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Abstract This paper is concelned with a bicriteria minimum-cost circulation problem which arises in 
interactive multi criteria decision making. It presents a strongly polynomial algorithm for this problem, 
which runs in O(min{n6 Iol n, n4(n log n+ m) log5 n}) time, where n and m are the numbers of vertices and 
edges in a graph respectively. It is achieved by making use of the parametric characterization of optimal 
solutions and a strongly polynomial algorithm for the single objective minimum-cost circulation problem. 
This idea is then extended to a minimum-cost circulation flow problem with one additional linear constraint 
and a strongly polynomial algorithm for this problem with the same running time is derived. 

1 Introduction 

Given a directed graph G = (V, E), where V and E denote the sets of n vertices and m 
edges respectively, the minimum-cost circulation problem (Mep) can be written as follows. 

(1) 

(2) 

(3) 

MCP: rrunulllze L c(e)x(e) 
eEE 

subject to {L x(e) le = (u, v) E E} = 
{L x (e') I e' = (v, w) E E} for v E V 

a(e) :S x(e) :S b(e) for e E E . 

Here a(e), b(e) and c(e) are given integer numbers. a(e) = -00 and b(e) = +00 are 
allowed. This problem has been extensively studied (for example see Ford and Fulkerson[6], 
Edmonds and Karp[5], Lawler[16], Papadimitriou and Steiglitz[24], Tardos[29], Fujishige[8] 
and Galil and Tardos[lO)). 

This paperl considers the case in which there are two objective functions 11 and h 
defined by 
(4) Il(X) = L cl(e)x(e) and 12(X) = L c2(e)x(e) . 

eEE eEE 

Here cl(e) and c2(e) are given integers. For example, this problem arises in the following 
situation. Given two distinct nodes sand t in G = (V, E), which are called a source 
and a sink respectively, we want to seek to obtain a flow from s to t that minimizes the 

1 Preliminary version of this paper was presented in the Proceedings of the IIASA International Work­
shop on Methodology and Software for Interactive Decision Support, (to appear in Springer Verlag), 1987. 
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Bicriteria Circulation Problem 421 

total cost required and maximizes the total amount of flow from s to t simultaneously. 
Since these two objectives cannot simultaneously be optimized in general, we need to 
find a solution satisfactory for a decision maker. It is easy to see that when we consider 
only the first objective (resp. the second objective), the problem becomes the minimum­
cost flow problem (resp. the maximum flow problem), both of which are special cases of 
problem Mep. Notice that when the total amount of flow from s to t is fixed, the problem 
becomes the conventional minimum-cost flow problem. On the other hand, when the total 
cost is fixed, the problem becomes the maximum flow problem with one additional linear 
constraint (whose general case has been treated by Brucker[2]). 

In general, the problems with more than one objective has been treated in the cO!ltext 
of multiobjective programming, and it is quite natural that for our case a decision maker 
chooses as his or her decision an efficient flow, where a flow x is called efficient if there 
is no other flow y such that (a) h(Y) ::; h{:c) and !2(Y) ::; h(x) hold and (b) at least 
one inequality strictly holds. Since it. is shown by Ruhe [25] that the number of efficient 
flows is exponential in the input size in worst case, it is not practical to obtain all efficient 
flows. In view of this, we take the following alternative approach, which has been used in 
interactive multicriteria decision makings. It solves the following problem BMCP instead 
of enumerating all efficient flows. 

(5) BMCP: rmmrmze max {adi(x) + ,8i} 
l$i$2 

subject to the constraints of (2) and (3), 

where ai and tli are positive and real constants respectively, which are computed based on 
the information supplied by the decision maker and/or the decision support system. 

ai and ,8i are typically determined in the following manner by the reference point 
method, which is one of the well known methods used in interactive multicriteria decision 
making (see [17] for the survey of reference point methods). This method requires the 
decision maker to specify the aspiration level qi and the reservation level ri for each ob­
jective f;. The values of qi and ri are respectively interpreted as the desirable outcome for 
i-th objective that the decision maker would like to attain, and the maximum allowable 
outcome for i-th objective. Then the degree of the achievement of a given flow x for an 
i-th objective its measured by 

(6) Pi( qi, ri, !i(X» = (r, - f;{x) )/(ri - qi). 

The aggregated degree of the achievement for x is then measured by 

(7) s = min Pi(qi,ri,!i(x». 
l$i$2 

The method solves the following problem: 

(8) maximize {s I x satisfies (2) and (3)}, 

and provides its optimal solution x· to the decision maker. If x· is not satisfactory for the 
decision maker, he or she may respecify the aspiration and/or reservation levels and the 
above process is repeated until a satisfactory solution is obtained. At each round of this 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



422 N. Katoh 

iteration, we need to solve problem (8). Letting ai = 1/(ri - qi) and f3i = -r;j(ri - qi), 
we have 

adi(X) + f3i = -Pi(qi, ri, ji(X)) . 

Therefore, the problem (8) is equivalent to problem BMCP. 
Some other modifications and generalizations of this achievement function have been 

proposed by several authors i.e., Nakayama [20,21, 22], Steuer[27]' Steuer and Choo [28], 
Sawaragi, Nakayama and Tanino [26], Wierzbicki [30, 31](see also [17] for general discussion 
about achievement functions). Many of those achievement functions have the form similar 
to the one in (7). Define 
(9) gi(X) = adi(x) + f3i, i = 1,2, 

Problem BMCP is then rewritten as follows. 

(10) BMCP: mmUIllze ma.x{gl(x),g2(X)} 
subject to the constraints of (2) and (3). 

Recently Tardos [29] discovered a strongly polynomial algorithm for solving Problem 
MCP, the existence of which was an open problem since Edmonds and Karp [5] proposed a 
polynomial time algorithm for it. An algorithm that solves a problem whose input consists 
of n real numbers is strongly polynomial if 

(a) it performs only elementary arithmetic operations (additions, subtractions, com­
parisons, multiplications and divisions), 

(b) the number of operations required to solve the problem is polynomially bounded in 
n, and 

(c) when applied to rational data, the size of the numbers (Le., the number of bits 
required to represent the numbers) that the algorithm generates is polynomially bounded 
in n and the size of the input numbers. 

Based on Tardos's result, Fujishige [8], Orlin [23], Galil and Tardos [10] proposed more 
efficient strongly polynomial algorithms. Among them, the one given by Galil and Tardos 
[10] is the fastest, which runs in 0(n2(m+n log n) log n) time, where n =1 V 1 and m =1 E I. 

The major goal of this pctper is to propose a strongly polynomial algorithm for solving 
Problem BMCP, which runs in Q(min{ n6 10g3 n, n4 (nlog n + m) log5 n}) time. Notice that 
that Problem BMCP can be equivalently transformed to the following form. 

BMCP': minimize z 

subject to (2), (3) and 

(11) gi(X) :::; Z, i = 1,2. 

Such reformulation has been used in the more general setting in order to solve problems like 
BMCP' (see Chapter 7 of the book [26]). This approach may not be recommended in case 
the feasible set has a good structure, since the new constraints (11) added to the original 
feasible set may destroy its good structure. In our problem, we cannot guarantee any more 
the total unimodularity of the constraint matrix associated with the constraints (2), (3) 
and (11) for the above problem BMCP', while the original constraint matrix associated 
with the constraints (2) and (3) is known to be totally unimodular (see the books by Lawler 
[16] and Papadimitriou and Steiglitz [24]), which enables us to develop efficient algorithms 
for Problem MCP. 
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Bicriteria Circulation Problem 423 

The algorithm proposed here, on the other hand, does not use the above formulation, 
but takes full advantage of the good structure of the constraints (2) and (3). It employs 
as a subroutine the strongly polynomial algori1chm for solving Problem MCP by Galil and 
Tardos [10]' and finds an optimal solution of Problem BMCP in O(min{ n6 log3 n, n4 (m + 
n log n) log5 n}) time. The techniques we use are related to Megiddo [18, 19]. The problems 
treated in [18, 19] are, however, different from ours. Our result implies that the basic ideas 
developed by [18, 19] can be utilized to solve a, class of problems which have the objective 
function such as BMCP. 

Our problem is also related but not equivalent to the minimum cost circulation problem 
with one additional linear constraint, which was studied by Brucker [2] (see also [14]). The 
algorithm proposed by [2] is, however, not strongly polynomial. The techniques developed 
here can be directly used to improve the running time of Brucker's algorithm to have a 
strongly polynomial algorithm whose running time is the same as the one for BMCP. 

This paper is organized as follows: Section 2 gives some basic results. Section 3 presents 
an outline of the algorithm for solving Problem BMCP. Section 4 gives the detailed de­
scription of the algorithm which runs in O(n 1(nlogn+m)210g2n) time. Section 5 im­
proves the running time of the algorithm explained in Section 4 to O(min{ n6 10g3 n, n 4 (m+ 
n log n) log5 n}), based on the idea given by Megiddo [19], which employs the idea of paral­
lel combinatorial algorithms to speed up the running time for many types of combinatorial 
optimization problems not including our type of problem, though in fact we do not Heed 
any parallel processor but simulate the parallel algorithm in a serial manner. Section 6 
discusses an extension of our approach to the minimum cost circulation problem with one 
additional linear constraint. 

2 Basic Concepts and Properties 

Let X ~ Rn> denote the set of m-dimensional vectors x satisfying (2) and (3), i.e., X is 
the feasible set, and let f(x) = (fl(X), h(x)) : Rm -+ R2 denote the function that maps 
x E X to the objective plane R2. Define 

(12) Y = {(fl(X), 12(.1:)) I x EX} , 

which is called the admissible outcome set. T\otice that set Y is a convex polygon since 
X is a convex polyhedron and both fl(X) and h(x) are linear. A vector Y = (Yl> Y2) E Y 
is called nondominated if there does not exist Y' = (y~, y~) E Y such that Y: ::; Yi holds 
for i = 1,2 and at least one inequality holds strictly. A set of all nondominated vectors 
is called the nondominated set, which we denote Yo. A vector Y = (Yl, Y2) E Y is called 
weakly nondominated if there does not exist Y' = (y~, y~) E Y such that Y: < Yi holds for 
each i = 1,2. An x E X such that f(x) is nondominated is called an efficient flow. The 
sets Y and Yo are illustrated in Figure 1 as the shaded area and the thick piecewise linear 
curve, respectively. 

The following auxiliary problem with non negative parameter). plays a central role in 
our algorithm. 

(13) 
(14) 

P().) v().) == minimize JI(x) + ).h(x) 
subject to (2) and (3). 
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424 N. Katoh 

It is well known (see [111 for example) that the function V(A) is piecewise linear and 
concave in A, as illustrated in Figure 2, with a finite number of joint points A(1), A(2)' ... , A(N) 

with A(1) < A(2) < ... < A(N). Here N denotes the number of total joint points, and let 
A(O) = 0 and A(N+l) = 00 for convenience. Define for each A E [0,00) 

(15) X*{-\) == {x E X I x is optimal to P(A)} . 

h(x) 

-~o-------------+-' fl(X) 

Figure 1. Illustration of sets Y and Yo. 

v(>.) 

o 

Fig. 2 Illustration of v{>.) 
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Bicriteria Circularion Problem 425 

The following lemma is well known in the theory of linear parametric programs (see Gal [9] 
for the survey of this topic). In what follows, for two real numbers a, b with a :::; b, (a, b) 
and [a, b] stand for the open interval {t I a < t < b} and the closed interval {t I a :::; t :S; b} 
respectively. 

Lemma 1 (i) For any). E ().(k-l), ).(k))' k := 1, ... , N + 1, we have 

(ii) For any two distinct >., ).' E ().(k-i), ).(k)), k = 1, ... , N + 1, we have 

(17) X*{)') = X*{).I) . 

X*{:\(k)) = {;,tx + (1 - ;,t)x l 10:::;;,t :::; 1, x E X*()') and Xl E X*()./)}. 0 

Let for k = 1, ... , N + 1 

(18) 

By Lemma 1, X; = X*()') holds for all ). E (A(k-i), ).(k))' The following lemma is known 
in the theory of parametric linear programming. 

Lemma 2 (i) For any two x, Xl E X; with 1 :::; k :::; N + 1, 

hold. 

(ii) For any :c E X;_i and any Xl E X; with 2 :::; k :::; N + 1, 

hold. 0 

Lemma 3 (i) For any ). ~ 0 and any x E X*()'), f(x) is weakly nondorninated. 

(ii) For any .\ > 0 and any x E X*()'), f(x) is nondorninated. 

(iii) For any :c E X;, k = 1,2, ... , N + 1, f(x) is a vertex of set Y. 

Proof. The proof of (i) is given by Dinkelbach [4] and Bowman [1]. (ii) is proved as 
follows. Suppose that there exists Xl E X such that J;( Xl) :::; fi (x), i = 1, 2, hold and at 
least one of inequalities is strict. In any case, by ). > 0, it implies 

contradicting that x is optimal to P{)'). (iii) is proved as follows. Since f(x) is nondorni­
nated, f(x) is on the boundary of set Y. If f(.r) is not a vertex, it can be represented by a 
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convex combination of two vertices. That is, there exist x', x" E X and I'- with 0 < I'- < 1 
such that 
(19) x = I'-X' + (1 - I'-)X" . 

Since x is optimal to P(>.) with>' E (>'(k-l), >'(k)), it follows that 

fl(X') + >.J2(x') = /I(X") + >'h(x") = /I(x) + V2(X) , 

since otherwise fl(X')+>'h(~:') < fl(X)+>'h(x) or fl(X") +>'h(x") < fl(X)+>'h(x) holds 
by (19), contradicting the optimality of x to P(>.). Therefore, both x' and x" are optimal 
to P(>.) and by Lemma 2 (i) fl(X) = fl(X') = fl(X") and h(x) = h(x') = h(x") follow. 
This contradicts that f(x), f(x') and f(x") are distinct points in the objective plane. 0 

By Lemma 3 (iii) f(x) =: (fl(X), h(x)) maps all x E Xi; to a unique nondominated 
vertex in Y, and it is easy to see that such mapping from Xi;, k = 1, ... , N + 1 to the set 
of nondominated vertices is one to one. Therefore we use the notation Xk to represent any 
x E Xi; in what follows. As !, increases from 1 to N + 1, the corresponding nondominated 
vertex moves from top-left to bottom-right in the objective plane (see Figure]). The 
edge connecting two consecutive nondominated vertices corresponding to Xi; and X k+l 
respectively corresponds to all optimal solutions of P('\(k))' The following lemma gives a 
basis for our algorithm. 

Lemma 4 (i) If gl(X l ) > g2(Xl), then Xl is optimal to Problem BMCP. 
(ii) If gl(X N +l ) < g2(x N +l ), then XN +l is optimal to Problem BMCP. 
(iii) If neither (i) nor (ii) holds, there exists k* with 1 ~ k* ~ N such that 

(20) 

hold. Letting 1'-* be the solutl:on of the following linear equation in I'-

(21) 

then 
(22) 

is an optimal solution of BMCP. 

Proof. (i) If Xl is not optimal to BMCP, there exists x E X such that fl(X) < fl(Xl) 
and h(x) < fl(Xl) hold. fl(X) < /I(Xl) implies that Xl is not optimal to P(O), but Xl 
is optimal to P(O) by Lemma 1 (iii). This is a contradiction. (ii) is proved in a manner 
similar to (i). 

In order to prove (iii), first note that by Lemma 2 (ii) and by definition of gi(:1:), there 
exists k* such that xk* and xk*+1 satisfy (20). In addition, by Lemma 2 (ii), the linear 
equation of (22) in I'- has a unique solution satisfying 0 ~ I'- ~ 1. x* defined by (22) is 
then optimal to X*(>'(k*)) by Lemma 1 (iii), and f(x*) is nondominated by Lemma 3 (ii). 
It follows from (21) and (22) that 

holds. Since f(x*) is nondominated, there is no x E X such that /I (x) < /I (x*) and h( x) < 
h(x*) hold. Thus there is no x E X such that gl(X) < gl(X·) and g2(X) < g2(X·) by (9) and 
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ab a2 > 0, implying that there is no x E X with max{91 (x), 92(X)} < max{91(x*), 92(a:*)}. 
D 

To illustrate the situations corresponding to Lemma 4(i), (ii) and (iii), it is useful to 
consider the set 

z = {(91(X), 92(X)) I x EX}. 

The set Z is obtained from set Y by (9) and is similar to Y in shape. Set Z is illustrated 
in Fig. 3 as the shaded area. The thick piece wise linear curve in Fig. 3 corresponds to the 
nondominated set Yo. Figures 3 (a), (b) and (c) respectively illustrate the set Z in which 
Lemma 4 (i), (ii) and (iii) hold. The straight l:ine passing through the origin in Figs. 3(a) 
rv (c) separates the set Z into two subsets; one in which 91(X) ~ 92(X) holds and the other 
in which 91 (x) ~ 92(X) holds. If Lemma 4(i) holds, all (91 (Xk), 92( Xk)), k = 1, ... , N + 1, lie 
below the straight line (see Fig. 3(a)) among which (91(X1),92(X1)) is nearest to the line 
and hence Xl is optimal. The case of Lemma 4(ii) is similarly illustrated in Fig. 3(b). If 
Lemma 4(iii) holds, the problem is reduced to find k" such that (91 (xk"), 92(Xk")) is above 
the straight line and (91(X k"+1),92(Xk"+1)) is below it. An optimal solution x* is the one 
such that (91 (x*), 92( x*)) is the intersection point of the edge connecting (91 (xk"), 92( a:k")) 
and (91(xk"+1), 92(xk"+1)) and the straight line (i.e., 91(X*) = 92(X*)). 

/z 

Fig. 3(a) Illustration of the case in which Lemma 4(i) holds. 
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428 N. Katoh 

Fig. 3(b) Illustration of the case in which Lemma 4(ii) holds. 

---+:-----'------------.... 91 (x) 

Fig. 3(c) Illustration of the case in which Lemma 4(iii) holds. 
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By Lemma 2 (i), the condition of Lemma 4 (i) (resp. (ii)) is tested simply by taking 
any A with A < A(1) (resp. A > A(N)) and obtaining an optimal solution x of P(A). If 
neither the condition of Lemma 4 (i) nor (ii) holds, we need to find k* satisfying (20). For 
this, we only have to know A(k"). Once A(k*) is obtained, xk*and xk*+l are obtained by 
solving P(A(k*) - E) and P(A(k*) + E) respectively, where E is a sufficiently small positive 
number satisfying A(k") - A(k*-l) < E and A(k*+l) - A(k*) < t. The following lemma is useful 
for finding A with A < A(l) or A > A(N) and for estimating the above E. 

Lemma 5 

(23) 

(24) 

and 
(25) 

Then 

(26) 

and 
(27) 

hold. 

Let 

a1 = max {max{la(e) 11 e E E, a(e) is finite} 

max{1 b(e) 11 e E E, b(e)is finite}} . 

a2 = max{1 ci(e) Ili = 1,2, e E E}, 

Proof. (26) is proved by showing that for any A E [0,00) 

(28) max{1 /;(x) 11 x E X"(A), i = 1,2} :S M 

holds. After proving this, (26) follows by Lemma 9.2 in the paper by Katoh and Ibaraki 
[12]. Note that P(A) for a fixed A is a linear program and the constraints (2) and (3) 
of P(A) can be written in the form Ai = b by introducing 2m slack variables for 2m 
inequalities of (3), where A is (n + 2m) x 3m matrix, i is a 3m-dimensional vector and b is 
a (n + 2m)-dimensional column vector each of whose element is either 0, a(e) or b(e). It is 
well known in the theory of linear program that there exists an optimal solution x of P( A) 
such that x is a restriction of x to nonslack variables where x is a basic feasible solution 
of Ai = b. x is written by 

(29) 

where B is a (n + 2m) x (n + 2m) nonsingular square submatrix of A, B-1 is the inverse 
matrix of B, Ba,d] is the adjoint of Band det(B) is the determinant of B, It is well known 
(see Chapter 4 of the book by Lawler [16] or Chapter 13 of the book by Papadimitriou and 
Steiglitz [24]) that matrix A is totally unimodular , i.e., every square submatrix C of A has 
the determinant of either 0, + 1 or -1. Hence det(B) is equal to either + 1 or -1. Each 
element of Bad}, is, by definition, equal to an determinant of (n + 2m - 1) x (n + 2m -- 1) 
submatrix of A, which is also equal to either 0, +1, or -1 by the total unimodularity of A. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



430 N. Katoh 

Since each element of A is a.lso equal to either 0, + 1 or -1, x is an integer vector and the 
absolute value of each element of x is at most (n + 2m)al' Therefore 

1 2: ci(e)x(e) I::; (n + 2m)mala2' i = 1,2 
eEE 

follows. This proves (26), since by Lemma 2(i) the value fi(X'), i = 1,2 is the same for all 
x' E X*(A) if A is not a joint point, and by Lemma 1 (iii) it is represented by the convex 
combination of J;(xk) and f;(xk+l) if A is a joint point A(k). 

Now we shall prove (27). For k which 1 ::; k ::; N - 1, consider Xk, Xk+l and Xk+2, all 
of which can be assumed to be integer vectors as proved above. Since xk, Xk+l E X*( A(k)) 
and Xk+l,Xk+2 E X*(A(k+l)) hold by Lemma 1 (i), it holds that 

fl(xk) + A(k)h(xk) = fl(Xk+l) + A(k)h(Xk+1) 

and 

Thus, we have 

Then 
A(k+l) - A(k) = 

(fl(Xk+ 1) - fl(Xk))(h(xi<+l) - h(Xk+2)) - (fl(Xk+2) - h(Xk+l))(h(xk) - h(xk+1)) 
(h(xk) - h(Xk+l))(h(xk+1) - h(Xk+2)) 

Since fl(X) and h(x) take integer values if x is an integer vector, and h(xk) < h(Xk+l) < 
h(Xk+2) and f2{Xk) > h(x k+1) > h(Xk+2) hold by Lemma 2 (ii), the numerator is not less 
than 1. Since 

holds by (26), 
(h(x k) - h(Xk+1))(h(xk+l) - h(Xk+2)) ::; M2 

follows. This proves A(k+l) .- A(k) ;::: I/M2. 0 
By Lemma 5, it is easy to test whether the condition of Lemma 4 (i) or (ii) holds. For 

this purpose, we have only to solve P(A) for some A with 0 < A < l/M and for some 
A > M. If the condition of Lemma 4 (iii) holds, we must find k* satisfying (20), x ko , Xko +1 

and f..l of (21) to compute a;* by (22). One possible approach to do this is to employ the 
binary search for determining A E (A(ko-l), A(k*)) and).' E (>.(kO), A(ko+l)) over the interval 
[~, Xl where ~ and X are appropriate numbers satisfying ~ < 1/ M and X > M respectively. 
By Lemma 5, such binary search may be terminated until the interval length is reduced 
to less than I/M 2 (though the details are omitted). Therefore such method requires 
O( n2

( m + n log n) log n ·log M) time. This is polynomial in the input size because log M is 
polynomial in the input size by (25). However, it is not strongly polynomial because of the 
term log M. The following section alternatively presents a strongly polynomial algorithm 
for finding A(kO) with k* satisfying (20). Once it is obtained, xko and Xko +1 are computed 
by solving P( A(kO) - E) and P( A(kO) + E) respectively for E satisfying 0 < E < 1/ M2. This 
is justified since (27) implies A(h) - E E (>.(kO-l), AW)) and A(kO) + E E (A(k O), AW+l))' 
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3 The Outline of the Algorithm 

As discussed at the end of the previous section, it is easy to test whether the condition 
of Lemma 4(i) or (ii) holds. Thus we assume in this section that the condition of Lemma 
4(iii) holds and we shall focus on how to compute .A(k*) with k* satisfying (20). 

The idea of the algorithm is similar to the one given by Megiddo [18] which was devel­
oped for solving fractional programs. The similar idea was also used by Gusfield [11] to 
determine the curve of the objective cost for parametric combinatorial problems. We apply 
their ideas to find .A(k*)' The algorithm applies the algorithm of Galil and Tardos (the GT­
algorithm) to solve P(.A(k*)) without knowing the exact value of .A(k*). The computation 
path of the GT-algorithm may contain conditional jump operations, each of which selects 
proper computation path depending upon the outcome of comparison of two numbers. 
Notice that the GT-algorithm contains arithmetic operations of only additions, subtrac­
tions, multiplications and divisions, and compa,risons of the numbers generated from the 
given problem data, and that when applying the GT-algorithm to solve P(.A(k*)) with .A(k*) 
treated as unknown parameter, the numbers generated in the algorithm are all linear func­
tions of .A(k*) or constants not containing .A(k*>. Note that comparisons are necessary at 
conditional jumps. If a comparison for a conditional jump operation is made between two 
linear functions of .A(k*) , the condition can be written in the form of 

(30) 

for an appropriate critical constant ~, which can be determined by solving the linear 
equation in .A(k*) constructed from the compared two linear functions. Here ~ is assumed 
to be positive since otherwise ~ < .A(k*) is clearly concluded. 

An important observation here is that condition (30) can be tested without knowing 
the value of .A(k*) . For this, solve P(~ - E), P(~) and P(~ + E) by the GT-algorithm, 

where ~ is now a known constant, and E is a positive constant satisfying E < 112M2. Let 
x, x', x" be the obtained solutions of P(~ - E), P(~) and P(~ + E) respectively. First we 
test whether ~ is a joint point or not, based on the following lemma. 

Lemma 6 Let x, x' and x" be those defined above. Then ~ is a joint point if and only if 
the following linear equation in .A has the unique solution).' equal to i 

(31) 

Proof. If ~ is a joint point, say .A(k), ~ - f and ~ + E lie in the intervals (.A(k-1), .A(k)) 
and (.A(k)' .A(k+1)) respectively, by Lemma 5. Thus, from definition of a joint point, 11 (x) + 
.Ah(x) (resp. 11(X") + .Ah(x")) defines the value v(.A) of (13) for .A E [.A(k-1), .A(d (resp. 
[.A(k), .A(k+1)])' Thus (31) has a unique solution .A = .A(k). 

If ~ is not a joint point, let ~ belong to (>.(k-1), .A(k)) for some k with 2 ::; k ::; N + l. 
The following five cases are possible. 

Case 1. .A(k-.1) < ~ - E and ~ + E < .A(k). In this case 11 (x) = !I (x") and h(x) = h(:c") 
hold by Lemma 2, and (31) has no unique solution. 

Case 2. ~ - E < .A(k-1) and ~ + E < .A(k). By E < 112M2 and Lemma 5, ~ - E > .A(k-2) 
holds and the equation (31) has the unique solution).' = .A(k-1) which is not equal to )1. 
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Case 3. ~ - E > A(k-1) and ~ + E > A(k). This case is treated in a manner similar to 
Case 2. 

Case 4. ~ - E = A(k-1) a.nd ~ + E < A(k). x satisfies 

f2(X) :::; h(xlf) 

since V(A) of (13) is concave. If h(x) < h(xlf), the equation of (31) has the unique solution 
A' = A(k-1) #- i If f2(X) = h(x"), (31) has no unique solution. 

Case 5. ~ - E > A(k-1) and ~ + E = A(k). This case is analogous to Case 4. 

Note that the case of ), - E :::; A(k-1) and ~ + E 2: A(k) is not possible because of 
A(k) - A(k-1) 2: I/M2 by Lemma 5 and f < 1/2M2 by assumption. 0 

After computing x, x' and x" defined above, the algorithm proceeds as follows. If one 
of x, x' and x" (say, x) satisfies 

(32) 

x is an optimal solution of BMCP since f(x) is weakly nondominated by Lemma:3 (i) and 
hence there is no x E X such that f1(X) < f1(X) and h(x) < h(x) hold. So, assume 
in what follows that none of x, x', x" satisfies (32). Depending upon whether ~ is a joint 
point or not, consider the following two cases. 

Case 1. ~ is not a joint point. We then compare the two values gl(X') and g2(;Z;'). Two 
subcases are possible. 

Sub case lA. gl(X') < 92(X'). Then A* > ~ is concluded, and the algorithm chooses 
the computation path corresponding to A* > i 

Sub case lB. gl(X') > g2(X'). Then A* < ~ is concluded, and the algorithm chooses 
the computation path corresponding to A* < ~. 

Case 2. ; is a joint point. Then we consider the following three subcases. 
Subcase 2A. gl(X") < g2(X"). By Lemma 2 (ii), gl(X) < g2(X) follows. This implies 

A* > ; + f and the algorithm chooses the computation path corresponding to A* > ~. 
Subcase 2B. gl(X) > g2(X). Similarly to Subcase 2A, gl(X") > g2(X") follows. This 

implie.s A* < ~ - E and the algorithm chooses the computation path corresponding to 
A* < A. 

Suhcase 2C. gl(X) < !/2(X) and gl(X") > g2(XIf). Then; is the desired joint point 
A(k*) by Lemma 4 (iii). By Lemma 5 and 0 < E < 1/ M2, X E X k* and x" E Xk*+l follow. 
Therefore, by Lemma 4 (iii), an optimal solution x* of BMCP is found by (21) and (22) 
after letting xk* = x and xk'+l = x". 

With this observation the algorithm starts with the initial interval (,i, "X), where ,i and 
"X are typically determined by ,i = 1/(M + 1), "X = M + 1, and every time it performs 
the conditional jump operation, the critical value ~ is computed, and P(~ - f), P(~) and 
P(; + f) are solved. Depending upon the cases explained above, the length of the interval 
may be reduced in such a way that the desired joint point A(k*) exists in the reduced 
interval. It will be shown in the next section that Subcase 2C always occurs during the 
course of the algorithm, which proves the correctness of our algorithm. Since the GT­
algorithm requires O(n2 (n log n + m) log n) jump operations, and at each jump operation 
at most three minimum cost circulation problems, i.e., P(; - E), P(;) and P(~ + f), are 
solved by calling the GT-algorithm, the entire algorithm requires O( n4 ( n log n+ m)210g2 n) 
time in total. 
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4 Description and Analysis of the Algorithm 

The algorithm for solving Problem BMCP is described as follows: 

Procedure SOLVEBMCP 
Input: A directed graph G = (V, E) with costs Cl (e), C2( e), lower and upper compaci­

ties a(e) and b(e) for each e E E, and the weights ab 0'2, /31 and /32 with 0'1,0'2> o. 
Output: An optimal solution of Problem BMCP. 
Step 0: [Initialization]. Compute M by (23), (24), (25). Let.6. = l/(M + 1), X = M + 1 

and f. = 1/(2M2 + 1). 
Step 1: [Test the conditions of Lemma 4 (i) and (ii)]. Compute optimal solutions x' 

and x" of Problems P(.6.) and P(X) respectively by applying the GT-algorithm. If x' (resp. 
x") satisfies gl(X' ) > g2(X') (resp. gl(X") < g2(X")), output x' (resp. x") as an optimal 
solution of BMCP and halt. Otherwise go to Step 2. 

Step 2: [Test the condition of Lemma 4 (ilii)]. 
(i) Follow the GT-algorithm applied to P(A(k*») treating A(k*) as unknown constant 

satisfying .6. < A(k*) < X. If the GT -algorithm halts, go to Step 3. Else at the next 
conditional jump operation, do the following. 

(ii) Let the condition of the jump operation given by 

where Pl(A(k*») and P2(A(k*») are linear functions in A(k*). Solve equation 

(34) 

(iii) If equation (34) has no solution A* satisfying.6. < A* < X, i.e., Pl(A*) < P2(A*) (or 
PlP*) > P2(A*)) holds for all such A*, then choose the corresponding computation path at 
the current conditional jump operation. Go to (viii). 

(iv) If equation (34) holds for all A* with ~. < A* < X, choose the proper computation 
path corresponding to Pl(A*) = P2(A*) , and go to (viii). 

(v) If equation (34) has the unique solution ~ such that .6. < ~ < X, the conditions of 
(33) are transformed to 

A(k") < ~(resp. A(k*) > ~), A(k*) = ,\ OrA(k*) > ~(resp. A(k*) < ~) . 

Solve P(~ - f.), P(~) and P(~ + f.) by applying the GT-algorithm, and let x, x' and x" be 
optimal solutions of these problems respectively. 

(vi) If one of x, x', x" satisfies (32), output it as an optimal solution of BMCP and halt. 
(vii) Test whether ~ is a joint point or not based on Lemma 6. 
(vii-a) If ~ is not a joint point, determine A(k") > 5.. or \k*) < ~ according to Subcases lA 

and lB given prior to the description of the algorithm, and choose the proper computation 
path corresponding to A(k*) > ~ or A(k*) < ~ respectively. If A(k*) > ~, let.6. = i Otherwise 

let X = i Go to (viii). 
(vii-b) If ~ is a joint point, determine A(k*) > ~ + c, A(k*) < ~ - c or A(k*) = 5.. according 

to Subcases 2A, 2B and 2C given prior to the description of the algorithm, respectively. 
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If A(kO) > ). + E (resp. A(kO) < ). - E), let.l = ). + E (resp. A = ). - E), choose the proper 

computation path according to A(k*) > ~ (resp. A(kO) < ~) and go to (viii). If A(kO) = ~, 
compute J.l satisfying (21) and then x* by (22) after letting xko = x and xko

+1 = x". Halt. 
(viii) Return to the conditional jump operation of the GT-algorithm in Step 2, from 

where it exited to find the proper computation path. 
Step 3: Halt. 0 
The correctness of the algorithm is almost clear by the discussion given in the previous 

section. What remains is to prove that the algorithm always halts either in Step 1, Step 
2 (vi) or Step 2 (vii). Assume otherwise. Note that Procedure SOLVEBMCP always 
halts because it follows the GT-algorithm. Assume that SOLVEBMCP halts in Step 3 
and consider the interval (~" X) generated when it halts in Step 3. It follows from the 
discussion given in Section ~I that .l < A(kO) < X holds. When Procedure SOLVEBMCP 
halts, it has obtained a solution which is optimal to P(A) for all A E (.l, X), since if the 
GT-algorithm is applied to solve P(A) for any A E (~, X), it follows the same computation 
path irrespective of choice of A from the interval (~, X). However, by Lemma 2(iii), an 
optimal solution of P(A') with ~ < A' < A(kO) is not optimal to P(A") with A(kO) < A" < X. 
This is a contradiction. 

The running time of the algorithm can be derived in a manner similar to [18]. At each 
jump operation, a linear equation (34) is solved and if it has the unique solution ~ with 
~ < ). < X, three problems P()' - E), P()'), P()' + E) are solved. So Step 2 (v) requires 
O( n2 (n log n + m) log n) time. The other part of Step 2 is dominated by this. Since the 
total number of jump operations in the GT-algorithm is O(n2 (n log n + m) log n), Step 2 is 
repeated O(n2 (n log n+m) log n) times. So, Step 2 requires O(n4(n log n+ m)210g2 n} time 
in total. Since Step 0 requires constant time and Step 1 requires O(n2 (nlogn + m)logn) 
time, Procedure SOLVEBMCP requires O(n4 (nlog n + m)210g2 n) time in total. 

Theorem 1 Procedure SOLVEBMCP correctly computes an optimal solution of Problem 
BMCP in O(n4 (nlogn+ m)2log2 n) time. 0 

The algorithm is in fact strongly polynomial, since the running time depends only on 
the numbers of vertices and edges in a graph, and if the input data are all rational numbers, 
the size of the numbers generated in the algorithm is clearly polynomial in n, m and the 
size of the input numbers. 

5 Time Reduction 

The running time derived in the previous section is improved to O( min {n6 10g3 n, n4 (n log n+ 
m) logS n}) in the following section by utilizing the idea of f.imulating the parallel shortest 
path algorithm in a serial manner. Such idea of simulating parallel algorithms for the 
purpose of the speed-up of algorithms was originated by Megiddo [19]. The application of 
his idea to our problem, however, seems to be new. 

In order to reduce the running time of Procedure SOLVEBMCP, the following remarks 
are useful. 

Remark 1. In the GT-algorithm, the shortest path algorithm is applied O(n210g n) 
times as a subroutine. Since the best known shortest path algorithm with a single source 
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node, which is due to Fredman and Tarjan [7], requires O(nlogn + m) time, the GT­
algorithm requires 0 (n2

( n log n + m) log n) time in total. 

Remark 2. When the GT-algorithm is applied to solve P(A), comparisons with two 
numbers containing A are made only when the shortest path algorithm is applied. 

We modify Procedure SOLVEBMCP in such a way that instead of using O(nlog n+m) 
shortest path algorithm, we employ a parallel shortest path algorithm such as Dekel, 
Nassimi and ScLhni's [3] and Kucera's [15] in a serial manner when SOLVEBMCP follows 
the GT-algorithm in Step 2(i). We still use O(nlogn + m) shortest path algorithm in 
other parts of SOLVEBMCP such as Step 1, Step 2 (v). The idea of the time reduction 
is based on Megiddo [19]. We shall explain how it is attained. Let P denote the number 
of processors and let Tp denote the number of steps required on a P-processor machine. 
Dekel, N assimi and Sahni's scheme requires P = O(n3

) and Tp = O(logZ n) while Kucera's 
scheme requires P = O(n4

) and Tp = O(log n). We simulate these algorithms serially. 
According to some fixed permutation, we visi.t one processor at a time and perform one 
step in each cycle. At each processor, when two linear functions Pl(..\)' P2(A) are compared, 
we execute Step 2 (ii), (iii) and (iv). If the equation Pl(A) = pz(..\) has a unique solution 
~ with 1 < ~ < X, such critical value ~ is stored and we proceed to the next processor 
without executing Step 2 (v), (vi) and (vii). After one step of the multiprocessor, we 
have at most P such critical values. Let ~1' ~2' ... , ~p denote such critical values. We then 
compute 

..\" = ma.x{~i I 1 ~ i ~ P, ~i > A(k.)}' 

or in the meantime we may find the desired joint point A(k.) among those critical values. 
As explained in [19], this is done by performing a binary search that. requires O(P) time 
for median findings in subsets of the set of critical values, and by O(log P) applications of 
the GT-algorithm. We explain in more details how N is computed (the case A" is similarly 
treated). Each time the median ~i is found from among the remaining critical values, we 
execute Step 2 (v) , (vi) and (vii) with ~ replaced by ~i' In Step 2 (vii), it may happen 
that ~i is concluded as the desired joint point A(k.). Otherwise ~i < A(k.) or ~i > A(k.) 

is concluded, and half of the remaining critical points are discarded. Since the remaining 
subset during binary search is halved each time, the time required to find all medians is 

O(P + P/2 + P/4 + ... ) = O(P) , 

as shown in [19]. Since we need O(log P) applications of the median finding in order to 
find N, it requires 

O(n2(nlog n + m) log n . log P) 

time. Hence, each step of the multiprocessor requires 

O(P + n2 (nlog n + m) log n . log P) 

time. After Nand "\" are computed, we can choose the proper computation path at each 
processor. Since the above process is repeated Tp times in total, each application of the 
parallel shortest path algorithm requires 

O((P + n2(nlog n + m) log nlog P)Tp) 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



436 N. Katoh 

time. Since the shortest path problem is solved O( n2 10g n) times as mentioned in Remark 
1, the total running time is 

O(n2 1og n(P + n2(n log +m) log n log P)Tp) . 

If Dekel, Nassimi and Sahni's scheme is employed, this becomes 

O(n4 (n log n + m) logS n) , 

while if Kucera's scheme is employed, it becomes 

Therefore, depending on how dense the graph is, we may choose the better one. We then 
have the following theorem. 

Theorem 2 The modified SOLVEBMCP solves Problem BMCP in O(min{n6 10g3 n, n 4(nlog n+ 
m) logS n}) time. D 

6 Extensions 

In this section, we shall show how our approach is generalized to other type of problem 
similar to Problem BMCP studied so far. Such problem is the minimum-cost circulation 
problem with one additional linear constraint studied by Brucker [2]. This is described as 
follows. 

(35) 

(36) 

SMCPLC: mlrumlze fl(X) 
subject to the constraints of (2), (3) and 

h(x) ~ d. 

Here, It and h are those defined in (4), and d is a given constant. The above problem is 
solved as follows. It is easy to see that there exists an optimal solution x· of SMCPLC 
such that f(x·) is nondominated. Define xk, k = 1, ... , N + 1, by 

(37) k X. x E k' 

as before. If h(xl ) ~ d, Xl is optimal to SMCPLC. If h(xN +I) > d, there is no feasible 
solution to SMCPLC. So assume 

(38) 

Let 
(39) 

( 40) 

A(k
1

) = min{A(k) I 1 ~ k ~ N,h(xk+l) ~ d}, 

A(k2) = max{A(k) I 1 ~ k ~ N, h(Xk+I) > d}. 
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Lemma 7 Let f.1, satisfy 

(41) 

Then 
(42) 

is optimal to SMCPLC. 
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Proof. x* defined by (42) clearly satisfies h(x*) = d, and f(x*) is nondominated 
since f( xk i+1 ) and f(x k.+1 ) are adjacent nondominated vertices by (39), (40) and Lemma 
3 (see Fig. 4). Thus, there is no x E X such that fl(X) < fl(X*) and f2(X) ~ h(x*) hold. 
This proves the lemma. 0 

h(x) 

y 

(fl(X k1 +1), h(Xk1 +1)) 

(fl(X*), h(x*)) 

-+-=-0--------------' JI(x) 

Figure 4. Illustration of the set Y used in Lemma 7. 

By the lemma, all what we do is to compute A(k
1

) and A(k
2

)' Once A(k
1

) and A(k
2

) are 
obtained, Xkt+l (resp. X k.+1 ) are computed by solving P(A(k

1
) + c) (resp. P('\(k

2
) + c), 

where e satisfies 0 < e < 1/ M2. We shall explain only how A(k
1

) is computed (the ca.se of 
A(k,) is similarly treated). This is done in a manner similar to the way of finding AW) in 
Procedure SOLVEBMCP given in Section 4. ["ollowing the GT-algorithm to solve P(,\(kl») 
without knowing the exact value of A(k

1
), every time comparison is made at conditional 
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jump operation, we compute a critical value ~ by solving the linear equation in A(k.) formed 

by the compared two numbers containing A(k.)' We first test whether ~ is a joint point or 

not, using Lemma 6. If ~ is a joint point (say A(k»), we solve P(~ + c) to obtain Xk+l and 

compute h(xk+l). According to whether h(xk+l) ::; d or not, ~ ~ A(k,), or ~ < A(k,) is 

concluded respectively, and the proper computation path is chosen. If ~ is not ajoint point, 
we solve P(~) to obtain £ E X*(~) and compute 12(£). According to whether 12(£) ::; d 
or not, ~ > A(k.) or ~ < A(k.) is concluded respectively, and the proper computation path 
is chosen. In any case, by the discussion similar to the one in Sections 3 and 4, we finally 
obtain A(k.)' We do not give the details of the algorithm since it is almost the same as 
SOLVEBMCP. In addition, we can also apply the idea of the time reduction given in 
Section 5 and hence the following theorem holds. 

Theorem 3 Problem SMCP LC can be solved in 0 (min{ n6 10g3 n, n4 (n log n + m) log5 n}) 
time. 0 

7 Conclusion 

We proposed strongly polynomial algorithms for a bicriteria minimum-cost circulation 
problem and a minimu-cost circulation problem with one additional linear constraint. We 
mention here that similar ideas can be applied to other types of linear programming prob­
lems with special structures that are formulated as Problem BMCP or SMCPLC, e.g., 
Markovian decision process with two objectives or one additional linear constraint (see 
Kawai and Katoh [13]). 

References 

[1] V.J. Bowman, Jr., On the relationship of the Chebyshev norm and efficient frontier 
of multiple-criteria objectives, In H. Thiriez and S. Zionts (eds.) Multiple criteria 
decision making. Springer, Berlin, Heidelberg, New York, Lecture Notes in Economic 
and Mathematical Systems, Vol. 130, 1976. 

[2] P. Brucker, Parametric programming and circulation problems with one additional 
linear constraint, Osnabrucker Schriften zur Mathematik, Reihe P, Heft 56, Fach­
bereich Mathematik, Universitiit Osnabriick, 1983. 

[3] E. Dekel, D. N assimi and S. Sahni, Parallel matrix and graph algorithms, SIAM J. 
Comp1J,t., 10 (1981), 657-675. 

[4] W. Dinkelbach, Uber einen Losungsansatz zum Vectormaximumproblem. In M. 
Beckman (ed) Unternehmungsforschung Heute. Springer, Berlin, Heidelberg, New 
York, Lecture Notes in Operational Research and Mathematical Systems, Vol. 50, 
1-30, 1971. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Bicriteria Circulation Problem 439 

[5] l. Edmonds and R. Karp, Theoretical improvements in the algorithmic efficiency for 
network flow problems, J. AGM 19 (1972:), 248-264. 

[6] L.R. Ford and D.R. Fulkerson, Flows in Networks, Princeton University Press, Prince­
ton, N.l., 1962. 

[7] M.L. Fredman and R.E. Tarjan, Fibonacci heaps and their uses in improved network 
optimization algorithms, J. AGM, 34 (1987), 596-615. 

[8] S. Fujishige, A capacity-rounding algorithm for the minimum-cost circulation prob­
lem: a dual framework of the Tardos algorithm, Mathematical Programming, 35 
(1986), 298-308. 

[9] T. Gal, Linear parametric programming - a brief survey, Mathematical Programming 
Study, 21 (1984), 43-68. 

[10] Z. Galil and E. Tardos, An O(n2 (m+nlogn)logn) min-cost flow algorithm, J.ACM, 
35 2 (1988), 374-386. 

[11] D. Gusfield, Parametric combinatorial computing and a problem of program module 
distribution, J. ACM, 30 (1983), 551-563. 

[12] N. Katoh and T. Ibaraki, A parametric characterization and an E -approximation 
scheme for the minimization of a quasiconcave program, Discrete Applied Mathemat­
ics, 17 (1987) 39-66. 

[13] H. Kawai and N. Katoh, Variance constrained markovian decision process, J. Oper. 
Res. Soc. Japan, 30 (1987), 88-100. 

[14] T. Kobayashi, The lexico-shortest route alogrithm for solving the minimum cost flow 
problem with an additional linear constraint, Journal of the Operations Research 
Society of Japan, 26, 3 (1983), 167-184. 

[15] L. Kucera, Parallel computation and conflicts in memory access, Information Pro­
cessing Letters, 14 (1982), 93-96. 

[16] E.L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart 
& Winston, New York, 1976. 

[17] A. Lewandowski and A. Wierzbicki, Aspiration Based Decision Analysis and Support 
Part I: Theoretical and Methodological Backgrounds, Working paper, WP-88-03, 
International Institute for Applied Systems Analysis, Laxenburg, Austria, 1988. 

[18] N. Megiddo, Combinatorial optimization with rational objective functions, Math. 
Oper. Res., 4 (1979), 414-424. 

[19] N. Megiddo, Applying parallel computation algorithms in the design of serial algo­
rithms, J. AGM, 30 (1983), 852-865. 

[20] H. N akayama, On the components in interactive multiobjective programming meth­
ods (in M. Grauer, M. Thompson, A.P. Wierzbicki, editors: Plural Rationality and 
Interactive Decision Processes, Proceedings, 1984), Springer Verlag, Berlin, 1985. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



440 N. Katoh 

[21] H. Nakayama, Sensitivity and trade-off analysis in multi-objective programming; 
Proc. of IIASA Workshop in Bulgaria, 1987, Springer (to appear). 

[22] H. Nakayama, Interactive multiojective programming - methods and applications, 
Communications of the Operations Research Society of Japan, 33, 8 (1988), 375-381. 

[23] J.B. Orlin, Genuinely polynomial simplex and non-simplex algorithm for the mini­
mum cost flow problem, Working Paper No. 1615-84, A.P. Sloan School of Manage­
ment, MIT, December 1984. 

[24] C.H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and 
Complexity, Prentice-Hall, Englewood Cliffs, New Jersey, 1982. 

[25] G. Ruhe, Complexity results for multicriterial and parametric network flows using a 
pathological graph of Zadeh, Zeitschrift fur Operations Research, 32 (1988), 9-27. 

[26] Y. Sawaragi, H. N akayama and T. Tanino, Theory of multiobjective optimization, 
Academic Press, New York, 1985. 

[27] R. E. Steuer, Multiple Criteria Optimization Theory, Computation and Application, 
John Wiley and Sons, 1986. 

[28] R.E. Steuer and E.V. Choo, An interactive weighted Chebyshev procedure for mul­
tiple objective programming, Mathematical Programming, 26 (1983), 326-344. 

[29] E. Tardos, A strongly polynomial minimum cost circulation algorithm, Combinator­
ica, 5 (1985), 247-255. 

[30] A.P. Wierzbicki, A mathematical basis for satisficing decision making, Mathematical 
Modelling, 3 (1982), 391-405. 

[31] A.P. Wierzbicki, On the completeness and constructiveness of parametric character­
izations to vector optimization problems, OR Spektrum, 8 (1986), 73-87. 

N aoki Katoh: Department of Management Science 
Kobe University of Commerce 
Seiryodai 4-3-3, Tarumi, Kobe 655 
JAPAN 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.




