
Journal of the Operations Research
Society of Japan

Vo!. 32, No. 4, December 1989

AN EFFICIENT ALGORITHM
FOR BICRITERJA MINIMUM-COST CIRCULATION PROBLEM

Naoki Katoh
Kobe University of Commerce

(Received August 29, 1988)

Abstract This paper is concelned with a bicriteria minimum-cost circulation problem which arises in
interactive multi criteria decision making. It presents a strongly polynomial algorithm for this problem,
which runs in O(min{n6 Iol n, n4(n log n+ m) log5 n}) time, where n and m are the numbers of vertices and
edges in a graph respectively. It is achieved by making use of the parametric characterization of optimal
solutions and a strongly polynomial algorithm for the single objective minimum-cost circulation problem.
This idea is then extended to a minimum-cost circulation flow problem with one additional linear constraint
and a strongly polynomial algorithm for this problem with the same running time is derived.

1 Introduction

Given a directed graph G = (V, E), where V and E denote the sets of n vertices and m
edges respectively, the minimum-cost circulation problem (Mep) can be written as follows.

(1)

(2)

(3)

MCP: rrunulllze L c(e)x(e)
eEE

subject to {L x(e) le = (u, v) E E} =
{L x (e') I e' = (v, w) E E} for v E V

a(e) :S x(e) :S b(e) for e E E .

Here a(e), b(e) and c(e) are given integer numbers. a(e) = -00 and b(e) = +00 are
allowed. This problem has been extensively studied (for example see Ford and Fulkerson[6],
Edmonds and Karp[5], Lawler[16], Papadimitriou and Steiglitz[24], Tardos[29], Fujishige[8]
and Galil and Tardos[lO)).

This paperl considers the case in which there are two objective functions 11 and h
defined by
(4) Il(X) = L cl(e)x(e) and 12(X) = L c2(e)x(e) .

eEE eEE

Here cl(e) and c2(e) are given integers. For example, this problem arises in the following
situation. Given two distinct nodes sand t in G = (V, E), which are called a source
and a sink respectively, we want to seek to obtain a flow from s to t that minimizes the

1 Preliminary version of this paper was presented in the Proceedings of the IIASA International Work­
shop on Methodology and Software for Interactive Decision Support, (to appear in Springer Verlag), 1987.

420

© 1989 The Operations Research Society of Japan

Bicriteria Circulation Problem 421

total cost required and maximizes the total amount of flow from s to t simultaneously.
Since these two objectives cannot simultaneously be optimized in general, we need to
find a solution satisfactory for a decision maker. It is easy to see that when we consider
only the first objective (resp. the second objective), the problem becomes the minimum­
cost flow problem (resp. the maximum flow problem), both of which are special cases of
problem Mep. Notice that when the total amount of flow from s to t is fixed, the problem
becomes the conventional minimum-cost flow problem. On the other hand, when the total
cost is fixed, the problem becomes the maximum flow problem with one additional linear
constraint (whose general case has been treated by Brucker[2]).

In general, the problems with more than one objective has been treated in the cO!ltext
of multiobjective programming, and it is quite natural that for our case a decision maker
chooses as his or her decision an efficient flow, where a flow x is called efficient if there
is no other flow y such that (a) h(Y) ::; h{:c) and !2(Y) ::; h(x) hold and (b) at least
one inequality strictly holds. Since it. is shown by Ruhe [25] that the number of efficient
flows is exponential in the input size in worst case, it is not practical to obtain all efficient
flows. In view of this, we take the following alternative approach, which has been used in
interactive multicriteria decision makings. It solves the following problem BMCP instead
of enumerating all efficient flows.

(5) BMCP: rmmrmze max {adi(x) + ,8i}
li2

subject to the constraints of (2) and (3),

where ai and tli are positive and real constants respectively, which are computed based on
the information supplied by the decision maker and/or the decision support system.

ai and ,8i are typically determined in the following manner by the reference point
method, which is one of the well known methods used in interactive multicriteria decision
making (see [17] for the survey of reference point methods). This method requires the
decision maker to specify the aspiration level qi and the reservation level ri for each ob­
jective f;. The values of qi and ri are respectively interpreted as the desirable outcome for
i-th objective that the decision maker would like to attain, and the maximum allowable
outcome for i-th objective. Then the degree of the achievement of a given flow x for an
i-th objective its measured by

(6) Pi(qi, ri, !i(X» = (r, - f;{x))/(ri - qi).

The aggregated degree of the achievement for x is then measured by

(7) s = min Pi(qi,ri,!i(x».
li2

The method solves the following problem:

(8) maximize {s I x satisfies (2) and (3)},

and provides its optimal solution x· to the decision maker. If x· is not satisfactory for the
decision maker, he or she may respecify the aspiration and/or reservation levels and the
above process is repeated until a satisfactory solution is obtained. At each round of this

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

422 N. Katoh

iteration, we need to solve problem (8). Letting ai = 1/(ri - qi) and f3i = -r;j(ri - qi),
we have

adi(X) + f3i = -Pi(qi, ri, ji(X)) .

Therefore, the problem (8) is equivalent to problem BMCP.
Some other modifications and generalizations of this achievement function have been

proposed by several authors i.e., Nakayama [20,21, 22], Steuer[27]' Steuer and Choo [28],
Sawaragi, Nakayama and Tanino [26], Wierzbicki [30, 31](see also [17] for general discussion
about achievement functions). Many of those achievement functions have the form similar
to the one in (7). Define
(9) gi(X) = adi(x) + f3i, i = 1,2,

Problem BMCP is then rewritten as follows.

(10) BMCP: mmUIllze ma.x{gl(x),g2(X)}
subject to the constraints of (2) and (3).

Recently Tardos [29] discovered a strongly polynomial algorithm for solving Problem
MCP, the existence of which was an open problem since Edmonds and Karp [5] proposed a
polynomial time algorithm for it. An algorithm that solves a problem whose input consists
of n real numbers is strongly polynomial if

(a) it performs only elementary arithmetic operations (additions, subtractions, com­
parisons, multiplications and divisions),

(b) the number of operations required to solve the problem is polynomially bounded in
n, and

(c) when applied to rational data, the size of the numbers (Le., the number of bits
required to represent the numbers) that the algorithm generates is polynomially bounded
in n and the size of the input numbers.

Based on Tardos's result, Fujishige [8], Orlin [23], Galil and Tardos [10] proposed more
efficient strongly polynomial algorithms. Among them, the one given by Galil and Tardos
[10] is the fastest, which runs in 0(n2(m+n log n) log n) time, where n =1 V 1 and m =1 E I.

The major goal of this pctper is to propose a strongly polynomial algorithm for solving
Problem BMCP, which runs in Q(min{ n6 10g3 n, n4 (nlog n + m) log5 n}) time. Notice that
that Problem BMCP can be equivalently transformed to the following form.

BMCP': minimize z

subject to (2), (3) and

(11) gi(X) :::; Z, i = 1,2.

Such reformulation has been used in the more general setting in order to solve problems like
BMCP' (see Chapter 7 of the book [26]). This approach may not be recommended in case
the feasible set has a good structure, since the new constraints (11) added to the original
feasible set may destroy its good structure. In our problem, we cannot guarantee any more
the total unimodularity of the constraint matrix associated with the constraints (2), (3)
and (11) for the above problem BMCP', while the original constraint matrix associated
with the constraints (2) and (3) is known to be totally unimodular (see the books by Lawler
[16] and Papadimitriou and Steiglitz [24]), which enables us to develop efficient algorithms
for Problem MCP.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Bicriteria Circulation Problem 423

The algorithm proposed here, on the other hand, does not use the above formulation,
but takes full advantage of the good structure of the constraints (2) and (3). It employs
as a subroutine the strongly polynomial algori1chm for solving Problem MCP by Galil and
Tardos [10]' and finds an optimal solution of Problem BMCP in O(min{ n6 log3 n, n4 (m +
n log n) log5 n}) time. The techniques we use are related to Megiddo [18, 19]. The problems
treated in [18, 19] are, however, different from ours. Our result implies that the basic ideas
developed by [18, 19] can be utilized to solve a, class of problems which have the objective
function such as BMCP.

Our problem is also related but not equivalent to the minimum cost circulation problem
with one additional linear constraint, which was studied by Brucker [2] (see also [14]). The
algorithm proposed by [2] is, however, not strongly polynomial. The techniques developed
here can be directly used to improve the running time of Brucker's algorithm to have a
strongly polynomial algorithm whose running time is the same as the one for BMCP.

This paper is organized as follows: Section 2 gives some basic results. Section 3 presents
an outline of the algorithm for solving Problem BMCP. Section 4 gives the detailed de­
scription of the algorithm which runs in O(n 1(nlogn+m)210g2n) time. Section 5 im­
proves the running time of the algorithm explained in Section 4 to O(min{ n6 10g3 n, n 4 (m+
n log n) log5 n}), based on the idea given by Megiddo [19], which employs the idea of paral­
lel combinatorial algorithms to speed up the running time for many types of combinatorial
optimization problems not including our type of problem, though in fact we do not Heed
any parallel processor but simulate the parallel algorithm in a serial manner. Section 6
discusses an extension of our approach to the minimum cost circulation problem with one
additional linear constraint.

2 Basic Concepts and Properties

Let X ~ Rn> denote the set of m-dimensional vectors x satisfying (2) and (3), i.e., X is
the feasible set, and let f(x) = (fl(X), h(x)) : Rm -+ R2 denote the function that maps
x E X to the objective plane R2. Define

(12) Y = {(fl(X), 12(.1:)) I x EX} ,

which is called the admissible outcome set. T\otice that set Y is a convex polygon since
X is a convex polyhedron and both fl(X) and h(x) are linear. A vector Y = (Yl> Y2) E Y
is called nondominated if there does not exist Y' = (y~, y~) E Y such that Y: ::; Yi holds
for i = 1,2 and at least one inequality holds strictly. A set of all nondominated vectors
is called the nondominated set, which we denote Yo. A vector Y = (Yl, Y2) E Y is called
weakly nondominated if there does not exist Y' = (y~, y~) E Y such that Y: < Yi holds for
each i = 1,2. An x E X such that f(x) is nondominated is called an efficient flow. The
sets Y and Yo are illustrated in Figure 1 as the shaded area and the thick piecewise linear
curve, respectively.

The following auxiliary problem with non negative parameter). plays a central role in
our algorithm.

(13)
(14)

P().) v().) == minimize JI(x) +).h(x)
subject to (2) and (3).

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

424 N. Katoh

It is well known (see [111 for example) that the function V(A) is piecewise linear and
concave in A, as illustrated in Figure 2, with a finite number of joint points A(1), A(2)' ... , A(N)

with A(1) < A(2) < ... < A(N). Here N denotes the number of total joint points, and let
A(O) = 0 and A(N+l) = 00 for convenience. Define for each A E [0,00)

(15) X*{-\) == {x E X I x is optimal to P(A)} .

h(x)

-~o-------------+-' fl(X)

Figure 1. Illustration of sets Y and Yo.

v(>.)

o

Fig. 2 Illustration of v{>.)

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Bicriteria Circularion Problem 425

The following lemma is well known in the theory of linear parametric programs (see Gal [9]
for the survey of this topic). In what follows, for two real numbers a, b with a :::; b, (a, b)
and [a, b] stand for the open interval {t I a < t < b} and the closed interval {t I a :::; t :S; b}
respectively.

Lemma 1 (i) For any). E ().(k-l),).(k))' k := 1, ... , N + 1, we have

(ii) For any two distinct >.,).' E ().(k-i),).(k)), k = 1, ... , N + 1, we have

(17) X*{)') = X*{).I) .

X*{:\(k)) = {;,tx + (1 - ;,t)x l 10:::;;,t :::; 1, x E X*()') and Xl E X*()./)}. 0

Let for k = 1, ... , N + 1

(18)

By Lemma 1, X; = X*()') holds for all). E (A(k-i),).(k))' The following lemma is known
in the theory of parametric linear programming.

Lemma 2 (i) For any two x, Xl E X; with 1 :::; k :::; N + 1,

hold.

(ii) For any :c E X;_i and any Xl E X; with 2 :::; k :::; N + 1,

hold. 0

Lemma 3 (i) For any). ~ 0 and any x E X*()'), f(x) is weakly nondorninated.

(ii) For any .\ > 0 and any x E X*()'), f(x) is nondorninated.

(iii) For any :c E X;, k = 1,2, ... , N + 1, f(x) is a vertex of set Y.

Proof. The proof of (i) is given by Dinkelbach [4] and Bowman [1]. (ii) is proved as
follows. Suppose that there exists Xl E X such that J;(Xl) :::; fi (x), i = 1, 2, hold and at
least one of inequalities is strict. In any case, by). > 0, it implies

contradicting that x is optimal to P{)'). (iii) is proved as follows. Since f(x) is nondorni­
nated, f(x) is on the boundary of set Y. If f(.r) is not a vertex, it can be represented by a

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

426 N Katoh

convex combination of two vertices. That is, there exist x', x" E X and I'- with 0 < I'- < 1
such that
(19) x = I'-X' + (1 - I'-)X" .

Since x is optimal to P(>.) with>' E (>'(k-l), >'(k)), it follows that

fl(X') + >.J2(x') = /I(X") + >'h(x") = /I(x) + V2(X) ,

since otherwise fl(X')+>'h(~:') < fl(X)+>'h(x) or fl(X") +>'h(x") < fl(X)+>'h(x) holds
by (19), contradicting the optimality of x to P(>.). Therefore, both x' and x" are optimal
to P(>.) and by Lemma 2 (i) fl(X) = fl(X') = fl(X") and h(x) = h(x') = h(x") follow.
This contradicts that f(x), f(x') and f(x") are distinct points in the objective plane. 0

By Lemma 3 (iii) f(x) =: (fl(X), h(x)) maps all x E Xi; to a unique nondominated
vertex in Y, and it is easy to see that such mapping from Xi;, k = 1, ... , N + 1 to the set
of nondominated vertices is one to one. Therefore we use the notation Xk to represent any
x E Xi; in what follows. As !, increases from 1 to N + 1, the corresponding nondominated
vertex moves from top-left to bottom-right in the objective plane (see Figure]). The
edge connecting two consecutive nondominated vertices corresponding to Xi; and X k+l
respectively corresponds to all optimal solutions of P('\(k))' The following lemma gives a
basis for our algorithm.

Lemma 4 (i) If gl(X l) > g2(Xl), then Xl is optimal to Problem BMCP.
(ii) If gl(X N +l) < g2(x N +l), then XN +l is optimal to Problem BMCP.
(iii) If neither (i) nor (ii) holds, there exists k* with 1 ~ k* ~ N such that

(20)

hold. Letting 1'-* be the solutl:on of the following linear equation in I'-

(21)

then
(22)

is an optimal solution of BMCP.

Proof. (i) If Xl is not optimal to BMCP, there exists x E X such that fl(X) < fl(Xl)
and h(x) < fl(Xl) hold. fl(X) < /I(Xl) implies that Xl is not optimal to P(O), but Xl
is optimal to P(O) by Lemma 1 (iii). This is a contradiction. (ii) is proved in a manner
similar to (i).

In order to prove (iii), first note that by Lemma 2 (ii) and by definition of gi(:1:), there
exists k* such that xk* and xk*+1 satisfy (20). In addition, by Lemma 2 (ii), the linear
equation of (22) in I'- has a unique solution satisfying 0 ~ I'- ~ 1. x* defined by (22) is
then optimal to X*(>'(k*)) by Lemma 1 (iii), and f(x*) is nondominated by Lemma 3 (ii).
It follows from (21) and (22) that

holds. Since f(x*) is nondominated, there is no x E X such that /I (x) < /I (x*) and h(x) <
h(x*) hold. Thus there is no x E X such that gl(X) < gl(X·) and g2(X) < g2(X·) by (9) and

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Bicriteria Circulation Problem 427

ab a2 > 0, implying that there is no x E X with max{91 (x), 92(X)} < max{91(x*), 92(a:*)}.
D

To illustrate the situations corresponding to Lemma 4(i), (ii) and (iii), it is useful to
consider the set

z = {(91(X), 92(X)) I x EX}.

The set Z is obtained from set Y by (9) and is similar to Y in shape. Set Z is illustrated
in Fig. 3 as the shaded area. The thick piece wise linear curve in Fig. 3 corresponds to the
nondominated set Yo. Figures 3 (a), (b) and (c) respectively illustrate the set Z in which
Lemma 4 (i), (ii) and (iii) hold. The straight l:ine passing through the origin in Figs. 3(a)
rv (c) separates the set Z into two subsets; one in which 91(X) ~ 92(X) holds and the other
in which 91 (x) ~ 92(X) holds. If Lemma 4(i) holds, all (91 (Xk), 92(Xk)), k = 1, ... , N + 1, lie
below the straight line (see Fig. 3(a)) among which (91(X1),92(X1)) is nearest to the line
and hence Xl is optimal. The case of Lemma 4(ii) is similarly illustrated in Fig. 3(b). If
Lemma 4(iii) holds, the problem is reduced to find k" such that (91 (xk"), 92(Xk")) is above
the straight line and (91(X k"+1),92(Xk"+1)) is below it. An optimal solution x* is the one
such that (91 (x*), 92(x*)) is the intersection point of the edge connecting (91 (xk"), 92(a:k"))
and (91(xk"+1), 92(xk"+1)) and the straight line (i.e., 91(X*) = 92(X*)).

/z

Fig. 3(a) Illustration of the case in which Lemma 4(i) holds.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

428 N. Katoh

Fig. 3(b) Illustration of the case in which Lemma 4(ii) holds.

---+:-----'------------.... 91 (x)

Fig. 3(c) Illustration of the case in which Lemma 4(iii) holds.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Bicriteria Circulation Problem 429

By Lemma 2 (i), the condition of Lemma 4 (i) (resp. (ii)) is tested simply by taking
any A with A < A(1) (resp. A > A(N)) and obtaining an optimal solution x of P(A). If
neither the condition of Lemma 4 (i) nor (ii) holds, we need to find k* satisfying (20). For
this, we only have to know A(k"). Once A(k*) is obtained, xk*and xk*+l are obtained by
solving P(A(k*) - E) and P(A(k*) + E) respectively, where E is a sufficiently small positive
number satisfying A(k") - A(k*-l) < E and A(k*+l) - A(k*) < t. The following lemma is useful
for finding A with A < A(l) or A > A(N) and for estimating the above E.

Lemma 5

(23)

(24)

and
(25)

Then

(26)

and
(27)

hold.

Let

a1 = max {max{la(e) 11 e E E, a(e) is finite}

max{1 b(e) 11 e E E, b(e)is finite}} .

a2 = max{1 ci(e) Ili = 1,2, e E E},

Proof. (26) is proved by showing that for any A E [0,00)

(28) max{1 /;(x) 11 x E X"(A), i = 1,2} :S M

holds. After proving this, (26) follows by Lemma 9.2 in the paper by Katoh and Ibaraki
[12]. Note that P(A) for a fixed A is a linear program and the constraints (2) and (3)
of P(A) can be written in the form Ai = b by introducing 2m slack variables for 2m
inequalities of (3), where A is (n + 2m) x 3m matrix, i is a 3m-dimensional vector and b is
a (n + 2m)-dimensional column vector each of whose element is either 0, a(e) or b(e). It is
well known in the theory of linear program that there exists an optimal solution x of P(A)
such that x is a restriction of x to nonslack variables where x is a basic feasible solution
of Ai = b. x is written by

(29)

where B is a (n + 2m) x (n + 2m) nonsingular square submatrix of A, B-1 is the inverse
matrix of B, Ba,d] is the adjoint of Band det(B) is the determinant of B, It is well known
(see Chapter 4 of the book by Lawler [16] or Chapter 13 of the book by Papadimitriou and
Steiglitz [24]) that matrix A is totally unimodular , i.e., every square submatrix C of A has
the determinant of either 0, + 1 or -1. Hence det(B) is equal to either + 1 or -1. Each
element of Bad}, is, by definition, equal to an determinant of (n + 2m - 1) x (n + 2m -- 1)
submatrix of A, which is also equal to either 0, +1, or -1 by the total unimodularity of A.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

430 N. Katoh

Since each element of A is a.lso equal to either 0, + 1 or -1, x is an integer vector and the
absolute value of each element of x is at most (n + 2m)al' Therefore

1 2: ci(e)x(e) I::; (n + 2m)mala2' i = 1,2
eEE

follows. This proves (26), since by Lemma 2(i) the value fi(X'), i = 1,2 is the same for all
x' E X*(A) if A is not a joint point, and by Lemma 1 (iii) it is represented by the convex
combination of J;(xk) and f;(xk+l) if A is a joint point A(k).

Now we shall prove (27). For k which 1 ::; k ::; N - 1, consider Xk, Xk+l and Xk+2, all
of which can be assumed to be integer vectors as proved above. Since xk, Xk+l E X*(A(k))
and Xk+l,Xk+2 E X*(A(k+l)) hold by Lemma 1 (i), it holds that

fl(xk) + A(k)h(xk) = fl(Xk+l) + A(k)h(Xk+1)

and

Thus, we have

Then
A(k+l) - A(k) =

(fl(Xk+ 1) - fl(Xk))(h(xi<+l) - h(Xk+2)) - (fl(Xk+2) - h(Xk+l))(h(xk) - h(xk+1))
(h(xk) - h(Xk+l))(h(xk+1) - h(Xk+2))

Since fl(X) and h(x) take integer values if x is an integer vector, and h(xk) < h(Xk+l) <
h(Xk+2) and f2{Xk) > h(x k+1) > h(Xk+2) hold by Lemma 2 (ii), the numerator is not less
than 1. Since

holds by (26),
(h(x k) - h(Xk+1))(h(xk+l) - h(Xk+2)) ::; M2

follows. This proves A(k+l) .- A(k) ;::: I/M2. 0
By Lemma 5, it is easy to test whether the condition of Lemma 4 (i) or (ii) holds. For

this purpose, we have only to solve P(A) for some A with 0 < A < l/M and for some
A > M. If the condition of Lemma 4 (iii) holds, we must find k* satisfying (20), x ko , Xko +1

and f..l of (21) to compute a;* by (22). One possible approach to do this is to employ the
binary search for determining A E (A(ko-l), A(k*)) and).' E (>.(kO), A(ko+l)) over the interval
[~, Xl where ~ and X are appropriate numbers satisfying ~ < 1/ M and X > M respectively.
By Lemma 5, such binary search may be terminated until the interval length is reduced
to less than I/M 2 (though the details are omitted). Therefore such method requires
O(n2

(m + n log n) log n ·log M) time. This is polynomial in the input size because log M is
polynomial in the input size by (25). However, it is not strongly polynomial because of the
term log M. The following section alternatively presents a strongly polynomial algorithm
for finding A(kO) with k* satisfying (20). Once it is obtained, xko and Xko +1 are computed
by solving P(A(kO) - E) and P(A(kO) + E) respectively for E satisfying 0 < E < 1/ M2. This
is justified since (27) implies A(h) - E E (>.(kO-l), AW)) and A(kO) + E E (A(k O), AW+l))'

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Bicriteria Circulation Problem 431

3 The Outline of the Algorithm

As discussed at the end of the previous section, it is easy to test whether the condition
of Lemma 4(i) or (ii) holds. Thus we assume in this section that the condition of Lemma
4(iii) holds and we shall focus on how to compute .A(k*) with k* satisfying (20).

The idea of the algorithm is similar to the one given by Megiddo [18] which was devel­
oped for solving fractional programs. The similar idea was also used by Gusfield [11] to
determine the curve of the objective cost for parametric combinatorial problems. We apply
their ideas to find .A(k*)' The algorithm applies the algorithm of Galil and Tardos (the GT­
algorithm) to solve P(.A(k*)) without knowing the exact value of .A(k*). The computation
path of the GT-algorithm may contain conditional jump operations, each of which selects
proper computation path depending upon the outcome of comparison of two numbers.
Notice that the GT-algorithm contains arithmetic operations of only additions, subtrac­
tions, multiplications and divisions, and compa,risons of the numbers generated from the
given problem data, and that when applying the GT-algorithm to solve P(.A(k*)) with .A(k*)
treated as unknown parameter, the numbers generated in the algorithm are all linear func­
tions of .A(k*) or constants not containing .A(k*>. Note that comparisons are necessary at
conditional jumps. If a comparison for a conditional jump operation is made between two
linear functions of .A(k*) , the condition can be written in the form of

(30)

for an appropriate critical constant ~, which can be determined by solving the linear
equation in .A(k*) constructed from the compared two linear functions. Here ~ is assumed
to be positive since otherwise ~ < .A(k*) is clearly concluded.

An important observation here is that condition (30) can be tested without knowing
the value of .A(k*) . For this, solve P(~ - E), P(~) and P(~ + E) by the GT-algorithm,

where ~ is now a known constant, and E is a positive constant satisfying E < 112M2. Let
x, x', x" be the obtained solutions of P(~ - E), P(~) and P(~ + E) respectively. First we
test whether ~ is a joint point or not, based on the following lemma.

Lemma 6 Let x, x' and x" be those defined above. Then ~ is a joint point if and only if
the following linear equation in .A has the unique solution).' equal to i

(31)

Proof. If ~ is a joint point, say .A(k), ~ - f and ~ + E lie in the intervals (.A(k-1), .A(k))
and (.A(k)' .A(k+1)) respectively, by Lemma 5. Thus, from definition of a joint point, 11 (x) +
.Ah(x) (resp. 11(X") + .Ah(x")) defines the value v(.A) of (13) for .A E [.A(k-1), .A(d (resp.
[.A(k), .A(k+1)])' Thus (31) has a unique solution .A = .A(k).

If ~ is not a joint point, let ~ belong to (>.(k-1), .A(k)) for some k with 2 ::; k ::; N + l.
The following five cases are possible.

Case 1. .A(k-.1) < ~ - E and ~ + E < .A(k). In this case 11 (x) = !I (x") and h(x) = h(:c")
hold by Lemma 2, and (31) has no unique solution.

Case 2. ~ - E < .A(k-1) and ~ + E < .A(k). By E < 112M2 and Lemma 5, ~ - E > .A(k-2)
holds and the equation (31) has the unique solution).' = .A(k-1) which is not equal to)1.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

432 N. Katoh

Case 3. ~ - E > A(k-1) and ~ + E > A(k). This case is treated in a manner similar to
Case 2.

Case 4. ~ - E = A(k-1) a.nd ~ + E < A(k). x satisfies

f2(X) :::; h(xlf)

since V(A) of (13) is concave. If h(x) < h(xlf), the equation of (31) has the unique solution
A' = A(k-1) #- i If f2(X) = h(x"), (31) has no unique solution.

Case 5. ~ - E > A(k-1) and ~ + E = A(k). This case is analogous to Case 4.

Note that the case of), - E :::; A(k-1) and ~ + E 2: A(k) is not possible because of
A(k) - A(k-1) 2: I/M2 by Lemma 5 and f < 1/2M2 by assumption. 0

After computing x, x' and x" defined above, the algorithm proceeds as follows. If one
of x, x' and x" (say, x) satisfies

(32)

x is an optimal solution of BMCP since f(x) is weakly nondominated by Lemma:3 (i) and
hence there is no x E X such that f1(X) < f1(X) and h(x) < h(x) hold. So, assume
in what follows that none of x, x', x" satisfies (32). Depending upon whether ~ is a joint
point or not, consider the following two cases.

Case 1. ~ is not a joint point. We then compare the two values gl(X') and g2(;Z;'). Two
subcases are possible.

Sub case lA. gl(X') < 92(X'). Then A* > ~ is concluded, and the algorithm chooses
the computation path corresponding to A* > i

Sub case lB. gl(X') > g2(X'). Then A* < ~ is concluded, and the algorithm chooses
the computation path corresponding to A* < ~.

Case 2. ; is a joint point. Then we consider the following three subcases.
Subcase 2A. gl(X") < g2(X"). By Lemma 2 (ii), gl(X) < g2(X) follows. This implies

A* > ; + f and the algorithm chooses the computation path corresponding to A* > ~.
Subcase 2B. gl(X) > g2(X). Similarly to Subcase 2A, gl(X") > g2(X") follows. This

implie.s A* < ~ - E and the algorithm chooses the computation path corresponding to
A* < A.

Suhcase 2C. gl(X) < !/2(X) and gl(X") > g2(XIf). Then; is the desired joint point
A(k*) by Lemma 4 (iii). By Lemma 5 and 0 < E < 1/ M2, X E X k* and x" E Xk*+l follow.
Therefore, by Lemma 4 (iii), an optimal solution x* of BMCP is found by (21) and (22)
after letting xk* = x and xk'+l = x".

With this observation the algorithm starts with the initial interval (,i, "X), where ,i and
"X are typically determined by ,i = 1/(M + 1), "X = M + 1, and every time it performs
the conditional jump operation, the critical value ~ is computed, and P(~ - f), P(~) and
P(; + f) are solved. Depending upon the cases explained above, the length of the interval
may be reduced in such a way that the desired joint point A(k*) exists in the reduced
interval. It will be shown in the next section that Subcase 2C always occurs during the
course of the algorithm, which proves the correctness of our algorithm. Since the GT­
algorithm requires O(n2 (n log n + m) log n) jump operations, and at each jump operation
at most three minimum cost circulation problems, i.e., P(; - E), P(;) and P(~ + f), are
solved by calling the GT-algorithm, the entire algorithm requires O(n4 (n log n+ m)210g2 n)
time in total.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Bicriteria Circulatioll Problem 433

4 Description and Analysis of the Algorithm

The algorithm for solving Problem BMCP is described as follows:

Procedure SOLVEBMCP
Input: A directed graph G = (V, E) with costs Cl (e), C2(e), lower and upper compaci­

ties a(e) and b(e) for each e E E, and the weights ab 0'2, /31 and /32 with 0'1,0'2> o.
Output: An optimal solution of Problem BMCP.
Step 0: [Initialization]. Compute M by (23), (24), (25). Let.6. = l/(M + 1), X = M + 1

and f. = 1/(2M2 + 1).
Step 1: [Test the conditions of Lemma 4 (i) and (ii)]. Compute optimal solutions x'

and x" of Problems P(.6.) and P(X) respectively by applying the GT-algorithm. If x' (resp.
x") satisfies gl(X') > g2(X') (resp. gl(X") < g2(X")), output x' (resp. x") as an optimal
solution of BMCP and halt. Otherwise go to Step 2.

Step 2: [Test the condition of Lemma 4 (ilii)].
(i) Follow the GT-algorithm applied to P(A(k*») treating A(k*) as unknown constant

satisfying .6. < A(k*) < X. If the GT -algorithm halts, go to Step 3. Else at the next
conditional jump operation, do the following.

(ii) Let the condition of the jump operation given by

where Pl(A(k*») and P2(A(k*») are linear functions in A(k*). Solve equation

(34)

(iii) If equation (34) has no solution A* satisfying.6. < A* < X, i.e., Pl(A*) < P2(A*) (or
PlP*) > P2(A*)) holds for all such A*, then choose the corresponding computation path at
the current conditional jump operation. Go to (viii).

(iv) If equation (34) holds for all A* with ~. < A* < X, choose the proper computation
path corresponding to Pl(A*) = P2(A*) , and go to (viii).

(v) If equation (34) has the unique solution ~ such that .6. < ~ < X, the conditions of
(33) are transformed to

A(k") < ~(resp. A(k*) > ~), A(k*) = ,\ OrA(k*) > ~(resp. A(k*) < ~) .

Solve P(~ - f.), P(~) and P(~ + f.) by applying the GT-algorithm, and let x, x' and x" be
optimal solutions of these problems respectively.

(vi) If one of x, x', x" satisfies (32), output it as an optimal solution of BMCP and halt.
(vii) Test whether ~ is a joint point or not based on Lemma 6.
(vii-a) If ~ is not a joint point, determine A(k") > 5.. or \k*) < ~ according to Subcases lA

and lB given prior to the description of the algorithm, and choose the proper computation
path corresponding to A(k*) > ~ or A(k*) < ~ respectively. If A(k*) > ~, let.6. = i Otherwise

let X = i Go to (viii).
(vii-b) If ~ is a joint point, determine A(k*) > ~ + c, A(k*) < ~ - c or A(k*) = 5.. according

to Subcases 2A, 2B and 2C given prior to the description of the algorithm, respectively.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

434 N. Katoh

If A(kO) >). + E (resp. A(kO) <). - E), let.l =). + E (resp. A =). - E), choose the proper

computation path according to A(k*) > ~ (resp. A(kO) < ~) and go to (viii). If A(kO) = ~,
compute J.l satisfying (21) and then x* by (22) after letting xko = x and xko

+1 = x". Halt.
(viii) Return to the conditional jump operation of the GT-algorithm in Step 2, from

where it exited to find the proper computation path.
Step 3: Halt. 0
The correctness of the algorithm is almost clear by the discussion given in the previous

section. What remains is to prove that the algorithm always halts either in Step 1, Step
2 (vi) or Step 2 (vii). Assume otherwise. Note that Procedure SOLVEBMCP always
halts because it follows the GT-algorithm. Assume that SOLVEBMCP halts in Step 3
and consider the interval (~" X) generated when it halts in Step 3. It follows from the
discussion given in Section ~I that .l < A(kO) < X holds. When Procedure SOLVEBMCP
halts, it has obtained a solution which is optimal to P(A) for all A E (.l, X), since if the
GT-algorithm is applied to solve P(A) for any A E (~, X), it follows the same computation
path irrespective of choice of A from the interval (~, X). However, by Lemma 2(iii), an
optimal solution of P(A') with ~ < A' < A(kO) is not optimal to P(A") with A(kO) < A" < X.
This is a contradiction.

The running time of the algorithm can be derived in a manner similar to [18]. At each
jump operation, a linear equation (34) is solved and if it has the unique solution ~ with
~ <). < X, three problems P()' - E), P()'), P()' + E) are solved. So Step 2 (v) requires
O(n2 (n log n + m) log n) time. The other part of Step 2 is dominated by this. Since the
total number of jump operations in the GT-algorithm is O(n2 (n log n + m) log n), Step 2 is
repeated O(n2 (n log n+m) log n) times. So, Step 2 requires O(n4(n log n+ m)210g2 n} time
in total. Since Step 0 requires constant time and Step 1 requires O(n2 (nlogn + m)logn)
time, Procedure SOLVEBMCP requires O(n4 (nlog n + m)210g2 n) time in total.

Theorem 1 Procedure SOLVEBMCP correctly computes an optimal solution of Problem
BMCP in O(n4 (nlogn+ m)2log2 n) time. 0

The algorithm is in fact strongly polynomial, since the running time depends only on
the numbers of vertices and edges in a graph, and if the input data are all rational numbers,
the size of the numbers generated in the algorithm is clearly polynomial in n, m and the
size of the input numbers.

5 Time Reduction

The running time derived in the previous section is improved to O(min {n6 10g3 n, n4 (n log n+
m) logS n}) in the following section by utilizing the idea of f.imulating the parallel shortest
path algorithm in a serial manner. Such idea of simulating parallel algorithms for the
purpose of the speed-up of algorithms was originated by Megiddo [19]. The application of
his idea to our problem, however, seems to be new.

In order to reduce the running time of Procedure SOLVEBMCP, the following remarks
are useful.

Remark 1. In the GT-algorithm, the shortest path algorithm is applied O(n210g n)
times as a subroutine. Since the best known shortest path algorithm with a single source

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Bicriteria Circulation Problem 435

node, which is due to Fredman and Tarjan [7], requires O(nlogn + m) time, the GT­
algorithm requires 0 (n2

(n log n + m) log n) time in total.

Remark 2. When the GT-algorithm is applied to solve P(A), comparisons with two
numbers containing A are made only when the shortest path algorithm is applied.

We modify Procedure SOLVEBMCP in such a way that instead of using O(nlog n+m)
shortest path algorithm, we employ a parallel shortest path algorithm such as Dekel,
Nassimi and ScLhni's [3] and Kucera's [15] in a serial manner when SOLVEBMCP follows
the GT-algorithm in Step 2(i). We still use O(nlogn + m) shortest path algorithm in
other parts of SOLVEBMCP such as Step 1, Step 2 (v). The idea of the time reduction
is based on Megiddo [19]. We shall explain how it is attained. Let P denote the number
of processors and let Tp denote the number of steps required on a P-processor machine.
Dekel, N assimi and Sahni's scheme requires P = O(n3

) and Tp = O(logZ n) while Kucera's
scheme requires P = O(n4

) and Tp = O(log n). We simulate these algorithms serially.
According to some fixed permutation, we visi.t one processor at a time and perform one
step in each cycle. At each processor, when two linear functions Pl(..\)' P2(A) are compared,
we execute Step 2 (ii), (iii) and (iv). If the equation Pl(A) = pz(..\) has a unique solution
~ with 1 < ~ < X, such critical value ~ is stored and we proceed to the next processor
without executing Step 2 (v), (vi) and (vii). After one step of the multiprocessor, we
have at most P such critical values. Let ~1' ~2' ... , ~p denote such critical values. We then
compute

..\" = ma.x{~i I 1 ~ i ~ P, ~i > A(k.)}'

or in the meantime we may find the desired joint point A(k.) among those critical values.
As explained in [19], this is done by performing a binary search that. requires O(P) time
for median findings in subsets of the set of critical values, and by O(log P) applications of
the GT-algorithm. We explain in more details how N is computed (the case A" is similarly
treated). Each time the median ~i is found from among the remaining critical values, we
execute Step 2 (v) , (vi) and (vii) with ~ replaced by ~i' In Step 2 (vii), it may happen
that ~i is concluded as the desired joint point A(k.). Otherwise ~i < A(k.) or ~i > A(k.)

is concluded, and half of the remaining critical points are discarded. Since the remaining
subset during binary search is halved each time, the time required to find all medians is

O(P + P/2 + P/4 + ...) = O(P) ,

as shown in [19]. Since we need O(log P) applications of the median finding in order to
find N, it requires

O(n2(nlog n + m) log n . log P)

time. Hence, each step of the multiprocessor requires

O(P + n2 (nlog n + m) log n . log P)

time. After Nand "\" are computed, we can choose the proper computation path at each
processor. Since the above process is repeated Tp times in total, each application of the
parallel shortest path algorithm requires

O((P + n2(nlog n + m) log nlog P)Tp)

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

436 N. Katoh

time. Since the shortest path problem is solved O(n2 10g n) times as mentioned in Remark
1, the total running time is

O(n2 1og n(P + n2(n log +m) log n log P)Tp) .

If Dekel, Nassimi and Sahni's scheme is employed, this becomes

O(n4 (n log n + m) logS n) ,

while if Kucera's scheme is employed, it becomes

Therefore, depending on how dense the graph is, we may choose the better one. We then
have the following theorem.

Theorem 2 The modified SOLVEBMCP solves Problem BMCP in O(min{n6 10g3 n, n 4(nlog n+
m) logS n}) time. D

6 Extensions

In this section, we shall show how our approach is generalized to other type of problem
similar to Problem BMCP studied so far. Such problem is the minimum-cost circulation
problem with one additional linear constraint studied by Brucker [2]. This is described as
follows.

(35)

(36)

SMCPLC: mlrumlze fl(X)
subject to the constraints of (2), (3) and

h(x) ~ d.

Here, It and h are those defined in (4), and d is a given constant. The above problem is
solved as follows. It is easy to see that there exists an optimal solution x· of SMCPLC
such that f(x·) is nondominated. Define xk, k = 1, ... , N + 1, by

(37) k X. x E k'

as before. If h(xl) ~ d, Xl is optimal to SMCPLC. If h(xN +I) > d, there is no feasible
solution to SMCPLC. So assume

(38)

Let
(39)

(40)

A(k
1

) = min{A(k) I 1 ~ k ~ N,h(xk+l) ~ d},

A(k2) = max{A(k) I 1 ~ k ~ N, h(Xk+I) > d}.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Lemma 7 Let f.1, satisfy

(41)

Then
(42)

is optimal to SMCPLC.

Bicriteria Circulation Problem 437

Proof. x* defined by (42) clearly satisfies h(x*) = d, and f(x*) is nondominated
since f(xk i+1) and f(x k.+1) are adjacent nondominated vertices by (39), (40) and Lemma
3 (see Fig. 4). Thus, there is no x E X such that fl(X) < fl(X*) and f2(X) ~ h(x*) hold.
This proves the lemma. 0

h(x)

y

(fl(X k1 +1), h(Xk1 +1))

(fl(X*), h(x*))

-+-=-0--------------' JI(x)

Figure 4. Illustration of the set Y used in Lemma 7.

By the lemma, all what we do is to compute A(k
1

) and A(k
2

)' Once A(k
1

) and A(k
2

) are
obtained, Xkt+l (resp. X k.+1) are computed by solving P(A(k

1
) + c) (resp. P('\(k

2
) + c),

where e satisfies 0 < e < 1/ M2. We shall explain only how A(k
1

) is computed (the ca.se of
A(k,) is similarly treated). This is done in a manner similar to the way of finding AW) in
Procedure SOLVEBMCP given in Section 4. ["ollowing the GT-algorithm to solve P(,\(kl»)
without knowing the exact value of A(k

1
), every time comparison is made at conditional

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

438 N. Katoh

jump operation, we compute a critical value ~ by solving the linear equation in A(k.) formed

by the compared two numbers containing A(k.)' We first test whether ~ is a joint point or

not, using Lemma 6. If ~ is a joint point (say A(k»), we solve P(~ + c) to obtain Xk+l and

compute h(xk+l). According to whether h(xk+l) ::; d or not, ~ ~ A(k,), or ~ < A(k,) is

concluded respectively, and the proper computation path is chosen. If ~ is not ajoint point,
we solve P(~) to obtain £ E X*(~) and compute 12(£). According to whether 12(£) ::; d
or not, ~ > A(k.) or ~ < A(k.) is concluded respectively, and the proper computation path
is chosen. In any case, by the discussion similar to the one in Sections 3 and 4, we finally
obtain A(k.)' We do not give the details of the algorithm since it is almost the same as
SOLVEBMCP. In addition, we can also apply the idea of the time reduction given in
Section 5 and hence the following theorem holds.

Theorem 3 Problem SMCP LC can be solved in 0 (min{ n6 10g3 n, n4 (n log n + m) log5 n})
time. 0

7 Conclusion

We proposed strongly polynomial algorithms for a bicriteria minimum-cost circulation
problem and a minimu-cost circulation problem with one additional linear constraint. We
mention here that similar ideas can be applied to other types of linear programming prob­
lems with special structures that are formulated as Problem BMCP or SMCPLC, e.g.,
Markovian decision process with two objectives or one additional linear constraint (see
Kawai and Katoh [13]).

References

[1] V.J. Bowman, Jr., On the relationship of the Chebyshev norm and efficient frontier
of multiple-criteria objectives, In H. Thiriez and S. Zionts (eds.) Multiple criteria
decision making. Springer, Berlin, Heidelberg, New York, Lecture Notes in Economic
and Mathematical Systems, Vol. 130, 1976.

[2] P. Brucker, Parametric programming and circulation problems with one additional
linear constraint, Osnabrucker Schriften zur Mathematik, Reihe P, Heft 56, Fach­
bereich Mathematik, Universitiit Osnabriick, 1983.

[3] E. Dekel, D. N assimi and S. Sahni, Parallel matrix and graph algorithms, SIAM J.
Comp1J,t., 10 (1981), 657-675.

[4] W. Dinkelbach, Uber einen Losungsansatz zum Vectormaximumproblem. In M.
Beckman (ed) Unternehmungsforschung Heute. Springer, Berlin, Heidelberg, New
York, Lecture Notes in Operational Research and Mathematical Systems, Vol. 50,
1-30, 1971.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Bicriteria Circulation Problem 439

[5] l. Edmonds and R. Karp, Theoretical improvements in the algorithmic efficiency for
network flow problems, J. AGM 19 (1972:), 248-264.

[6] L.R. Ford and D.R. Fulkerson, Flows in Networks, Princeton University Press, Prince­
ton, N.l., 1962.

[7] M.L. Fredman and R.E. Tarjan, Fibonacci heaps and their uses in improved network
optimization algorithms, J. AGM, 34 (1987), 596-615.

[8] S. Fujishige, A capacity-rounding algorithm for the minimum-cost circulation prob­
lem: a dual framework of the Tardos algorithm, Mathematical Programming, 35
(1986), 298-308.

[9] T. Gal, Linear parametric programming - a brief survey, Mathematical Programming
Study, 21 (1984), 43-68.

[10] Z. Galil and E. Tardos, An O(n2 (m+nlogn)logn) min-cost flow algorithm, J.ACM,
35 2 (1988), 374-386.

[11] D. Gusfield, Parametric combinatorial computing and a problem of program module
distribution, J. ACM, 30 (1983), 551-563.

[12] N. Katoh and T. Ibaraki, A parametric characterization and an E -approximation
scheme for the minimization of a quasiconcave program, Discrete Applied Mathemat­
ics, 17 (1987) 39-66.

[13] H. Kawai and N. Katoh, Variance constrained markovian decision process, J. Oper.
Res. Soc. Japan, 30 (1987), 88-100.

[14] T. Kobayashi, The lexico-shortest route alogrithm for solving the minimum cost flow
problem with an additional linear constraint, Journal of the Operations Research
Society of Japan, 26, 3 (1983), 167-184.

[15] L. Kucera, Parallel computation and conflicts in memory access, Information Pro­
cessing Letters, 14 (1982), 93-96.

[16] E.L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart
& Winston, New York, 1976.

[17] A. Lewandowski and A. Wierzbicki, Aspiration Based Decision Analysis and Support
Part I: Theoretical and Methodological Backgrounds, Working paper, WP-88-03,
International Institute for Applied Systems Analysis, Laxenburg, Austria, 1988.

[18] N. Megiddo, Combinatorial optimization with rational objective functions, Math.
Oper. Res., 4 (1979), 414-424.

[19] N. Megiddo, Applying parallel computation algorithms in the design of serial algo­
rithms, J. AGM, 30 (1983), 852-865.

[20] H. N akayama, On the components in interactive multiobjective programming meth­
ods (in M. Grauer, M. Thompson, A.P. Wierzbicki, editors: Plural Rationality and
Interactive Decision Processes, Proceedings, 1984), Springer Verlag, Berlin, 1985.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

440 N. Katoh

[21] H. Nakayama, Sensitivity and trade-off analysis in multi-objective programming;
Proc. of IIASA Workshop in Bulgaria, 1987, Springer (to appear).

[22] H. Nakayama, Interactive multiojective programming - methods and applications,
Communications of the Operations Research Society of Japan, 33, 8 (1988), 375-381.

[23] J.B. Orlin, Genuinely polynomial simplex and non-simplex algorithm for the mini­
mum cost flow problem, Working Paper No. 1615-84, A.P. Sloan School of Manage­
ment, MIT, December 1984.

[24] C.H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and
Complexity, Prentice-Hall, Englewood Cliffs, New Jersey, 1982.

[25] G. Ruhe, Complexity results for multicriterial and parametric network flows using a
pathological graph of Zadeh, Zeitschrift fur Operations Research, 32 (1988), 9-27.

[26] Y. Sawaragi, H. N akayama and T. Tanino, Theory of multiobjective optimization,
Academic Press, New York, 1985.

[27] R. E. Steuer, Multiple Criteria Optimization Theory, Computation and Application,
John Wiley and Sons, 1986.

[28] R.E. Steuer and E.V. Choo, An interactive weighted Chebyshev procedure for mul­
tiple objective programming, Mathematical Programming, 26 (1983), 326-344.

[29] E. Tardos, A strongly polynomial minimum cost circulation algorithm, Combinator­
ica, 5 (1985), 247-255.

[30] A.P. Wierzbicki, A mathematical basis for satisficing decision making, Mathematical
Modelling, 3 (1982), 391-405.

[31] A.P. Wierzbicki, On the completeness and constructiveness of parametric character­
izations to vector optimization problems, OR Spektrum, 8 (1986), 73-87.

N aoki Katoh: Department of Management Science
Kobe University of Commerce
Seiryodai 4-3-3, Tarumi, Kobe 655
JAPAN

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

