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Abstract Decomposition methods for linear programs are now classical research interests. We revisit this 
issue, however, in the context of possible adaptation of 'cooperative' rather than 'selfish' division behavior in 
algorithm development and also of renewed interests in parallel computation. This paper extracts and extends 
from the Dantzig-Wolfe decomposition framework a new coordination scheme where multiple divisions take 
turn in playing the role of master unlike many conventional decomposition methods where only single masters 
are involved and divisions behave 'selfish' (without considering the rest of the system). This new approach 
can also provide some advantages in analyzing multidivisional organization's information flow as well as in 
applying in a parallel processing framework. 

1. Introduction 

The Dantzig-Wolfe (abbreviated as D-W throughout the paper) decomposition prin­
ciple is usually accepted as a conceptual framework for price-directive coordination of 
divisional activities by the headquarters of an organization [4,6,14]. If the planning prob­
lem of a multi-divisional firm can be formulated as an LP problem (P), 

n 

(1) Maximize 2:>J x j 
j=1 

n 

subject to LAjx j S; a, 
j=1 

BjX;i S; bj for j = 1, .. . ,n, 
and Xj ;:: 0 for j = 1, ... ,n, 

then the so-called master solves the following approximation problem of (P) at iteration 
step k, (Mk): 

n k 

(2) Maximize L L(c/fj)Ajr 
j=1 r =1 

n k 

subject to L L(Ajxj)Ajr S; a, 

and 

j=1r=1 

k 

LAjr = 1 
r=1 

for j = 1, ... , n, 

for r = 1, ... , k and j = 1, ... , n, 
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Cooperative Decomposition Method 463 

where x/s are nJ X 1, c/s are 1 x nj, A/s are m X nj, a is m x 1, B/s are mj X nj, b/s 
are mj x 1, and xj's are the extreme points of Xj == {xjlBjxj :::; bj, Xj ~ O}, assumed 
to be nonempty and bounded for simplicity. The dual vectors pk and zJ are assumed 
to have appropriate dimensions. In turn, divisions solve the following subproblem (1'5j) 
parameterized by the price (pk) of the corporate resources given by the master problem: 

(3) Maximize sj = (Cj - pkAJxj 

subject to Xj E Xj. 

In designing a decentralized resource allocation mechanism, the algorithmic procedure 
can be interpreted as an information exchange process in a multi-divisional organization 
[1,6]. Various decomposition methods adopting different iterative communication struc­
tures have been developed [2,3,7,11]. These approaches typically assume the existence of 
artificial headquarters (center) which is solely responsible for balancing the allocation of 
common resources and the divisions all being 'selfish' in that each division pursues its own 
goal without paying attention to the rest of the system. In fact, this selfishness, repre­
sented by the divisional payoff maximization over local constraints, has been the acronym 
for the decentralization in the literature. 

But many authors in this field have pointed out that these conventional decomposition 
approaches have such implementational drawbacks as the lack of autonomy or coordinabil­
ity in the resultant solutions and the large number of required information exchanges etc. 
(see [7,8,19]). What is known as the 'composition' approach is often considered as a 
symmetric concept to the decomposition. The decomposition approach starts with the 
mathematical statement of the ideal organizational problem, from which decentralized 
decision process for a global optimal solution is induced normatively. On the other hand, 
the composition approach first models the reality of existing decentralized structure and 
coordination schemes of the organization, and then analyzes and evaluates the derived 
organizational problem. In fact, the composition approach surpasses the decomposition 
approach in its implement ability, since it is de~criptive, and even some authors [7,8] have 
proposed decentralization schemes that utilize the merits of both approaches. 

Alternatively, however, the decomposition approach is normative, and this feature is 
what we don't want to miss in many contexts. It can provide a useful reference in the anal­
ysis of organizational decentralization [8,19]. And it has various application possibilities 
in the parallel processing of optimization problems, which is now of the renewed interests 
with the rapid growth of the distributed information processing systems [10J. This latter 
is, in fact, one of what revive the otherwise olel fashioned research topic of decomposition 
schemes. 

This paper essentially attempts to propose a new decomposition method that is nor­
mative yet exhibits higher implementability than conventional decomposition approaches. 
We do this by modifying the subproblem formulation in the basic D-W decomposition that 
is a typical example of the price-directive decomposition approaches often characterized 
by 'lack of autonomy'. In the next section, we justify the assumed particular divisional 
behavior that is a core building block of the proposed approach. Section 3 provides the 
mathematical framework that describes our multi-divisional organization problem along 
with the associated theoretical results. Section 4 elaborates the issue of autonomy em­
bedded in the proposed scheme. In Section 5, computational properties are examined to 
evaluate the speed of convergence and the required number of iterations which are often 
of practical concern in the real world information exchanges among divisions. Lastly, it is 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



464 B.-H. Ahn & S.-K. Rhee 

to be noted that we first establish a desirable yet acceptable divisional behavior and then 
develop a decomposition scheme based on that, rather than start with rather mechanical 
algorithmic discussion and t.hen try to associate economic or organizational justification 
as done by many conventional decomposition methods. 

2. Cooperative vs. Myopic Divisions 

In the conventional decomposition literature, division models (subproblems) take the 
form of divisional payoff maximization over local feasible region as in (3) (price-guided 
sub problems ) or maximization of divisional contribution under the corporate resource 
quota qj given by the cent er (resource-guided subproblems): 

(4) Maximize CjXj 

subject to Ajxj:::: qj, 

and Xj E Xj. 

In these divisional problems of conventional decomposition approaches, each division 
simply maximizes divisional payoff utilizing only the point information on either prices 
or quotas of common resources most recently announced by the center, while the cent er 
utilizes not the point information but the set of accumulated proposals from the divisions. 
In our approach to be proposed here, we do not assume the existence of the center. In fact, 
as can be seen later, each division itself plays in turn the role of the cent er by explicitly 
carrying the common resources constraints as well as the divisional (local) constraints and 
also utilizing the set of accumulated information (rather than the point information) on 
common resources given from other divisions, thus eliminating the need for a center. We 
call this type of divisions cooperative divisions, since resultant divisional objectives are 
consistent with the global objective, as will be shown in the next section. In this sense, 
the divisions of conventional decompositions might be called myopic divisions. 

Now, the question could arise on whether such cooperative divisional behavior can 
be justified in the real world setting or whether there exists appropriate incentive or 
motivation schemes that support it. Even though we do not intend to provide a serious 
theoretical argument for sllch cooperative behavior, we can at least assert that there 
have recently appeared numerous examples of strategic business management that stress 
the consistency of functional strategies (financial, marketing, or manufacturing) with the 
higher level business or corporate strategy [9,18]. 

This type of cooperative divisional or functional behavior has often been addressed to 
in the emerging literature on manufacturing strategy. For example, while illustrating the 
problem of profit centers' managers seeking short-term divisional profits in detail, Hayes 
and Wheelwright [9, pp. 9-10, 366-367] have emphasized the 'group-consciousness' as 
Japanese manufacturing's major advantage over D.S.: 

The term co-destiny often is used to indicate the close interdependence and 
the shared expectations that exist between a company and all its affiliated 
organizations - the productive confederations. 

In analyzing the causes of conflicts between marketing and manufacturing functions 
within firms, Powers et al. [16] have also warned that the divisional planning based on 
the poor information on their respective roles in the overall scheme could disturb other 
divisions' activities. Also Shapiro [17] addressed this conflict issue and suggested that "to 
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lessen the amount of marketing and manufacturing conflict, management can make each 
function more responsive to other's needs." He also suggested that there could and should 
exist some appropriate monitoring and rewarding system to motivate such behavior. 

Cooperative division behavior in this paper is compatible with the responsiveness (to 
other divisions) and consistency (with the global objective) mentioned above. To be 
more specific, in our model framework this cooperative behavior is reflected by explicitly 
carrying global objective function as well as common resource constraints in each divisional 
problem. That is, in our assumed division model each division pursues a corporate-wide 
objective, rather than divisional myopic payoff, and explicitly concerns with others' action 
possibilities via common resource constraints in deciding its own action plans. 

Before moving on to present the cooperative decomposition method, for the sake of 
generality we categorize the divisions into two: major and minor. That is, we assume that 
some divisions have the cooperative property a:l above and other divisions behave just like 
D-W divisions. Here we denote the cooperative divisions as 'major' divisions. For a busi­
ness firm, likely candidates are marketing, manufacturing, personnel or finance divisions 
since these are major inhouse suppliers or consumers of corporatewide resources. And we 
call the D-W style divisions 'minor' ones such as maintenance, storage management, etc. 
This naming convention is strictly a matter of convenience. 

3. Cooperative Decomposition Method 

Let M denote the nonempty index set of the major divisions, i.e. a subset of {jlj = 
1, ... ,n}, and the remaining ones are minor divisions (j rt M). The problem facing a 
major division (CSj) is modeled as one similar to the master problem of D-W method: 

where: 

(5) Maximize 7rJ = CjXj + L L (CiX;}\ir 
i#j rER, 

subject to Ajxj + L L (AiXi)Air S; a, 
i#jrER. 

and 

BjXj S; bj, 

L . .\;r = 1 
rER. 

for each i =I=- j, 

for r E Ri and i =I=- j, 

Xi is a feasible solution vector of division i (,Z'i E Xi), 

Pj is a price vector for the corporate resources evaluated by division j, 

Zij is a dual variable for the contribution margin on the objective of division i (i 1'= j) 
evaluated by j, and 

Ri denotes an index set of proposals from division i available to j at the iteration A:. 

Note that this formulation is similar to the D-W master problem in that it takes the 
convex combination of accumulated proposals of (cixD and (AiXD of other divisions. It 
differs, however, in that Problem (5) explicitly include the local constraints Bjxj ~; bj 

and that Xi is not necessarily an extreme point of Xi = {xi!BiXi S; bi, Xi 2: O}. This 
type of formulation is possible for each major division, and in fact the proposed scheme 
simply solves in sequence this set of cooperati\'e subproblems. We formalize this scheme 
as follows: 
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Algorithm 

Step 0 (Initialization) 

Set k := 0, j := 1, R;= 0 for each i = 1, ... , n, and phase := 1. Go to Step 
1. 

Step 1 (Quantity Adjustmen.t) 

If j EM, solve (CSj) cmd let (x],]5]) denote an optimal solution pair. 

If 7rj = 7rj-I, then go to Step 3. 

If 7rj - 7rf < f for some i E M, i -=J j, and for predefined tolerance 
f > 0, then go to Step 2. 

Otherwise update RJ by adding the index k to R j , set j := j + 1, 
and repeat Step 1. 

If j f:. M, solve (PSj) with the most recently computed price ]57 for i EM, 
and let x] denote the optimal solution. Update R j , set j : = j + 1, and repeat. 

Step 2 (Price Adjustment) 

Solve (PSj) with the price ]57 recently generated by i E M, i -=J j, and let x] 
denote the resulting optimal solution. Update R j , set j := j + 1, and return 
to Step 1. 

Step 3 (Termination) 

If phase = 1 and 7rj > 0, then the problem is infeasible, stop. 

If phase = 1 and 7rj = 0, then phase := 2, j := j + 1, and go to Step 1. 

If phase = 2, then the optimal solution is obtained. Stop. 

Note Throughout the phase 1, the objective function takes the form of"'L( artificial vari­
ables introduced to combining constraints). If j > n in setting j := j + 1, reset j := 1 and 
k:= k + 1. 

The essence of Step 1 is that at kth iteration a major division solves a 'cooperative' 
subproblem (CSk ) to produce xj and ]5j, and a minor division solves D-W type 'selfish' 
subproblem (PS]) using the price vector produced from the mc,jor division which has been 
visited most recently. Of course as in D-W method, the minor divisions produce proposals 
to the next major division. The previously solved (visited) major divisions also provide 
the activity proposals xj to major divisions that follow. The role of Step 2 is to break 
a 'deadlock' (that is defined in the third 'if' in Step 1) among major divisions, if it ever 
occurs during the iterations of Step 1. The further discussion of this 'deadlock' follows 
later. It is also noted that, as in conventional LP algorithms, phase 1 is introduced to find 
an initial set of feasible activities. 

If the set of major division indices ]..;[ contains only one element, the above algorithm 
becomes the typical D-W decomposition. On the other extreme occasion, that is, with 
M = {j Ij = 1, ... , n}, the algorithm might be seen as Gauss-Seidal implementation of 
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D-W decomposition. Which and how many major divisions are in the system is closely 
related to the issue of communication structure of an organization. Even though our 
formulation assumes M is given apriori, it would be quite meaningful to find an optimal 
M associated wi.th the given cost and technical data of an organization. 

Now in order is convergence discussion. Consider the sequence of the objective values 
f . d'" {Ill 2 2 "l b . d' S 1 hI' h b o major 1V1SlOns 7rj"7rj,, ... ,7rj,,7rj,,7rj2""JO talne In tep ,were 1st enuln er 

of major divisions and j1,j2,'" ,jl E M. 

Proposition 1 A sequence of Step 1 given above monotonically converges to a limit in a 
finite number of iterations. 

Proof. First we want to show that the sequence converges. Consider a subsequent pair 
of two major divisions j1 and h. Note that the optimal solution (xJ" X) of j1 is also a 

feasible solution for the latter division j2 via (1;J2' ~), where XJ2 = LrERJ2 xj)j,r, ~j,k = 1, 

and ~jr = Xjr for other j's. This naturally leads to 7rj2 ~ 7rj,. Hence the sequence is 
monotonically increasing. The boundedness of the sequence comes directly from the fact 
that (CSj) is a restrictive approximation of (P). Since the sequence is monotonically 
increasing and bounded, it converges to some limit, say 'it. 

Now we show that a limit point can be obtained in a finite number of iteration steps. 
Suppose on the contrary that an infinite sequence needs to be generated to converge to 
'it. Then we can take sufficiently large iteration counter I< such that 0 < 7r1, - 7rt' < E 

where E is sufficiently small positive constant. Note that it can be assumed Ri's (j ~t. M) 
are not different for j1 and j2 because I< is so large and the number of extreme points 
in Xj's (j f/. M) are finite. Assume that j2 starts with an equivalent solution to that of 
j1'S optimal one as in above. Then there exists at least one element of Xj2 which can be 
a candidate to enter the basis. This implies that an adjacent extreme point of the h's 
feasible region (denoted as Xj2 which is a subset of X j2 and has a fixed number of bases) 
can have a better objective value. Note that the bases of Xio can be classified into two 
categories; thm:e defined by common constraints' slack variables, the others belonging to 
the bases of original X j2 • But the former group of bases are projected from the global 
feasible region and is equivalent to those of jl 's. Since I< is large enough, the latter !~roup 
of extreme points can be assumed to be known to j1' This contradicts to the assumption 
7rj2 > 7rj,. This completes the proof. 0 

Hence, this sequence converges monotoniGally to some limit. If this limit happens to 
be equal to the true global optimal objective value and the material balances of com­
mon resources are met, we are done. Unfortunately, this limit is not guaranteed to be 
true optimal. This premature cycling or 'deadlock' has interesting implications. First, 
if this iteration scheme is applied to decentralized decision process of an organization, 
this 'deadlock' would pose no problem, since what matters here is the convergence rate 
during the first. several iterations (see [3,4]). As shown in the computational experiments 
later, our cooperative scheme typically performs well during the first several iterations. 
Secondly, this "dead lock' phenomena arises possibly because the major divisions are mu­
tually cooperative rather than are 'selfish' individually. Thirdly, if such 'deadlock' needs 
to be detected and broken for the sake of completeness as a solution finding algorithm, 
we may well introduce the 'selfish' step of D-W method. That is, if the objective value 
sequence does not improve as much as a specified threshold, each division is temporarily 
allowed to be 'selfish' by solving D-W type subproblem (PS) rather than 'cooperative' 
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subproblem (CS). This step essentially generates additional extreme points of the major 
divisions' feasible regions X/so This is exactly what Step 2 (price adjustment step) does 
in our algorithm. Since Step 2 is invoked only a finite number of times (if ever needed), 
Proposition 1 leads to the following. 

Proposition 2 The algorithm terminates with an optimal solution of (P) within a finite 
number of iterations. 

Proof. The objective values of (CSj)'s, which are local approximation problems for 
(P), increase monotonically as the iteration proceeds. When the algorithm terminates, it 
is assured that all the 7rj's for j E AI are equal and (PSj) is solved for all j = 1, ... , n. 
Recall that the price coefficients are consistent in solving (PSj) 'so This implies that the 
global optimality is obtained at the first major sub problem followed by a series of price 
adjustments, just as in master problem of D-W method. The finite convergence can be 
also guaranteed by the finiteness of Xl's as in D-W method. The desired result follows. 
o 

Several computational strategies can be devised for the algorithm, due to the embed­
ded flexibility in selection of the computation (visitation) sequence among major divisions. 
Parallel implementation of divisional calculation is possible in network environment as in 
Ho [10]. Intermediate cycling over a subset of divisions may well work. Some major di­
visions might be skipped temporarily during visitation depending on the computational 
contribution in the previous iterations. All these options and others not explicitly dis­
cussed here can be interesting topics of computational research. 

4. Divisional Autonomy and Cooperative Decomposition 

Many authors [7,8,11] have argued that the lack of 'autonomy' is one of the major 
drawbacks in conventional decomposition approaches in light of the decentralized decision 
processes. A subproblem's optimal activity pattern, given a set of optimal information on 
common resources from the master, does not in general guarantee the systemwide material 
balances. This phenomenon is also referred to as the problem of coordinability [1:~]. 

Especially in LP setting, the lack of coordinability in price-guided decomposition meth­
ods has been considered as inevitable (see [7,12,13,15]). The lack of autonomy is known 
(see Eto [7]) to arise from the fact that, while each division desires to take local extreme 
point solution, it is forced at optimum to accept an interior point solution (a proper 
convex combination of local extreme points) due to the existence of common resource 
constraints. Alternatively interpreting, if one division adheres to a. local optimum, it will 
restrict other divisions' activities due to common resource constraints. From the very 
definition of our cooperative divisions, this type of autonomy problem is lessened, since 
each division explicitly carry the common resource constraints. In an attempt to solve 
this lack of autonomy problem, Eto [7] suggested to bring the systems bureau into the 
existing multi-divisional organization, yet assumed the conventional myopic divisional be­
havior. In this framework, the center is given a.n additional role of the systems bureau 
along with conventional price-setting role. In other words, to induce myopic divisions to 
accommodate full autonomy, the cent er is imposed an increased role. In this context, our 
approach addresses this issue :t'rom the opposite direction, namely, reducing the role of the 
center and letting individual divisions to share its role. 
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Jennergren [12] has analyzed this in detail and proposed a price-schedules approach 
that utilizes a quadratic price function to enforce each division to use the corporate re­
sources at a globally optimal level determined by the center. Geometrically speaking, this 
quadratic sub problem defined on the same local feasible region as in (PS) has a unique 
optimal solution which may not be an extreme point at all. 

We have presented an alternative approach that improves the divisional autonomy 
among divisions. Here we show that the cooperative major divisions are all autonomous 
while the selfish divisions are not. That is, once the iteration satisfies the termination 
criteria, we obtain at this final iteration the local optimal solutions of the major divisions 
that are consistent with the global optimal solution. 

Proposition 3 If every major division j E .11 sets Aik = 1 for i E M and i < j at the 
final round of the iteration, the resulting soh.tion x; will coincide with a global opiimal 
solution of (P). 

Proof. It is obvious from the fact that 71"7,-- 1 = 71"72- 1 =, ... , = 7I"jl at final iteration k. 
In other words, at final iteration k, the cooperative subproblem of major division j (CSj) 
attains its optimal activities xi with all the preceding major divisions' activities set at xi 
(i < j). Hence, after the final round completes visiting all major divisions in sequence, 
the last major division ends up with a global optimal solution that includes all major 
divisions' autonomous decisions. D 

It has been shown that, if some major divisions are cooperative in the sense that 
their objectives are compatible with the systemwide goal and they respect other major 
divisions' local decisions, the global optimulll can be attained through the interactions 
only among these divisions without relying on the cent er's (master's) coordination. This 
can be interpreted as the cent er's role being shared by major divisions. Of course, the 
minor divisions remain selfish as in D-W method. 

Gijsbrechts [8J has extensively surveyed the implement ability issues of the various de­
composition and composition methods such as convergence assurance, rate of convergence, 
monotonic improvement of the objective valUE, computational burden, real system fidelity 
of models, adaptability to various organizational structures, and consistency with the real 
spirit of decentralization. The decomposition scheme presented here, though discussed 
within the LP format, provides the flexible framework of decentralization, and allows 
many of Gijsbrechts' implementability issues to be accommodated (recall that the defini­
tion of M is restricted only to be non empty ). Some of these issues are illustrated in the 
computational experiments. 

5. Computational Properties of the Cooperative Decomposition 

Here we summarize the results from limited computational experiments focusing on 
the comparison of some decomposition parameters. We have randomly generated groups 
of examples based on the number of total divisions (n), the number of major divisions, the 
number of common resources (m), and the sllbproblem sizes (mj x nj). The D-W method 
and our cooperative decomposition method were coded in FORTRAN 77 (Microsoft FOR­
TRAN Version 4.0) and run on Compaq Deskpro 386 PC, and the LP solution subroutines 
were borrowed from MINOS. In coding the algorithms, advanced techniques for reducing 
computation time have not been utilized, since the purpose of the test is to compare the 
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m-5 
(23) 

10 
(11) 

15 
( 7) 

mj X nj 
5 x 10 

(23) 

10 x 15 
(18) 

Total 

(41) 

B.-H. Ahn & S.-K. Rhee 

Table 1: Computational Results for n = 2 

Dantzig-Wolfe Cooperative Method 
Method M - {I} M -31,2} 

h h R3 1\ 12 R3 h h 
m == 5 2.04 7.5:l 99.23% 2.34 7.44 99.64% 2.00 5.37 

(27) 0.43 1.9!l 1.34% 0.48 2.45 0.47% 0.00 1.79 

10 2.00 9.41 94.70% 2.59 8.12 99.05% 2.00 6.88 
(17) 0.00 1.54 8.41% 0.49 2.27 1.49% 0.00 2.40 

15 2.00 10.1 96.10% 2.55 8.82 98.26% 2.00 6.91 
(11) 0.00 2.47 2.51% 0.50 2.12 2.05% 0.00 1.78 

mj x nj 
5 x 10 2.03 8.66 96.15% 2.48 7.72 99.04% 2.00 6.69 

(29) 0.32 2.UI 6.85% 0.50 2.02 1.53% 0.00 2.18 

10 x 15 2.00 8.5E 98.38% 2.46 8.15 99.34% 2.00 5.54 
(26) 0.28 2.34 2.15% 0.50 2.74 1.17% 0.00 1.91 

Total 
2.02 8.62 97.21% 2.47 7.93 99.18% 2.00 6.15 

(55) 0.30 2.26 5.31% 0.50 2.40 1.38% 0.00 2.14 

Table 2: Computational Results for n = 3 

Dantzig-Wolfe Cooperative Method 
Method M = {I} M = {1,2} 

h h R3 h h R3 h 12 R3 
2.00 8.39 99.63% 2.57 7.74 99.79% 2.22 6.91 99.75% 
0.00 l.28 0.97% 0.50 1.42 0.32% 0.41 1.72 0.62% 

2.00 9.73 97.85% 2.64 8.18 99.10% 2.36 7.82 99.06% 
0.00 1.48 1.96% 0.48 2.04 1.13% 0.48 2.52 1.81% 

2.00 11.3 97.56% 2.86 10.3 99.17% 2.29 10.1 99.37% 
0.00 1.83 1.31% 0.35 1.98 0.43% 0.45 2.75 0.80% 

2.00 9.04 98.66% 2.78 8.39 99.37% 2.48 7.87 V9.36% 
0.00 1.00 1.75% 0.41 l.47 0.86% 0.50 1.73 1.41% 

2.00 9.50 98.84% 2.44 8.17 99.66% 2.00 7.50 99.67% 
0.00 2.46 1.44% 0.50 2.41 0.50% 0.00 3.13 0.59% 

2.00 9.24 98.74% 2.63 8.29 99.50% 2.27 7.71 99.50% 
0.00 1.80 1.62% 0.48 1.94 0.74% 0.44 2.45 1.14% 

R3 
99.97% 

0.20% 

98.61% 
2.90% 

99.03% 
1.36% 

99.30% 
2.03% 

99.42% 
1.59% 

99.34% 
1.83% 

M = {1,2, ~ 
h 

1.96 
0.21 

2.00 
0.00 

2.00 
0.00 

2.00 
0.00 

1.94 
0.23 

1.98 
0.15 

12 
6.96 
2.76 

8.00 
3.02 

10.6 
1.84 

8.22 
3.02 

7.39 
2.91 

7.85 
3.00 

9 

9 

9 

9 

9 

9 

R3 
9.89% 
0.20% 

9.08% 
1.89% 

9.83% 
0.11% 

9.45% 
1.36% 

9.93% 
0.12% 

9.66% 
1.05% 
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Table 3: Computational Results for n = 5 

Dantzig-Wolfe Cooperative Method 
Method M = {I} M={l,3} M={1,2,3} 

h h R3 h h R3 h h R3 11 12 R3 
m=5 2.00 7.50 99.84% 2.50 8.00 99.81% 2.00 7.00 99.93% 2.00 5.50 99.95% 

( 6) 0.00 1.61 0.16% 0.50 1.53 0.27% 0.00 2.24 0.10% 0.00 1.38 0.09% 

10 2.00 9.00 98.99% 2.50 9.00 99.72% 2.50 8.00 99.95% 2.00 6.00 99.79% 
( 2) 0.00 2.00 1.01% 0.50 2.00 0.28% 0.50 1.00 0.05% 0.00 3.00 0.21% 

15 2.00 9.43 98.79% 2.57 9.29 99.12% 2.00 8.00 99.85% 2.00 7.57 99.96% 
( 7) 0.00 0.73 0.99% 0.50 0.70 0.92% 0.00 1.31 0.19% 0.00 1.05 0.07% 

mj x nj 
5 x 10 2.00 7.67 99.59% 2.67 8.00 99.02% 2.00 6.00 99.97% 2.00 6.00 99.92% 

( 3) 0.00 1.70 0.55% 0.47 0.82 1.36% 0.00 0.82 0.04% 0.00 0.82 0.12% 

10 x 15 2.00 8.83 99.15% 2.50 8.92 99.51% 2.08 8.00 99.88% 2.00 6.67 99.94% 
(12) 0.00 1.52 0.98% 0.50 1.50 0.40% 0.28 1.73 0.16% 0.00 2.01 0.12% 

Total 
2.00 8.60 99.24% 2.53 8.73 99.48% 2.07 7.60 99.90% 2.00 6.53 99.93% 

(15) 0.00 1.63 0.92% 0.50 1.44 0.74% 0.25 1.78 0.15% 0.00 1.86 0.12% 
----- --

1. h : # of iterations in phase 1 
2. h : # of total iterations 
3. R3 : the ratio of the objective value of the (h + 3)th iteration to the optimum 
4. The results from each problem set are categorized in terms of m and (mj x nj). 
5. The numbers in leftmost parentheses denote the # of problems solved in the category. 
6. For each category, the upper line lists the sample means and the lower line the standard deviations. 

M = {1,2,3,4,5} 
h 12 R3 

2.00 5.33 99.99% 
0.00 1.11 0.02% 

2.00 10.0 99.68% 
0.00 6.00 0.32% 

2.00 8.57 99.92% 
0.00 2.26 0.09% 

2.00 7.00 9992% 
0.00 1.63 0.08% 

2.00 7.58 99.92% 
0.00 3.59 0.18% 

2.00 7.47 99.92% 
0.00 3.30 0.17% 

g 
.g 
'" ~ 
::to 
'" '" b 
~ c 
:3 
~ 

2 
~ 
::: 

~ ;:;. 
c 
Cl.. 

... 
'I ... 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



472 B.-H. Ahn & S.-K. Rhee 

number of iterations required to find a feasible and! or optimal solution and the initial rate 
of convergence. Our method, however, has not been meant to provide faster computation. 
It is meant to provide a flexible framework for decomposition. Summarized in Tables 1, 
2 and 3 are the following three measures; the number of iterations in phase 1 (Id, the 
number of iterations required to get an optimal solution (I2), and the ratio (R3) of the 
objective value of the (11 + 3)th iteration to the optimum. 11 and 12 are usual measures 
and R3 is to check the initial rate of convergence. R3 is the typical indicator of how fast 
(in terms of the number of iterations) a given information flow structure (specified by 
M) approaches to the global optimum during initial iterations in the light of limits in 
information exchange in a multi-divisional organization (see for example [4,5]). 

Examining the tables, first we note that our cooperative decomposition has revealed 
notable superiority over D-\V's as far as the number of iterations and initial rate of con­
vergence are concerned. The likely reason that cooperative scheme converges more rapidly 
in terms of the number of required iterations is that cooperative divisions utilize their ac­
tion possibility sets adapted to the expected responses of other divisions. Second, as the 
size of M (indicating the degree of decentralization) grows, 12 decreases and R3 increases. 
But in Table 3, the extreme case of M = {I, 2, 3, 4, 5} shows worse result than those of 
M = {I, 3} and M = {I, 2, 4 }. This phenomena consistently appears in most cases. This 
may indicate that there is an optimal degree of decentralization in terms of which and 
how many divisions are cooperative. 

6. Summary and Further Researches 

We have presented a cooperative scheme where several major divisions act like the 
D-W's master. These major divisions are explicitly concerned with the material balances 
of all common resources. While D-W method may not exploit divisional feasible regions 
effectively due to its price only control mechanism, major divisions with local approxi­
mation of systemwide objective and constraints can generate efficient proposals adapting 
to other divisions' feasible activity proposals. This kind of major division may be seen 
as a price-directive master for minor divisions and a quantity adjusting division among 
major divisions. One possible extension of our cooperative scheme would be to associate 
each subset of common resources to respective major divisions: for example, the finance 
division is concerned only wil;h corporate's financial resources, the marketing division with 
product availability and demands, the personnel division with the availability and recruit­
ing of manpower, and the like. The decomposition method in this line may benefit from 
the 'cross decomposition' ideas of van Roy [20]. 

Another topic of interest would be to investigate in a rigorous manner the relationship 
between the extent of decentralization and the efficiency of information flow. It would be 
also interesting to investigate the effect of the 'visitation' sequences among major divisions 
upon the efficiency of organization's information flow as well as the computational. burden. 
It has been pointed out that during the iterations of the proposed cooperative scheme 
the situation of cycling or . deadlock' could be encountered. The implications of this 
phenomena and the associated 'deadlock' breaking scheme needs further study within 
actual decentralized decision making environments. 

Lastly, the results presented so far have been in an LP representation of the multi­
divisional resource allocation. Our results need to be extended to more general problem 
settings such as nonlinear program representation. This is a topic of our subsequent 
ongoing work. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Cooperative Decomposition Method 473 

References 

[1] W.J. Baumol and T. Fabian, "Decomposition, Pricing for Decentralization and Ex­
ternal Economies," Management Science, Vol.l1, No.1, pp.1-32, 1964 

[2J R.M. Burton, W.W. Damon, and D.W. Loughridge, "The Economics of Decompo­
sition: Resource Allocation vs. Transfer Pricing," Decision Sciences, Vol.5, No.3, 
pp.297-310, 1974 

[3] R.M. Burton and B. Obel, "The Multilevel Approach to Organizational Issues of the 
Firm: A Critical Review," OMEGA, VoU> , pp.395-414, 1977 

[4] R.M. Burton and B. Obel, "The Efficiency of the Price, Budget, and Mixed Ap­
proaches under Varying A Priori Information Levels for Decentralized Planning," 
Management Science, Vo1.26 , NoA, ppAOl-417, 1980 

[5] J. Christensen and B. Obel, "Simulation of Decentralized Planning in Two Dan­
ish Organizations Using Linear Programming Decomposition," Management Scil!nce, 
Vol.24, No.l5, pp.1658-1667, 1978 

[6] G.B. Dantzig, Linear Programming and Extensions, Princeton University Press, 
Princeton, N.J., 1963 

[7] H. Eto, "Effectiveness of Nonhierarchical Decentralized Corporate System," Large 
Scale Systems, VolA, pp.189-197, 1983 

[8] E. Gijsbrechts, "Implementability of Hierarchical Approaches to Large Scale Organi­
zational Problems," Large Scale Systems, Vol.8, pp.87-104, 1985 

[9] R.H. Hayes and S.C. Wheelwright, Re,qtoring Our Competitive Edge: Compding 
through Manufacturing, John Wiley and Sons, New York, 1984 

[10] J.K. Ho, "Recent Advances in the Decomposition Approach to Linear Programming," 
Mathematical Programming Study, Vol.31, pp.119-127, 1987 

[11] L.P. Jennergren, Studies in the Mathematical Theory of Decentralized Resource Allo­
cation, Ph.D. Dissertation, Stanford University, 1971 

[12] L.P Jennergren, "A Price Schedules Decomposition Algorithm for Linear Program­
ming Problems," Econometrica, Vol.41, No.5, pp.965-980, 1973 

[13] L.P. Jennergren, "On the Concept of Coordinability in Hierarchical Systems Theory," 
International Journal on Systems Science, Vol.5, No.5, ppA93-497, 1974 

[14] L.S. Lasdon, Optimization Theory for Large Systems, McMillan, London, 1970 

[15] C. Van de Panne, "Decentralization for Structured Linear Programming Models," 
Working Paper, The University of Calgary, 1984 

[16] T.L. Powers, J.U. Sterling, and J.F. Wolt'~r, "Marketing and Manufacturing Conflict: 
Sources and Resolution," Production and Inventory Management Journal, pp.56-60, 
First Quarter, 1988 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



474 B.-H. Ahn & S.-K. Rhee 

[17J B.P. Shapiro, "Can Marketing and Manufacturing Coexist?" Harvard Buszness Re­
view, pp.l04-114, Sep.-Oct., 1977 

[18J W. Skinner, Manufactu.ring The Formidable Competetive Weapon, Joan wiley and 
Sons, New York, 1985 

[19J D.J. Sweeney, E.P. Winkofsky, P. Roy, and N. Baker, "Composition vs. Decomposi­
tion: Two Approaches to Modeling Organizational Decision Processes," Management 
Science, Vo1.24, No.14, pp.1491-1499, 1978 

[20J T.J. Van Roy, "Cross Decomposition for Mixed Integer Programming," Mathematical 
Programming, Vo1.25, pp.46-63, 1983 

Byong-Hun AHN: 
Department of Management Science, 
Korea Advanced Institute of Science and Technology, 
P.O. Box 150, Cheongryang, Seoul 131-650, KOREA 

Seung-Kyu RHEE: 
Department of Business Administration, 
Incheon University, 
177 Dohwa-Dong, Nam-Ku, Incheon 402-749, KOREA 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.




