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Abstract Multiple right hand choice linear programming first studied by Johnson is considered in this 
paper. An algorithm is suggested for the general purpose multiple right hand choice linear programs. It 
is a simplified version of the cross decomposition method, one of the recent advances in mathematical 
programming. As a motivation of our modified dual step a significant relationship has been observed between 
the optimal solutions of primal subproblems and those of dual subproblems where there is no duality gap. 
Our computational results show a great improvement in computational efficiency over the simple enumeration 
method. 

1. Introduction 
In this paper we consider a Multiple Right Hand Choice Linear Programming (MRCLP), 

which was first studied by Johnson [4]. Some analytic results on the duality property and 
on the facets of feasible set were established succeedingly by Granot, Granot and Johnson 
[3] and by Johnson [5]. The purpose of this paper is to propose an efficient algorithm for 
MRCLP given as follows: 

(P) min{ex I Ax = q, Dx = d for some q E Q, x 2: o}. 

Here Q is a finite subset of Rm (or the corresponding matrix composed of columns of elements 
in Q); x denotes an ordered n-tuple of n decision variables; all matrices and vectors are of 
consistent structure with real coefficients. It is evident that (P) becomes an ordinary linear 
program when the cardinality of Q, IQ I, is equal to one. 

The above problem can be justified in many real situations where the decision maker 
can consider many different desirable options of right hand side vectors and choose one of 
them arbitrarily. One example we may imagine is the problem for linear economic planning 
with a certain social decision criterion ex and the set Q of a number of a different bills for 
final products which can be regarded as alternative economic policies by economic planners. 
In this case, (P) is a problem for determining optimal economic policy q* among candidate 
policies in Q and its corresponding activity level x*. Another economic interpretation can be 
found in the study by Granot, Granot and Johnson [3]. In spite of such economic implications 
as above no effort has been made for systematic algorithms of MRCLP up to the present. 

Our algorithmic interest starts from the decomposition structures that can be easily 
found in the mixed integer programming equivalence of the problem (P). The suggested 
algorithm follows the fundamental structure of the the cross decomposition method developed 
by Van Roy [6]. The Lagrangean relaxation method for mixed integer programming makes 
use of only the dual structure of the problem [2J and the Benders' procedure only the primal 
structure. But the cross decomposition exploits both of them in a single framework. Cross 
decomposition wa.s first applied to capacitated facility location problems [7]. This method 
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is appropriate for mathematical programs with a natural decomposition structure that can 
be identified in constraints and variables simultaneously. The problem (P), translated to an 
equivalent mixed integer program, well fits this decomposition structure. 

Though we have adopted the fundamental structure of the cross decomposition method, 
we in fact have developed a simplified variant of the original one so that it contains minimal 
elements necessary for our purpose. 

In the following sections we convert the problem (P) to an equivalent mixed integer 
program and construct basic framework for our method. A new optimality test is provided 
based upon an interesting observation on the optimal solutions of our subproblems. And we 
display our algorithm and discuss the validity of it. The algorithm proceeds mainly with 
solving a usual linear program iteratively. Computational results are given and support our 
attempt. 

2. Related Problems and Assumptions 
The problem (P) can be solved if we solve every linear program corresponding to each 

right hand side in Q. But such a trivial method may be very tedious as the number of 
considered right hand sides increases, and even the parametric linear programming technique 
will take much trouble unless the right hand sides share particular similarities easily dealt 
with parametrically. 

To take advantage of the merits of the decomposition structure, the problem (P) can be 
expressed as a mixed integer program as follows: 

(MIP) min{c:r I Ax - Qy = O,Dx = d,ey = 1, x ~ 0, 

Yj E {O,l}, j = 1,,,,, IQI}, 
where e is a IQ I-dimensional row vector with all components equal to 1. Observing that (P) 
and (MIP) have a common feasible solution set with respect to the variables x, we conclude 
that (P) is equivalent to (MIP) in the sense that both have identical optimal solutions and 
an optimal value. We can find a natural decomposition structure between the constraints 
Ax - Qy = 0 and the others, and between the variables x and y. 

The problems defined in the following subsections, 'primal structure' and 'dual structure', 
are essential to develop the algorithm. The following assumptions and notations are given 
for convenience throughout the discussion. 

X = {x E Rn I Dx = d, :t ~ O} is nonempty and bounded. 
X(q) = {x E Rn I Ax = q, Dx = d, x ~ O} is nonempty for every q in Q. 
F = {(u, w) I uA + wD :'5: c} is nonempty. 
Let Y denote the set {y I ey = 1, Yj E {O,1}, j = 1,.", IQI}. 

Primal Structure 
The algorithm starts first. with fixing the integer variables in (MIP) to specified values, 

which corresponds to determining a specific right hand side fo::- (P). That is, Qy equals a 
certain selection q in Q. This procedure leads to a so called primal subproblem with a 
selected right hand side vector q, appearing as follows: 

min{cx I x E X(q)}. (1) 

We call the above problem (P q) the primal subproblem with right hand choice q. It is 
an ordinary linear program. We prefer the symbol (Pk) to (P qk) where qk denotes the right 
hand choice selected for iteration k of the algorithm presented. 
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Let v(·) denote the optimal value of problem (.). From duality theorem, 

v(Pq ) = min{cx I x E: X(q)} 
= max{uq + wd I (u, w) E F} 

=max{uq+wdl (u,w) E E}, 

where E is the set of extreme points of F. Now the primal master problem becomes: 

(M) min{z I uQy + wd S z for all (u, w) E E, yE Y}. 
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(2) 

Let (uk, wk) be a dual optimal solution for (Pk). Then we can consider the following 
relaxation for (M): 

min{z I uiQy + wid S z, i = 1,··· ,k, yE Y}. 

Each (Mk) is a trivial mixed integer program with one continuous variable z and IQI binary 
integer variables. Let Jk(q) = max{uiq + wid I i = 1,···, k}. Then the computation of 
V(Mk) can be mechanized as follows: 

(i) {ft(q) = u1q + w1d (3) 
, Jk(q) = max{ukq + wkd, Ik-l(q)} if k ~ 2 

(ii) V(Mk) = min{!J.(q) Iq E Q} = hJli) for some 7j E Q. (4) 

If we store the value Jk(q) for each q at iteration k, we need only 21QI - 1 mechanical 
comparisons for the operations in (3) and (4). These computations are quite trivial and 
all the same independent of the iteration counter k. Moreover we do not need any storage 
requirement to reserve the extreme points generated during the algorithm. 

Dual Structure 
At each iteration we solve the Lagrangean relaxation problem, the dual subproblem, by 

relaxing constraints Ax - Qy = 0 in (MIP), which has a very simple decomposition structure. 
A candidate right hand choice for the next iteration is provided from this dual subproblem. 
Furthermore this dual structure may accelerate l;he convergence to optimality where there is 
no duality gap. The computational burden for performing this dual phase is almost neglil~ible 
in our algorithm. 

At iteration h, the dual subproblem with Lagrangean multiplier vector u k with respect 
to constraints Ax - Qy = 0 is, 

min{cx + uk(Qy - Ax) I x E X, yE Y}. 

This problem is classified into two much simpler ones, one a linear programming problem 
and the other a 01-1 integer problem. 

V(Dk) = min{(c - u k A)x I x E X} + min{ ukQy lyE Y}. 

Lemma 1. Let (uk , w k ) be a dual optimal solution to (Plo). Then 

V(Dk) = min{ukq I q E Q} + wkd. 

Proof: Noting from Theorem 2 of Geoffrioll [2J, we get 

V(Pk) = min{cx + uk(qk - Ax) I x EX} 

= min{(c - u" A)x I x E X} + u"qk. 

(5) 

(6) 
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Again from (5), 
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V(Dk) = V(Pk) - ukl + min{ukQy lyE Y} 
= ukqk + wkd _ ukl + min{ukq Iq E Q} 

= min{ukq Iq E Q} + wkd. o 

From the above lemma, V(Dk) can be computed directly by the following simple steps. 

(i)Compute min{ukq Iq E Q} = ukq for some q E Q. 

(ii)Set V(Dk) = ukq + wkd. 

(7) 

(8) 

This procedure requires only simple IQI-l comparisons to compute V(Dk) and produces 
a candidate for the right hand side of the next iteration. 

The Lagrangean dual problem is 

(D) 

It is well known that 

v(Du) ~ u(D) ~ v(P) ~ v(P q ) for all u E Rm and q E Q. 

3. Additional Optimality Test 
The following interesting property may lead to a stronger optimality test in case there 

is no duality gap. 
Theorem 1. (MIP) ha.s no Lagrangean duality gap, with respect to the relaxed con­

straints Ax - Qy = 0, i.e., 
v(MIP) = v(P) = v(D), 

if and only if there exist u* and y* such that 
(i) (u*, w*) for some w* is a dual optimal solution of the linear program (P Qy.) and 
(ii) (x*, y*) for some x* is an optimal solution of (Du.). 
Proof: Suppose first that (i), (ii) hold. Let q* = Qy*. Then from Lemma 1, 

v(Du.) = u*q* + w*d = v(P q.). 

This implies that (MIP) has no Lagrangean duality gap. Conversely suppose (MIP) has no 
Lagrangean duality gap. Let u* be an optimal solution of the Lagrangean dual (D) and 
q* = Qy* an optimal right hand choice for (P). Then 

v(Du.) = v(P q.). 

Choose any optimal solution x* to (P q.). Since (x*, y*) is a feasible solution to (Du.), it 
should be also an optimal solution to (Du.). This directly implies (ii). Therefore, from 
relation (5), 

v(D".) = min{(c - u* A)x I x E X} + u*q*. 

Consider the following linear programming problem. 

min{(c - u* A)x I x EX}. 

Note that x* is an optimal solution to the above problem. Let w* be a dual optimal solution 
to the above problem. Then (u*, w*) is also an optimal dual solution to (P q.) from the 
complementarity theorem in linear programming [1, p. 134]. Hence we have proved (i). 0 
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Let us consider the simple procedure of solving only the subproblems (P q), (Du) by turns; 
if (P qi) generates ui as a dual optimal solution then we solve the problem (Dui) and if (Dui) 
yields yi+l as an optimal solution then we solve (P qi+l) where qi+l = Qyi+l. Then (MIP) has 
no duality gap if and only if we can find a sequence of optimal solutions with ui = ui+l or yi = 
yi+l for some i. This observation may motivate a new scheme for decomposition methods 
that traces the temporal behavior of optimal solutions of subproblems, in the variables 11 and 
y, in parallel with evaluating optimal values. Our optimality test 2 based upon the above 
algorithmic motivation tries to examine ui+l in advance from solving (Dui). Van Roy [Ei] has 
established only the 'if' part of the above theorem [Theorem 3.4 and Lemma 5.1]. 

Corollary. Suppose (MIP) has no Lagrangean duality gap. Then y. is an optimal 
integer choice and u· is an optimal multiplier for (D) if and only if they satisfy the hypotheses 
(i) and (ii) of the above theorem. 

Proof: Straightforward from the proof of the above theorem. 0 

4. Algorithm and Validation 
Our algorithm for solving MRCLP is a simplified variant of the cross decomposition 

method and proceeds as follows. 
Algorithm for MRCLP 
Step O. (Initialization). 

Let vp = +c>o, VD = -00. 

Step 1. (Primal subproblem). 
(Increase the iteration counter by 1) 

(i) Solve (Pk) for the given right hand side qk(q1is chosed arbitrarily in Q) and find out an 
optimal solution xk and a dual optimal solution (uk, wk). Let B be the current optimal 
basis that computes (uk,wk). 

(ii) If vp > V(Pk), set vp = V(Pk) and q' = qk, x' = xk. 

Step 2. (Master problem and optimaliry test 1) 
Compute V(Mk) = Ik(71) as given in (3) and (4). 
If vp = v(MJ:), (9) 
then stop. Vve have an optimal solution J;' with the optimal value Vp, and its corre­
sponding right hand choice q'. 

Step 3. (Dual subproblem and optimality test 2) 
(i) Find a q E Q that satisfies (7) and 

If such a q exists, then set 

X= 

We have an optimal solution x with the corresponding right hand choice q. 
Otherwise, compute V(Dk) as in (8). 
If v(Dk) > VD, set VD = v(Dk)' 

(ii) If VD = vp, (11) 
then stop, x' and q' are optimal. Otherwise go to step 4 with any q that satisfies (7). 

Step 4. (Determining qk+l) 
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If vp > fk(q) 
then set qk+1 = q, and, otherwise, set qk+1 = 71. 
Go to step 1. 

(12) 

The main steps of the above algorithm are steps 1 and 3, each of which reflects a decom­
position structure from primal and dual side respectively. Step 1 solves an ordinary linear 
program and requires major computational work We may reach optimality the faster for 
step 3 when (MIP) happens to have no duality gap_ If not, the computational burden of 
step 3 is almost negligible. 

The step 4 reflects a natural choice for the next primal subproblem in the cross decom­
position framework [6]. 

Lemma 2. If the above algorithm terminates, then we get an optimal solution of the 
problem (P). 

Proof: It is possible for the algorithm to stop at step 2 or 3. The proof is trivial for 
step 2 and step 3 (ii). Let us prove for step 3 (i). Suppose there exists q in Q that satisfies 
the condition in (7) and (10) at k-th iteration_ Then, 

(13) 

for any q in Q which is clear from (2) and (7). From relation (10), (u k , w k ) is a dual optimal 
solution for (Pg). This implies that v(Pg) is equal to the left hand side of (13). Hence q is an 
optimal right hand choice. It is also clear that ?i; is an optimal solution for (Pg) from (10). 
The proof is completed. 0 

Lemma 3. During the ~:-th iteration, unless relation (12) holds, then v(P g) ~ vp. If q 
is selected to be equal to one among ql, ... ,qk, then relation (12) does not hold. 

Proof: The first statement is a direct result of (2). Since 

uiqi + u,id = fk(qi) = V(Pi) 2: vp for any i ~ k, 

the second statement is also dear. 0 

The above lemma assures that our method eliminates the possibility of repetition in the 
scanning procedure of the right hand choice and helps to reduce the incumbent value. 

Theorem 2. The above algorithm terminates within a finite number of iterations and 
solves the problem (P). 

Proof: Unless the conditions in the optimality test 2 are satisfied during the algorithm, 
the condition (9) in the optimality test 1 should hold within IQI iterations from Lemma 3. 
This directly leads to the stated convergence from Lemma 2. 0 

Theorem 3. If the conditions in step 3 (i) are satisfied at an iteration, then the problem 
(MIP) has no Lagrangean duality gap with respect to the relaxed constraints Ax -- Qy = O. 

Proof: Suppose the optimality condition in step 3 (i) holds at k-th iteration. Let 
u* = u k and y* be such that y* E Y and Qy* = q. It is clear from (7) and (10) that u* and 
y* satisfies the hypotheses (i), (ii) in Theorem 1. Hence the proof is evident. 0 

5. Computational Results and Conclusions 
The algorithm presented has been coded in PASCAL and all the computational tests 

were made on IBM-PC AT. For solving primal subproblems we used the revised simplex 
method. We report 40 test problems with the computational results in cpu time and the 
number of iterations. 
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We tested problem (P) with a special structure (;) = ( E, I), where E is an arbitrary 

matrix and I is an identity matrix. Nonnegative right-hand-side vectors q and d, and non­
negative objective coefficients c have been used. This special structure has been adapted to 
ensure the feasibility and boundedness of the test problems. 

Two different. densities of nonzero elements in the constraint matrix (B, I) have been 
tested for each size of the test problems. Computational results of 20 tested problems are 
summarized in Table 1. The numbers of iterations required have been remarkably small 
compared to \Q\ and the algorithm seems insensitive to \Q\ and the density of constraint 
matrix. Our method terminates on the optimalit.y test 1 except for a few extraordinary cases 
which have no duality gap by chance. 

(TABLE 1) Computational results for general problems 

Problem # of # of Density of 
No. Var. Constraints [B,l] 

1 15 6(3) 0.4 
2 15 6(3) 0.6 
3 40 12(4) 0.4 
4 40 12(4) 0.6 
5 50 14(4) 0.4 
6 50 14(4) 0.6 
7 100 22(8) 0.4 
8 100 22(8) 0.6 
9 150 35( 10) 0.4 
10 150 35(10) 0.5 
11 15 6(3) 0.4 
12 15 6(3) 0.'5 
13 40 12(4) 0.4 
14 40 12(4) 0.'6 
15 50 14(4) Oot 
16 50 14(4) 0.'5 
17 100 22(8) Oot 
18 100 22(8) 0.1) 
19 150 35(10) OA 
20 150 35( 10) 0.13 

(i) Numbers in the parentheses indicate the dimension of q. 
(ii) * indicates the termination at test 2. 

(iii) ** is in seconds on IBM-PC AT. 

IQI # of 
Iterations 

20 2 
20 3 
20 4 
20 2 
20 3 
20 4 
20 3 
20 3 
20 6 
20 4 
40 4 
40 1* 
40 4 
40 5 
40 5 
40 3* 
40 3 
40 4 
40 4 
40 5 

CPU 
time** 

1.04 
1.60 

21.31 
16.04 
32.96 
49.87 

204.54 
221.07 

1858.41 
1235.33 

1.49 
.50 

29.55 
27.18 
61.63 
27.96 

142.26 
284.84 
853.37 

1494.90 

We also tested our method for a class of very special problems whose corresponding 
(MIP) problems have no duality gap. We expect that our algorithm will terminate on the 
optimality test 2, in fact at step 3 (i) for more problems in this case. This is important 
because termination at step 3 (i) implies that an optimal right hand choice can be detected 
even before the corresponding primal subproblem has been solved in the algorithm. Table 
2 shows the computational results for 20 problems with no duality gap. In this case we 
observed 7 problems terminating at step 3 (i). 
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(TABLE 2) Computational results under no duality gap 

Problem # of # of Density of 
No. Var. Constraints [B,l] 

1 15 6(3) 0.4 
2 15 6(3) 0.6 
3 40 12(4) 0.4 
4 40 12(4) 0.6 
5 50 14(4) 0.4 
6 50 14(4) 0.6 
7 100 22(8) 0.4 
8 100 22(8) 0.6 
9 150 35(10) 0.4 
10 150 35(10) 0.6 
11 15 6(3) 0.4 
12 15 6(3) 0.6 
13 40 12(4) 0.4 
14 40 12(4) 0.6 
15 50 14(4) 0.4 
16 50 14(4) 0.6 
17 100 22(8) 0.4 
18 100 22(8) 0.6 
19 150 35(10) 0.4 
20 150 35(10) 0.6 

(i) Numbers in the parentheses indicate the dimension of q. 
(ii) * indicates the termination at test 2. 

(iii) ** is in seconds on IBM-PC AT. 

IQI # of 
Iterations 

20 1* 
20 1* 
20 2* 
20 2 
20 3 
20 4* 
20 4 
20 2 
20 5 
20 3 
40 2 
40 1* 
40 4 
40 2 
40 2* 
40 1* 
40 2 
40 4 
40 3 
40 6 

CPU 
time** 

.55 

.27 
15.33 
16.04 
28.61 
48.61 

223.05 
156.32 

1304.97 
822.89 

.77 

.27 
22.19 
12.36 
21.75 

7.80 
127.16 
307.64 
618.41 

1717.68 

As a whole, we have shown that our simplified version of the cross decomposition method 
works well in the MRCLP which arises in many real situations where the decision maker has 
a finite set of alternative policies. It is clear that our method is a significant improvement 
over the simple enumeration method. 
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