform mono­

tonicity and the IFR property of the counting processes. In Section 6, uniform comparison 

of two counting processes associated with sums of independent random variables (rv's) is 

established. The final section is concerned with uniform comparison of two random sums of 

identically and independently distributed (iid) rv's. Examples are given to show a potential 

use of our results. 

2 Some Preliminaries 

Let X be an rv with cumulative distribution function (cdf) Fx(x) = Pr[X S x]., x E R = 
(-00,00). The survival probability function (spf) is defined as Fx(x) = Pr[X 2 x], x E R. 

Fx(x) is then left continuous. Note the difference from the ordinary definition of spf's. 

The uniform orderings are first considered in Whitt [21] and the definition below is given 

in Keilson and Sumita [l1J. 

Definition 2.1. Let X and Y be rv's having cdf's Fx(x) and Fy(x) respectively. X 

is said to be uniformly smaller than Y in the negative (positive respectively) direction if 

Fx(x)Fy(y) 2 Fx(y)Fy(x) (Fx(x)Fy(y) 2 Fx(y)Fy(x)) for all x < y. In this case, we 

write either X -«_) Y or Fx -«_) Fy (X -«+) Y or Fx -«+) Fy ), according to convenience. 

Remark 2.1. (i) The definition of X -«+) Y above is slightly different from the one given 

in [ll], since we use an unusual definition of spf's. If Fx and Fy are absolutely continuous 

then, of course, they agree with each other. 

(ii) Since, by the definition of spf's, F_x(-x) = Fx(x), it follows that X -«_) Y iff 

-Y -«+) -X. Hence -«_) and -«+) have a dual relation. In what follows, we study one of 

either -«_) or -«+) only. The results for -«_) are easily converted to the ordering -«+) via 

the duality and vice versa. 

(iii) Let -<d denote the ordinary stochastic ordering, i.e. X -<d Y iff Fx(x) 2 Fy(x) for 

all x E R. -<d is weaker than both -«_) and -«+l> see Keilson and Sumita [llJ. 

Suppose Fx(x) is absolutely continuous having a probability density function (pelf) fx(x). 
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rx(x) = =--); 

Fx(x 
fx(x) 

hx(x) = Fx(x)' -00 < x < 00, 
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(2.1) 

whenever Fx(x) > 0 and Fx(x) > 0 respectively. As we shall see below, rx(x) and hx(x) 

clarify the meaning of the uniform orderings. We note that if Pr[X 2:: 0] = 1 then rx(x) 

is the ordinary failure rate of X, see e.g. [1]. hx(x) is not commonly used in probability 

theory. It appears naturally, however, in considering e.g. the maximum of independent rv's. 

To see this, let Z = max{ X, V}, where X and Y are mutually independent. It is easy 

to see that hz(:r) = hx(x) + hy(x). Similarly, one has rz(x) = rx(x) + ry(x) where in 

turn Z = min{X, V}. The ordering -«+) is the ordering of rx(x) as pointed out by Pinedo 

and Ross [16). That is, X -«+) Y iff rx(x) .~ ry(x) for all x E R. For, X -«+) Y iff 

Fx(x + t)/Fx(x) ::; Fy(x + t)/Fy(x) for any t > 0 and x ER. It can be similarly shown 

that X -«_) Y iff hx(x) ::; hy(x) for all x E R. 

We next define two classes of cdf's of interest (see Kijima [13]). 

Definition 2.2. A function f(x, y) of two variables defined on R x R is totally positive of 

order 2 in -00 < X,Y < 00 (denote f E TP2) if f(xI,ydf(X2,Y2) 2:: f(XI,Y2)f(X2,yd for 

all Xl < X2 and YI < Y2 (see Karlin [8]). An rv X having cdf Fx(x) is said to be P6lya 

frequency of order 2 (write X E P F2 or Fx E PF2) if Fx(x - y) E T P2 in -00 < X,Y < 00. 

X is called IFR (write X E IFR or Fx E IFR) if Fx(x - y) E TP2. 

When Pr[X 2:: 0] = 1 and it has a pdf, the above definition for IFR agrees with the ordinary 

definition. The class of IFR distributions is widely used in applied probability because of 

the probabilistic meaning of its own. The class of PF2 distributions seems not common. 

However, it plaYE: an important role in the subs'~quence. 

Remark 2.2. (i) As in Remark 2.1(ii), one easily sees that X E IFR iff -X E PF2. Thus, 

the classes of PF z and IFR distributions are in a dual relation. 

(ii) Let F E IFR. As is well known (see e.g. p26 of [1]), F(x) is logconcave in {x : 

F(x) > O} so that F(x) is absolutely continuous except possibly at the right hand end point 

of the interval of support of F( x). Thus, if F( x) has a full support on R then it has a pdf. 

If F E P F2 , the dual relation stated above leads to the conclusion that F( x) is absolutely 

continuous except possibly at the left hand end point of its support. 

(iii) Let Fi(Y) = F(y - Xi) (i = 1,2) with Xl < X2 where F(x) is a cdf. It is then easy 

to see that FI -«_) F2 iff F E PF2. Similarly, FI -«+) F2 iff FE IFR. Thus the uniform 

orderings -«_) and -«+) characterize the classes of PF2 and IFR distributions, respectively. 

(iv) If X has a. pdf, then the term "IFR" is understood through the failure rate function 

rx(x) in (2.1). It. is readily seen that X E IFR iff rx(x) is increasing in x (in this paper, 

the terms "increasing" and "decreasing" are used in the weak sense). Similarly, X E P 1"'2 iff 

hx(x) is decreasing in x. 
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3 Uniformly Monotone Markov Processes 

We consider a temporally homogeneous discrete time Markov process {Xn; n ~ I} on 

the state space R. The one-step transition function q(x, A) governing the Markov process is 

assumed to be B-measurable in x E R and a probability measure on R in A E B, where B 

is the ordinary Borel field. For each fixed x E R, the transition function defines transition 

cdf P(x, y) = q(x, (-00, y]) = Pr[Xn +1 ::; y I Xn = xl. As for spf's, the transition spf is 

similarly defined and is denoted by P(x,y) = q(x, [y,oo)) = Pr[Xn +1 ~ y I Xn = xl· 
The transition cdf P(x,y) defines a Markov operator T in a usual way. Let F(x) be a 

cdf on R. Define 

(TF)(y) = 1..: P(x,y)F(dx). (3.1 ) 

The n-folded operator Tn is defined by Tn F = T(Tn-1 F) with TO F = F. The spf of T F is 

given by 

(TF)(y) = 1..: P(x,y)F(dx). (3.2) 

Here and hereafter, an integral is considered as a Riemann-Stieltjes integral. If we write 

(TF)(y), this means that the transition cdf P(x,y) is assumed to be Riemann-Stieltjes 

integrable with respect to F( x) for fixed y. The integral exists, for example, if P( x, y) is 

continuous with respect to x. The Riemann-Stieltjes integrability is the key in our analyses 

since it makes integration by parts possible under certain circumstances. 

Definition 3.1. A Markov operator T is called uniformly monotone in the negative (posi­

tive respectively) direction, which we denote by T E U M( -) (T E U M( + )), if P(x, y) E T P2, 

(P(x, y) E TP2). If either T ':: U M( -) or T E U M( +), we say that T is uniformly monotone. 

Remark 3.1. (i) For a Markov process {Xn; n ~ O} governed by T, consider the process 

{Yn } such that Yn ~ -Xn (g, stands for equality in law). This process is discussed also in 

[18, 19]. If T has transition cdf P(x,y), {Yn} is governed by P( -x, -y) since Pr[Yn +1 ::; 

ylYn = x] = Pr[Xn+1 ~ -ylXn = -xl by definition. Let (-T) be the Markov operator 

governing {Yn }. It is then easy to see that T E U M( +) iff (-T) E U M( -). 

(ii) In [3], Daley introduced a stochastically monotone operator T. T is said to be 

stochastically monotone (write T E S M) if P( Xl, y) ~ P( X2, y) for all Xl < X2 and for all 

y E R. Suppose T E UM(-), i.e., P(XI,y)P(X2'Y') ~ P(XI,y')P(X2,Y) for Xl < X2 and 

y < y'. By letting y' -+ 00, one sees that P(XI' y) ~ P(X2, y). Hence, uniform monotonicity 

is a stronger notion than stochastic monotonicity. 

As stated in the introductory section, the monotonicity theorem for stochastically mono­

tone Markov operators of Daley [3] is that T FI -(d T F2 for every pair of cdf's FI and F2 

with FI -(d F2 iff T E SM. The next theorem states that the monotonicity theorem also 

holds for uniformly monotone Markov operators. 

Theorem 3.1. T FI -«(_) TF2 for any cdf's FI and F2 such that FI -«(_) F2 iff T Eo U M( -). 
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Proof. To prove necessity, let Xl < X2 and let Fi(x) = U(x - Xi) (i = 1,2) where 

U(x) = 1 for X ~ 0 and U(x) = 0 for X < O. It is then evident that FI -«_) F2. 

For these cdf's, one has TFI = P(XI,') -«_) P(X2,') = TF2. Thus, when YI < Y2, 

P(XI' yt}P(X2' Y2) ~ P(XI' Y2)P(X2, yd, which is desired. The sufficiency follows by mimick­

ing the proof of Corollary 2.3 in Shaked and Shanthikumar [18], where the Riemann-Stieltjes 

integrability ensures the integration by parts (see Kijima [12] for details). 0 

Applications of Theorem 3.1 yield the following corollaries. 

Corollary 3.1. If T E U M( -) then Tn E U M( -), n ~ 1. 

Proof. We note that p(n)(x, y) = J~oo p(n-I)(z, y)P(x, dz) with p(1)(x,y) = P(x,y) where 

p(n)(.,.) denotes the n-step transition cdf. For Xl < X2, write pt)(y) = p(n)(Xi, y) (i = 1,2). 

Then ppl(y) = (TP;)(y). Since T E UM(-) w that PI -«_) P2, one has P I(2
l -«(-) pP) 

from Theorem 3.1. An inductive argument then proves the corollary. 0 

Corollary 3.2. Let F and G be cdf's on R and define 

H(y) = i: F(y - u)G(du), -00 < y < 00. (3.3) 

Then, H E P F2 (1 F R respectively) for any G E P F2 (1 F R) iff F E P F2 (1 F R). 

Proof. Let Xl < X2 and denote Ai(Y) = A(y - Xi) (i = 1,2) for a cdf A(x). Note that 

A E PF2 iff Al -«_) A2. It is easy to see from (:1.3) that 

Hi(Y) = i: F(y - Xi - u)G(du) = L: F(y - v)Gi(dv) ~ (TG;)(y). 

Further note that F E P F2 iff T E U M( -). The desired result then follows from Theorem 

3.1. 0 

Consider a Markov process {Xn; n ~ O} on R governed by operator T having transition 

cdf P(x,y). Suppose one restricts the state space to R+ = [0,00) by imposing an absorbing 

boundary at O. Let 

{ 

0, y < 0, 

Pa(x,y) = 1, x::; 0 and y ~ 0, 

P(x, y), otherwise. 

(3.4) 

Denoting by aT tbe operator corresponding to Pa(x, y), it is easily verified from (3.4) that if 

T E UMj (j = ('-),(+)) then so is aT. An absorbing Markov process whose state space is 

R_ = (-00,0] wbere state 0 is absorbing is similarly obtained from {Xn }. The preservation 

of uniform monotonicity in the both directions for this case is also readily checked. Hence 

uniform monotonicity is preserved under a modification by imposing absorbing boundaries. 

Suppose in turn t.hat the state space is restricted to R+ by imposing a retaining boundary 

at O. Define now 

{ 

0, y < 0, 

Pr(x,y)= 1, x<Oandy~O, 

P(x, y), otherwise. 

(3.5) 
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Note the difference between (3.4) and (3.5). In (3.5), Pr(O, y) = P(O, y) for y ~ 0 so that 

state "0" is not absorbing. Noting this difference, it is obvious that uniform monotonicity is 

also preserved by placing retaining boundaries. 

We next consider conditional rv's X;; and X;; of Xn given {Xm E R+, 0::; m ::; n} and 

{Xm E R_, 0 ::; m ::; n}, respectively, i.e. 

These rv's are considered only when the conditional probabilities are not zero. Let P+(x, y) = 
P(x,y) - P(x,O-) for x,y 2:. 0 and let P-(x,y) = P(x,y) for x,y ::; O. The corresponding 

spf's are given by P+(x,y) = P+(x,oo) - P+(x,y-) = P(x,y) for x,y ~ 0 and -P-(x,y) = 
P(x,O)-P(x,y-) for x,y::; 0 respectively. We write (T+F)(y) = 1000 P+(x,y)F(dx), y ~ 0, 

for F defined on R+. Simiia.,rly, (T- F)(y) = I~oo P-(x,y)F(dx), y ::; 0, for F defined on 

R_. Note that T+ and T- may not be proper operators so as to define lossy processes 

since (T+ F)(oo) and (T- F)(O) can be strictly less than unity. Let F;t be the cdf of X;;. 

The operator T+ governs {X;;} in the following manner (in what follows, we call {X;;} the 

conditional process of {Xn} g;overned by T+). For a given F;t, 

F+ ( ) _ (TF;t)(y) - (TF;t)(O-) _ (T+F;t)(y) 
n+l y - 1 _ (TF:)(O-) - (T+F:)(oo)' y ~ o. (3.7) 

It is then easy to see from (~L7) that F;t --«_) F;t+l iff T+ F;t_l --«_) T+ F;t. Also, although 

P+(x, 00) may be strictly less than unity, one can easily show that the content in Theorem 3.1 

is still valid (see Kijima [12]). If we use the same notation even for improper operators, this 

means that T+ E U M (-) iff T+ Fo+ --« _) T+ Fl+ for any cdf's Fo+ and Fl+ with Fo+ --« _) Fl+' 

The same results hold for T-. It is hence of interest to know if T E U Mj (j = (-), (+)) 

implies T+ E UMj. The answer is negative. Since P+(x,y) = P(x,y) for X,y ~ 0, T E 

U M ( +) implies only T+ E U M ( + ). The fact that T E U M ( +) does not necessarily imply 

T+ E U M ( - ) is readily verified (cf. Theorem 2.3 of [13]). Also, if T E U M ( -) then only so 

is T-. The next theorem summarizes these results. 

Theorem 3.2. 1fT E UMJ (j = (-),(+)) then both aT and rT are UMj. 1fT 'E UM(+) 

then T+ E UM(+) and ifT E UM(-) then T- E UM(-). 

Finally, we define the notion of uniformly monotone Markov processes. Recall that a 

Markov operator T together with an initial cdf Fo( x) completely determines the stochastic 

behavior of a Markov process {Xn; n ~ O}. Let Fn(x) be the cdf of X n, i.e. Fn(x) = 
Pr[Xn ::; x]. Given Fo(x), one has Fl = TFo. Suppose now T E UM(-). It is readily 

seen from Theorem 3.1 that if Xo --«-l Xl then Xn --«-l X n+l for all n ~ O. Similarly, if 

Xl --«_) Xo then X n+l --«_) X n, n ~ O. 

Definition 3.2. A real valued Markov process {Xn; n ~ O} is said to be uniformly in­

creasing in the negative (positive) direction, which we write as Xn T (-) (Xn T (+ )), if 
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Xn -<(-) X n+1 (Xn -«+) X n+1 ) for all n ~ O. If Xn ~(_) X n+1 (X" ~(+) X"+1), it is 

called uniformly decreasing in the negative (positive) direction and is denoted by X" 1 (-) 
(X" 1 (+)). 

Of interest is uniform monotonicity of the conditional processes X;; and X;;. Suppose 

Xo = 0 a.s. Then, from Theorem 3.2, one sees that X;; T (+) if T E U M( +). If T E U M( -), 

in turn, X;; 1 (-). The stochastic monotonicities of X;; and X;; are then guaranteed, 

respectively. We note that, even if T E SM, stochastic monotonicity of X;; and that of X;; 

are not assured in general. As we shall see later, stochastic monotonicity of the conditional 

processes plays a key role in the study of distribution properties of the number served during 

a busy period in queues. 

4 The Waiting Time Processes 

Consider a standard GI/G/l queueing system having inter-arrival time cdf A(x) and 

service time cdf B(x). The generic inter-arrival and service time rv's are denoted by A and 

B respectively. As the stability condition, we require that E[A] > E[B]. Let W" denote the 

waiting time of the n-th customer with Wo = 0 a.s. The cdf of Wn is designated by W,l(X). 

Let Q = B - A so that its cdf is given by 

Q(y) = i: B(y + x)A(dx), -00 < y < 00. 

The spf of Q(y) is given by 

Q(y) = i: B(y + x)A(dx), -00 < y < 00, 

with B( x) = 1 for x < O. Consider the integral transformation 

(TH F)(y) = i: Q(y - x)F(dx), -00 < y < 00, 

( 4.1) 

(4.2) 

( 4.3) 

for F defined on R. The waiting time process {Wn ; n ~ O} is the spatially homogeneous 

process except for a retaining boundary at O. As in (3.5), let 

{ 

0, y < 0, 

Qr(x,y)= 1, x<Oandy~O, 

Q(y - x), otherwise, 

( 4.4) 

and define 

(TF)(y) = i: Qr(x,y)F(dx), -00 < y < 00. ( 4.5) 

It is well known l;hat Wn+1 (y) = (TWn)(y), n ~ 0, starting with Wo(Y) = U(y). 

In order to use the results in Section 3, one needs to have a uniformly monotone operator. 

The property of TH in (4.3) should be described in terms of distribution properties of the 

non-negative rv's A and B. 
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Lemma 4.1. (i) If A E PF:! and BE IFR then Q E IFR. (ii) If A E IFR and BE PF2 

then Q E PF2 • 

Proof. To prove (i), we note that -A ElF R from Remark 2.2(ii). Corollary 2.2 then 

ensures Q = B - A ElF R. Statement (ii) follows similarly. 0 

As we have seen in Section 3, if TH E UMj (j = (-),(+)) then so is Tin (4.5). Hence 

Wn 1 j when Wo = ° a.s. 

Theorem 4.1. Let Wo = ° a.s. Then, (i) if the inter-arrival time A is P F2 and the service 

time B is IFR then Wn 1 (+), and (ii) if A E IFR and B E PF2 then Wn 1 (-). 

Let NB be the number served during a busy period in a GI/G/1 queue. If we denote by 

{W~; n ~ o} the spatially homogeneous process governed by T H , it is easy to see that 

NB = inf{n ~ 1: W: E (-00,0) I wt = a}. (4.6) 

Suppose A E PF2 and B E IFR so that TH E UM(+). Let fn = Pr[NB = ni, n ~ 1. 

Denote by r(n) the failure rate of NB, i.e. r(n) = fn/L.k?nfk' Since the queue is stable, 

the distribution (fn)r is proper. By definition, it is not hard to see that 

r(n) = f>C' P(x,O-)F;_l(dx) = 1 -fo'X) P(x,O)F;_l(dx), n ~ 1, (4.7) 

where P(x, y) = Q(y - x) and F;;(x) is the cdf of the conditional rv W;; of W: (see Section 

3). Note that P(x,O) is increasing with respect to x so that the integral fooo f(x)"P(dx, 0) is 

well defined for a bounded and monotone function f(x). It then follows from integration by 

parts in (4.7) that 

r(n) = 1- P(O,O) - Loo F~_l(X)P(dx,O), n ~ 1. ( 4.8) 

Hence 

r(n + 1) - r(n) = l°°W;_l(x) - F~(x)]P(dx, 0), n ~ 1. (4.9) 

In order for r( n) to be decreasing, X;;_l -<d X;; is enough from (4.9). This is so, since 

TH E U M( +) implies that X;; T (+). Thus the next theorem holds. 

Theorem 4.2. Let A E PF2 and BE IPR. Then NB E DFR. 

Remark 4.1. For an exponential distribution E(x) = 1 - e-!'-x, Jl > 0, one has hE(X) = 
Jl/(e!'-x - 1) and rE(x) = It. Since E E PP2 iff hE(X) is decreasing in x and E E: IPR iff 

rE(x) is increasing in x, exponential variates are both PF2 and IFR. Hence Theorem 4.2 of 

Kijima [13] is a special case of Theorem 4.2. 
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5 Pure Jump Processes and Associated Counting Processes 

Let {Xn : n ~:: O} be a Markov process defined on R+. {Xn} is said to be a pure jump 

process if Xo = 0 a.s. and Pr[Xn+1 2:: Xn] = l for all n 2:: 1. Pure jump processes often 

appear in shock models to describe the cumulative damages incurred by a system. Many 

authors have studied the first passage times of such processes into the upper set of a pre­

specified level since it represents the time to failure of the system (see e.g. [2, 17, 18] and 

references thereof). Of interest in this section is the counting process associated with the 

pure jump process {Xn} defined by 

N(t) = sup{n: X~:::; t}, t 2:: o. (5.1) 

Some special cases of such counting processes have been of great importance in the literature. 

For example, when Xn is a sum of iid rv's, N(t) is the ordinary renewal process. If Xn = 
Lk=l Yk and Yn + l depends only on the value of X n , then N(t) is the g-renewal process 

introduced in Kijima and Sumita [14]. In this section, we study IFR properties of the 

counting process associated with some Markov jump process. Recall that IFR distributions 

are characterized by uniform ordering -«(+) (see Remark 2.2(iii)). 

Let {Xn} be governed by transition cdf P(x,y), i.e. P(x,y) = Pr[Xn+1 :::; ylXn :=: x], 

X,y E R+, independent of n. Suppose P(x,y) = 0 for x > y. Then {Xn} is a pure jump 

process, provided that Xo = o. When Xn = x, f'le increment Yn +l = Xn+l-Xn is distributed 

by P(x, y + x), :'1 2:: o. Thus, the associated counting process N(t) becomes the g-renewal 

process [14]. Suppose now P(x, y) E T P2 in :r, y 2:: o. When Xo = 0, it is obvious that 

Xo -«(-) Xl. Thus, from Theorem 3.1, one has Xn -«(-) X n + l for n 2:: O. Let Fn(x) be the 

cdf of X n, i.e. Fn(x) = Pr[Xn :::; x]. Then, Xn -«(-) X n+l for all n 2:: 0 iff Fn(x) E TP2 in 

n 2:: 0 and x 2:: O. It should be noted that Pr[N(t) 2:: n] = Fn(t) since no negative drifts are 

allowed for {Xn}. It follows that N(t) -«(+) N(t') for t < t'. Furthermore, since 

Fn+l(t) = 1000 
P(y,t)Fn(dy) = 1oco 

Fn(y)P(-dy,t) - Fn(t)P(t,t) (5.2) 

(note that P(x,y) is decreasing in x for each y if P(x,y) E TP2), one has 

Fn+l(t) < [00 Fn-l(y) P( -dy, t) _ P(t, t) = Fn(t) . 
Fn(t) - lo Fn_l(t) Fn_l(t) 

(5.3) 

Hence N(t) ElF R for any t 2:: 0 or, equivalently, {Xn} is an IFR process. This fact has 

been proved in Shaked and Shanthikumar [18] in a different content. The next theorem 

summarizes the above results. 

Theorem 5.1. Let P(x,y) E TP2 ITl x,y :> o. Then N(t) -«(+J N(t') for t < t' and 

N(t) E IFR for any t > o. 
Remark 5.1. (i) Let {Xn} be governed by P(x,y), not necessarily P(x,y) = 0 for x> y. 

Let Tu be the first passage time of Xn into (u, (0), u > o. Define a modified Markov process 
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{Xn} of {Xn} by making (u,oo) absorbing. If we define Fn(x) Pr[Xn ~ x], one has 

Pr[Tu ~ n + 1] = Fn (u). Let ,P( x, y) denote the transition cdf governing {Xn}' It has been 

seen in Section 3 that P(x,y) E TP2 implies p(x,y) E TP2 . It can then be proved by a 

similar manner to the above that Tu ElF R for any u > O. Thus, {Xn} is an IFR process, 

provided that the governing transition cdf P(x,y) E TP2 • For the case of discrete state 

space, see Kijima [13]. 

(ii) As pointed out in Remark 2.1(ii), the orderings -«+) and -«_) are in a dual relation. 

The results in Theorem 5.1 are transferred into the context of -«_) as follows. Suppose that 

P(x, y) is absolutely continuous in y for each x and that P(x, y) = Pr[Xn+1 ~ IX. = x] E 

TP2 in x,y ~ O. Then N(t) .«(_) N(t') for t < t' and N(t) E PF2 for each t. These facts 

readily follow from noting Pr[N(t) ~ n - 1] = Pr[Xn > tJ. 
Another pure jump process of interest is a sum of independent non-negative rv's (not 

necessarily identically distributed). Let Xn = 2:k=1 Yk and let Yk be distributed by Gk(x), 

x ~ O. The cdf of X n+1 is then given by Fn+1(x) = Fn(x) * Gn+1(X), n ~ 0, where * denotes 

convolution. Here Fo(x) = U(:z:). The next lemma is related to [9]. 

Lemma 5.1. Suppose Gn E PF2 for n ~ 1. Then, (i) Fn E PF2 , and (ii) Fn(x) E= TP2 in 

n ~ 0 and x ~ O. 

Proof. Part (i) follows from Corollary 3.2. For (ii), we note that 

Fn+1(;~ > r Fn(Y - z)G (d) x < y. 
Fn(Y) - 10 Fn(Y) n+1 z, 

Since Fn(x) E PF2 in x, one has Fn(Y - z)jFn(y) ~ Fn(x - z)jFn(x) for x <?/. Thus 

Fn+1(y)jFn(Y) ~ Fn+1(:i:)jFn(,:Z:) for x < y, meaning Fn(x) E TP2 in n ~ 0 and x ~ O. 0 

Let N(t) be the associated counting process with {Xn }. As before, N(t) -«+) N(t') for 

t < t' iff Fn(x) E T P2 in n ~ 0 and x ~ O. Thus the assumption that Gn E P F2 for n ~ 1 

guarantees the uniform monotonicity of N(t) with respect to t > O. The IFR property of 

N(t) for each t, however, requires an additional condition. 

Theorem 5.2. Suppose Gn E PF2 for n ~ 1. Then N(t) -«+) N(t') for t < t'. If in 

addition Gn -<d Gn+1 for n ~ 1 then N(t) E IFR for any t > O. 

Proof. Let Tt(n) be the failure rate of N(t), i.e. Tt(n) = Pr[N(t) = nJ/ Pr[N(t) ~ n], 
n ~ O. It then follows that 

. ( ) _ 1 _ Fn+ 1 (t) 
1 t n - Fn(t) , n ~ O. (5.4 ) 

Since Fn(x) E TP2 in n ~ 0 and :r ~ 0, one sees that 

(5.5) 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Uniform Mall 0 tonicity of Markov Process 485 

The second inequality in (5.5) follows from Gn -<d Gn+l (see e.g. Stoyan [20] for the prop­

erties of -<d). Hence, from (5.4), rt(n) increases in n. 0 

Finally, we consider the ordinary renewal process. Let Xn = 2:k=1 Yk where Yk are now 

iid. Let G( x) be the cdf of lk and define for n ~ 0 

{ 
Pr[N(t) = n] = c(n)(t) - G(n+l)(t), t ~ 0, 

h(n,t) = o t < O. 
(5.6) 

Here G(n)(t) denotes the n-fold convolution of G(t) with itself. Because of the temporal 

homogeneity, more about N(t) can be stated. For two discrete rv's X and Y having the 

probability distributions p: = Pr[X = n] and p~ = Pr[Y = n] respectively, X and Y are 

ordered in the sense of likelihood ratio ordering (write X -<I Y) iff p~ /p: is increasing in n. 

We note that the ordering -<I is stronger than -«_) and -«+). An rv X is said to be strongly 

unimodal (denote X E SU) if Pr[X = n] is PF2 in n. The class of SU distributions is deeply 

related to the ordering -<I and SU cIF Rn P F2 [13]. 

Theorem 5.3. Suppose GEl F Rn P F2. Then, (i) h(n, t) E P F2 in t for any n ~ 0, (ii) 

N(t) -<I N(t') for 0 :::; t < t', and (iii) N(t) E SU for each t ~ O. 

Proof. Note that if G E IFR then G(x) E P F2 in -00 < x < 00 where G(x) = 1 - G(x) 

for x ~ 0 and G(x) = 0 for x < 0 [13]. Thus, h(O,t) E PF2 in t. Next consider h(n + l,t) = 
Jooo h(n,t - y)G(dy). Suppose that it has been shown that h(n,t) E PF2 in t. Note that, in 

the proof of Theorem 3.1, the fact P( x, y) being increasing in y is not used but the key is its 

TP2 property (see [12]). Hence an application of Corollary 3.2 proves that h(n + 1, t) E: P F2 

in t since G E PF2 • Hence Part (i) follows. This fact in turn implies that 

h(n,xdh(n,x2 -V) ~ h(n.,xl -y)h(n,x2), y ~ 0 (5.7) 

for Xl < X2. Integrating the both sides of (5.7) over R+ with respect to G(x), it follows that 

(5.8) 

Hence, N(t) -<I N(t') for 0 :::; t < t' by definition. To prove Part (iii), it suffices to show that 

h(n, t) in (5.6) is PF2 in n for each t ~ O. This follows from (5.8) and similar arguments to 

the proof of Theorem 5.2. 0 

Remark 5.2. (i) If J(x) = :fxF(x) E P F2 (i.e. FE SU [4]) then the results of Theorem 

5.3 are immediately derived from Theorem 3 of Karlin and Proschan [9]. However, we require 

only FE IFRn PF2 which is implied by J(x) E PF2 • 

6 Uniform Comparison of Sums of Independent Random Variables 

Let (Xi, Y;), i ~ 1, be independent pairs of rv's such that Xi -«_) Y;. Applying Theorem 

5.2 in p.124 of Karlin [8] repeatedly, one sees that if Xi and Y; are PF2 for all i ~ 1, then the 
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sums E?=l Xi and l:~1 Y; are also ordered in the same ordering. For ~(+), the additional 

assumptions that Xi and Y; are IFR for all i ~ 1 are needed to guarantee the preservation 

of the ordering. That is, one has the following lemma. 

Lemma 6.1. Let Xi ~(_) y;, i ~ 1, and suppose that both Xi and Y; are PF2 for all i ~ 1. 

If {X;} are mutually independent and so are {Y;} then E~l Xi ~(-) E?=l Y;. 

For a sequence of rv's {X;}, let Nx(t) be the associated counting process, i.e. Nx(t) = 
sup{n : E?=l Xi ::; t}. For {ri}, counting process Ny(t) is defined similarly. Of interest is 

then to know if there is an ordering between Nx(t) and Ny(t) when Xi and Y; are ordered. 

In the next theorem, we prove it in the affirmative under the same conditions as in Lemma 

6.1. 

Theorem 6.1. Under the same assumptions as in Lemma 6.1, one has Ny(t) ~(+) Nx(t). 

Proof. Let G~(x) (G~(x)) be the cdf of Xn (Yn) and let F;(x) (F,;(x)) be the cdf of 

E?=lXi (L:i'=1Y; respectively). From Lemma 6.1, F;(x)F,;(y) ~ F;(y)F,;(x) for x < y. 

Then 
F;+ 1 (t) rt F; (t - x) x r F,; (t - x) x ( 
F!(t) = la - F!(t) Gn+1(dx) ~ la F!(t) Gn +1 dx). 

Now, since G~+l ~(_) G~+1 implies G~+1 -<d G~+1' one has the desired result. 0 

Example 6.1. In this example, we consider the following scheduling problem. A single ma­

chine processes a set of n jobs available at time zero. Each job i requires a random processing 

time Xi' {X;} are mutually independent and they are ordered as Xl -«_) ... -«_) X n . All 

jobs have the common due time d. The objective is to obtain a scheduling list (il' i2 :···, in), 

a permutation of {1, 2, ... , n }: to maximize, in the sense of a stochastic ordering, the num­

ber of completion of jobs. This problem is the so-called single machine scheduling problem 

considered by many authors (see e.g. [6]), except that the processing times are stochastically 

ordered. Suppose Xi E P F2 for all i. Under the assumption Xl -«_) ... -«_) X"' it can 

be shown that the list L = {I, 2, ... ,n} minimizes E7=1 Xi for all k in the sense of ~(_). 

From Theorem 6.1, it then follows that the associated counting process Ndt) is maximized 

for any t among all possible counting processes in the sense of ~(+). Thus the number of 

completion of jobs before the due time, NL(d), is maximized in the sense of -«+) if the list 

L is used. 

7 Random Sum of iid Random Variables 

Of other importance is the comparison of random sums of iid rv's. Namely, let (Xi, Y;), 

~ 1, be iid pairs of rv's and let M and N be independent integer-valued rv's which are 

independent of (Xi, ri). Then we are interested in when the preservation that M -<i Nand 
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Xi -<j Y; (j = (--),(+)) imply 
M N 

LXi -<j LY; (7.1) 
i=1 i=1 

is guaranteed. Here the empty sum equals zero. Note that (7.1) is true for stochastic ordering 

and convex and concave orderings (see [20]). In this section, we seek a sufficient condition 

under which the above statement is true. 

Theorem 7.1. Suppose Xi E PF2 (E IFR respectively). If M -«_) (-«+»)N then 

2:;:;1 Xi -«-) (-«+») 2:;:'1 Xi' 
Proof. Let p~4 = PrIM :::; n], n ~ 0, and P~i = O. Further, let Fn(x) = Pr[2:i=1 Xi :::; x], 

n ~ 0, x ~ O. The cdf of 2:;:;1 Xi is then given by 

M = 
Pr[L Xi:::; x) = L Fn(x)ll[P~] ~ (TM)(x), (7.2) 

i=1 n=O 

where ll[P~) denotes the first difference of (P~). Note that (7.2) can be understood as 

the discrete counterpart of (3.1). Thus, a similar proof to Theorem 3.1 provides the desired 

result, since Fn(x) E TP2 in n ~ 0 and x ~ 0, from Lemma 5.1(ii), if Xi are PF2 . Cl 

Theorem 7.2. Let (Xi, Y;), i ~ 1, be iid pairs of rv's and suppose that either Xi or Y; for 

all i ~ 1 are exponentially distributed. Further let M be a geometric rv. Then Xi -«+) Y; 

imply that 2:~1 Xi -«+) 2:~1 Y;. 
Proof. We prove the theorem only for the case that Xi and Y; are discrete rv's. For 

general rv's, a routine limiting argument leads to the desired result. Suppose first. that 

Xi are geometric rv's with Pr[Xi = k) = (1 - r)r k - 1 , k ~ 1. Let r(k), k ~ 1, be the 

failure rate of Yi. By assumption, one has 1 .- r ~ r(k), k ~ 1. For geometric rv M, let 

PrIM = k] = (L - p)pk, k ~ O. Let {Z(n); n = 0,1, .. ·} be a Markov chain on {O, 1, .. ·} 

with 0 absorbing, governed by the transition probability matrix 

[ 

1 0 0 0 ... ] 
_ (1 - p)r(l) pr(l) 1 - r(l) 0 .. . 

Q- . 
(1 - p)r(2) pr(2) 0 1 - r(2) ... 
.. " .. ., .. .' 

It is easy to see that the first passage time T of Z (n) from state 1 to state 0 is equal 

in law to 2:;:;1 Y; given M ~ 1. Denote by rT(k), k ~ 1, the failure rate of T and let 
, d 

Z(n) = {Z(n) I Z(n) ~ I}, n ~ 1. One then has 

= 
rT(k) = (1 - p) L r(n) Pr[Z(k -1) = n), k ~ 1. 

n=1 

Since r(n) :::; 1 - rand L;;'"'=1 Pr[Z(k) = n] = 1, it follows that rT(k) :::; (1 - p)(l - r), the 

right hand side of which is the faiLure rate of ~=~1 Y; given M ~ 1. If Y; are geometric rv's, 

one gets the reversed inequality. Since L;:;1 Y; = 0 iff M = 0, one obtains the theorem. Cl 
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The next corollary can be readily proved from the above theorems. 

Corollary 7.1. Let (Xi, Yi), i ~ 1, be iid pairs of rv's and let M and N be independent 

integer-valued rv's. Suppose Xi and Yi are all IFR. Further suppose that there exist expo­

nential iid rv's Ei and a geometric rv G such that Xi -«+l Ei -«+l Yi and M -«+l 0 -«+l N. 

Then L:f'!1 Xi -«+l L:~1 Ei -:(+l 'L!'::1 Yi. 

The conditions in the above theorems seem too restrictive. However, it is useful in devel­

oping bounds for performance measures of stochastic systems, since an explicit evaluation is 

often possible only for exponential distributions. The following examples show a potential 

usefulness of the theorem. 

Example 7.1. (Shock Model) Consider a device subject to a sequence of shocks occurring 

randomly in time as events in a renewal process N(t) with the inter-occurrence time cdf 

F(x). Suppose that each shock causes an IFR random damage and that damages {X;} on 

successive shocks are iid. Then, the cumulative damage by the time is given by L:;:'~) Xi. 

If F E P F2 then, from Theorem 5.2, N(t) ElF R. Let p(t) = Pr[N(t) ~ 1] = F(t) and 

let M(t) be geometrically distributed with mean p(t)/(l - p(t)). Note that the failure rate 

of N(t) is bounded below by 1 - p(t). For any sequence of exponential rv's {E;} such that 

Xi -«+l Ei, it follows from Corollary 7.1 that 'L;:~l Xi -«+l 'L,:!~tl Ei. If the failure rate 

of Xi is bounded below by I, the failure rate of L:;:(;l Xi is bounded below by l(l - F(t)), 

t > o. 
Example 7.2. (Comparison of M/G/1 Queues) Consider a single server M/C/1 queue 

having a Poisson stream of cl1stomers at rate p and service time distribution function F( x) 

with finite mean. Denote by FR(x) the residual lifetime distribution of F(x), i.e. FR(x) = 
fc~(l - F(u))du/ Jooo (l - F(u))du. Let {Xn} be a sequence of iid rv's having cdf FR(X) and 

let N be geometrically distributed with mean 6, which is independent of {Xn }. It is well­

known that the generic waiting time W for the M/G/1 queue is given by W = 'L;:ol Xi. Let 

IR(X) be the failure rate of F'R(X). It then follows that 

1 - F(x) 
IR(X) = J;"(1- F(u))du 

1 

ElY I Y>x] 

where Y is the generic service time of the M/G/1 queue. Hence, if 12"1 ::::: E[Y I Y > x] ::::: 1'1 1 

for any x ~ 0, the failure rate of W is bounded as /1(1 - p) ::::: IW(X) ::::: 12(1 - p), x > o. 
In applying the above results, it is the key that the failure rate of the rv of interest is 

bounded from below or above. The requirement is satisfied for classes of cdf's that are often 

used in application. Consider, for example, a mixture of exponential rv's. Let X be an rv 

having distribution function F(x) = 'L~1 Pi(1 - e-r•x), i.e. X has a completely monotone 

density. The failure rate of X is given by 

() L:~1 Pi1i e - r•x 
l' \' X = -""-'=-"-=-----. L::t Pie-T'i X 

' 
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It is easy to see that 1:. = inf{r;} ~ rx(x) ~ sup{r;} = r, regardless ofthe mixing distribution 

{pd. Next consider a sum of exponential rv's. Suppose Y has a density function f(x) = 
It rle-TI(x-Y)r2e--r2Ydy with rl < r2. The failure rate of Y is given by 

Since ry (x) increases in x and limx _ oo ry (x) == rI, ry (x) ~ rl for x ~ O. Hence a lower 

bound with respect to the uniform ordering -«+) is readily obtained for a random sum of 

such rv's based on Corollary 7.1. 
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