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Abstract In this paper we consider the airline seat allocation between high and low fares with and without 
stochastic cancellations. We also analyze the problem of simultaneously determining seat allocation and 
overbooking levels for two different classes of passengers, which also extends the existing literature in three 
ways. First, the cost oflost sales, which has been ignored in the existing literature, is explicitly incorporated 
into the model. Second, the overbooking phenomenon is also explicitly treated. Third, the concept of spill 
rate is clarified into t.he passenger spill rate and the flight rate. It is found that the results obtained here are 
in closer agreement with actual airline practice. 

1. Introduction 
In an era of increasing pricing freedom, airline companies no longer offer seats for sale at 

a single fare. Recognizing that different groups of consumers have different willingnesses to 
pay for the same seat, airline companies offer seats at a wide range of air fares. However, to 
prevent consumers willing to pay high fares from buying seats at low fares, the airlines attach 
various restrictions to their tickets such as early time bookings, Saturday night stayovers or 
reduced service without food to discount fares. (See [10), [11).) 

The process of determining fares, associated restrictions and the number of seats to offer 
at a given fare is referred to as "Airline Revenue Management". (See [6).) Within this area 
of airline revenue management, the decision process of determining the number of seats to 
be protected for various classes of passengers is called the airline seat allocation problem. 
The key idea of the seat allocation problem is to limit the number of discounted seats when 
there is a strong demand expected from high fare consumers, so as to maximize the expected 
revenue per flight. Airline revenue management includes (i) determination of the initial 
allocation of seats between high and low fare classes, (ii) determination of high and low 
fare levels, (iii) determination of restrictions associated with low fares, and (iv) dynamic 
monitoring of seats for sale on a given flight and readjusting the allocation of seats between 
high and low fares so as to maximize expected revenues. 

The purpose of this paper is to analyze some of the first element (i), determination of the 
initial allocation of seats between high and low fares. This static model with one period is of 
great importance to airlines as the two classes of passengers have very different time patterns 
of booking. High fare passengers tend to book in the last days or hours before a departure 
time. Because of this, the initial seat allocation suggested in a static model is critical to airline 
profitability. (See [10).) On the other hand, the dynamic seat allocation problem treated 
with the fourth element (iv) would be considered in some where else. Readers interested in 
airline revenue management should refer to the survey article by Belobaba [2). Beckmann 
[1) derived an approximate solution to the problem that maximized expected revenue with 
oversale penalty and allowed for the possibility of 'stand by' passengers. Rothstein [8) and 
Shlifer and Vardi [9) proposed various overbooking control methods for a single fare class. 
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Liberman and Yechiali [7] considers the hotel overbooking problem, which is similar to the 
airline seat allocation problem with only one class of customers. As far as we know, no work 
has been done on the problem of simultaneously determining seat allocation and overbooking 
levels for different classes of passengers. 

In this paper we simultaneously consider the seat allocation between high and low fares 
passengers and the overbooking problem, which also extends the existing literature in three 
ways. First, the cost of lost ~ales which has been ignored in the existing literature (see [2], 
[5], [8]) is explicitly incorporated into the model. Second, the overbooking phenomenon is 
also explicitly treated. Third, the concept of spill rate is clarified into the passenger spill 
rate and the flight spill rate. It is found that the results obtained here are in more closer 
agreement with actual airline practice. 

2. A Simple Seat Allocation Model 
In this section, we consider a rather simple seat allocation model in which there are two 

class of passengers, low and high fares passengers. Assume that they do not both cancel 
their booking reservations. So, in this case the airline company does not have to overbook to 
hold out against the cancellations of their passengers' bookings. We make three assumptions 
as follows: 
Assumption (A) The low fare and high fare demands are independent to each other. 
Assumption (B) Demand for low fares occurs earlier than for high fares, e.g. low fare 

demand has a minimum advance booking requirement. 
Assumption (C) The refused passengers do not pick up other flights of the same carrier 

(called the total loss of the spilled sales). 

Assumption (B) is known as early birds. Assumption (C) excludes the possibility that 
the denied low fare passengers may then purchase a high fare ticket, which is called "grade 
up". Define X the random variable of the number of high fare demand with distribution 
function F(x) and Y the random variable of the number of low fare demand with distribution 
function G(y), respectively. We use the following notations: 

PI = the high fare, 
P2 = the low fare, 
C = the airplane capacity, 

11"1 = the cost of goodwill loss per high fare passenger due to the shortage of the capacity, 
L = the number of seats allocated to low fare passengers, so at least (C - L) seats are 

available to high fare passengers, 
a 1\ b = min(a,b),a+ = max(a,O), and E = expectation operator. 
All variables are treated as continuous. 

Defining ER(L) the expected total revenue per flight when L seats are allocat.ed to the 
low fare demand, ER(L) can be written as follows: 

ER(L) = Ey[P2(Y 1\ L)]":- EyExlY [PI(X 1\ (C - Y 1\ L)) - 11"1 (X - C + Y 1\ L)+] (1) 

which can be rewritten as 

ER(L) = P2[fo
L 

ydG(y) + LG(L)] 

+ G(L){Pl [C-L xdF(x) + rXl 

[Pl(C - L) - 11"1 (x - C + L)]dF(x)} 
io iC-L 
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where F(·) 1 - F(.) and G(·) = 1 - G(.). The problem is of choosing L to maximize 
ER(L) given by (1) (or (1)') subject to 0 ::; L :S; C. Let f and 9 be density functions of X 
and Y, respectively. f(·) and g(.) are assumed to be positive on (O,C). 
Proposition 1 If geL )jG(L) ::; f( C - L)j F( C - L) for all L, then an optimal number of 
seats to allocate to low fare demand L * is given by 

L* == {: - F-\-2L) PI+lI", 

C 

if P2 < (PI + 7rdF( C), 

if (PI + lrI)F(C) ::; P2 ::; (PI + 7rJ}F(O), (2) 

, otherw:ise. 

Proof ER(L) is differentiable. We shall show that ER(L) is strictly concave with respect 
to L under the condition that geL )jG(L) ::; f( C - L)j F( C - L). Hence, if it possesses a 
maximum, it is a unique one. Differentiating E R( L) results in 

dER(L) - -
dL = G(L)[p2 - (PI + 7rd F (C - L)]. (3) 

Differntiating ER(L) twice, we have 

d2ER(L) _ _ 
-;[j)_. = -9(L)P2 + (PI + 7rI)[g(L)F(C - L) - f(C - L)G(L)] < o. 

Note that F( C -- L) is monoton increasing in L and then the inverse of F(.) exists. Since 
g(.) > 0 implies (';(-) > 0, letting dER(L)jdL = 0 with condition 0 ::; L ::; C yields equation 
(2). 
Remarks: Note that the optimal allocation to low fare demand L* is independent of the 
distribution of low fare demand, provided G(·) > o. L * is decreasing as 7rI increases, and 
depends only on the relative low fare P2j(PI + lrJ}. 

It is difficult to provide an economic interpretation on the condition of proposition 1, 
geL )jG(L) ::; f( C - L)j F( C - L), which looks like a failure rate often appearing in reliability 
theory. Instead of doing that, we consider a special case where there is strong demand from 
low fare passengers, that is, G(C) = 1. For insta,nce, the peak season may have the demand 
distribution satisfying G( C) = 1. 

Assume that we can sell as many low fare seats as we desire up to the capacity C of 
the plane. Let R(L, X) be the revenue obtained if L seats are sold to low fare demand and 
C - L to high fare demand and a demand for high fare X is realized. Then, for 0 ::; L ::; C 
we have 

R(L,X) = P2L + PI(C - L) 1\ X - 7rI(X - C + L)+. (4) 

Note that for each X, R(L, X) is concave in L without any condition. So, the expected 
revenue ER(L) == E[R(L, X)] is also concave in L. Because of the concavity, the optimal 
number of low fares L * to maximize the expected revenue can be determined by looking at 
the incremental expected revenue from selling an additional low fare and stop selling when 
this becomes negative. The following corollary immediately follows from the fact that the 
assumption of proposition 1 is satisfied if GCC) = 1 for all C > o. 
Corollary If there is an unlimited low fare demand, one should sell only L* low fares and 
protect C - L * seats for high fares, where L· is given by 

* { P2-L = min L ~ 0: -- ::; F(C - L)}. 
PI + 7rI 
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3. Optimal Seat Allocation with Overbooking 
In this section we treat with an optimal seat allocation model allowing overbooking and 

cancellations. Assume that high fare passengers may cancel their reservations but low fare 
ones can not. Hence, only high fare demands are overbooked. We must determine both 
the maximum level to accept the reservations from low fare passengers and the overbooking 
ratio for high fare passengers. A sequence of operations is as follows; (i) choose the number 
of low fare seats to reserve, (iii) observe the number of realized booking progress of low fare 
passengers, and then (iii) determine the number of high fare seats to protect. 

In addition to the notations listed in section 2, we use the following: 
Z = the number of cancellations of high fare reservations, Z ~ X, 

7r2 = the cost per denied boarding due to overbooking, 
J( (y) = the number of seats allowed to book for high fare passengers 

when Y = y, which is assumed to satisfy 
J((y) = (C - Y /\ L)(:l + 0), 0 ~ 0 < 1. 

Remembering L as the seat allocation for low fares, a pair of (L,o) is called a booking 
strategy and set B = (L,o). We may possibly have L + J((y) ;::: C but L::; C. 
Remarks; (i) If high fare passengers do not cancel their reservations, so that the airline does 
not necessarily overbook, then the booking strategy can be written as B = (L, 0), which 
is reduced to J((y) = C - Y /\ L as same as in section 2. (ii) 0 can be interpreted as an 
overbooking ratio for high fare passengers because 

Y 1\ L + (C - Y 1\ L)(1 + 0) - C 
C-yI\L 

o(C-yI\L) 
C-yI\L 

=0. 

So, o( C - Y 1\ L) seats are overbooked for high fares. 0 = 0 corresponds to no overbooking 
with which cases are treated in section 2. 
Assumption (D) High fare passengers may cancel their reservations independently with 

the equal probability (1 - 0). 
It is well known under assumption (D) that the probability distribution of the number of 

cancellations z, given the number of reservations x is binomial with the mean x(1 .- 0), that 

is, H(z 1 x) = P{Z ~ z 1 X = x} = Lk=O (~)(1- O)kox-k,z = 0,1,··· ,x. So, a passenger 
may board on with probability O. Put (3 == (1 + 0) and B = (L, (3) in stead of (L, 0). Define 
ER(L, (3) the expected profit obtained from a flight when a booking strategy B =: (L, (3) is 
used. Then, we obtain 

ER(L,(3) = PIEyExIYEzlx[X 1\ ((C - Y 1\ L)(3 - Z] + P2E[Y 1\ L] 

- 7rIEyEx lY[X - (C - Y 1\ L)(3]+ 

- (PI + 7r2)EyExIYEzlx[Y 1\ L + X 1\ ((C - Y 1\ L)(3) - Z - C]+ 
= pdE[X - Z I X ~ (C - Y)(3]P[X ~ (C - Y)(3] 
+ E[(C - Y)(3 - Z 1 X > (C - Y)(3]P[X > (C - Y)(3]}P[Y ~ L] 
+ PI {E[X - Z 1 X ~ (C - L)(3]P[X ~ (C - L)(3] 
+ E[(C - L)(3·- Z 1 X > (C - L)(3]P[X > (C - L)(3]}P[Y > L] 

+ P2{E[Y 1 Y :~ L]P[Y ~ L] + E[L 1 Y> L]P[Y > L]} 

- 7r1 {E[X - (C - Y)(31 Y ~ L]+ pry ~ L] 

+ E[X - (C - L)(31 Y> L]+ pry > L]} 

- (PI + 7r2){E[Y + X - Z - Cl X ~ (C - Y)(3]P[X ::; (C - Y)(3] 
+ E[Y + (C - Y)(3 - Z - Cl X > (C - Y)(3]P[X > (C - Y)(3]}P[Y ~ L] 
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- (PI + 1l"2){E[L + X - Z - C I X:::; (C - L)f3]P[X :::; (C - L)f3] 
+ E[L + (C - L)f3- Z - C I X > (C - L)f3]P[X > (C - L)f3]}P[Y > L] 

_ r(C-L){3 _ 
= PIB{G(L)[Jo xdF(x) + F«C - L)f3)(C - L)f3] 

(
L r(C-Y){3 _ 

+ Jo [Jo xdF(x) + F«C - y)f3)(C - y)f3JdG(y)} 

+ P2 10
L 

ydG(y) + P2 LG(L) 

- 1rdG(L) rco (x - (C - L)f3)dF(x) 
J(C-L){3 . 

+ JrL rco (x - (C - y)f1)dF(x)dG(y)} 
o J(C-y){3 

- J(C-L){3 
- (PI + 1l"2){G(L)[ (L + O"~ - C)dF(x) 

C-L 

+ F«C - L)f3)(L - C)(l - f3B)] 

rL J(C-y){3 -
+ J [ (y + Bx - C)dF(x) + F«C - y)f3)(y - C)(l - f30)]dG(x)}. (5) 

o C-y 

The first two terms are the revenues for the high and low fares, respectively. The third 
one is the cost of lost sales due to the booking limit. The last one is the cost of denied 
booking which occurs whenever the sum of the numbers of low fares and of confirmed high 
fares is larger than the capacity of the plane. Since the number of cancelled bookinl~s is 
binomially distributed E[X - Z] = EzEx[X - E(Z I X) I Z] = E[X - X(l - B) = OE'[X]. 
The problem is to find an optimal booking strategy (L*, f3*) so as to maximize ER(L, f3). 
After taking and rearranging the partial derivatives with respect to Land f3, we have* 

P2 -1l"2H *F«C -L*)f3*) = F«C -L*)f3*)[f3*(pIB+1l"d+a1l"2H(a(C -L) I (C - L)f3)], (6) 

where 

and 

L· 
G(L')F«C - L*)f3*)Q(L*,f3*) = I F«C - y)f3*)Q(y, f3*)dG(y), (7) 10 

Q(L,f3) = (C - L)[PIB + 1l"1 - 7r2H(a(C - L) I (C - L)f3)], 

q(y, f3) = (C - y)[PIO + 1l"1 - 7r2H(a(C - y) I (C - y)f3)], 

H * F(u) = loH H(L + x - C I x)dF(x). 

(8) 

(9) 

(10) 

An optimal booking strategy, seat allocation for low fares and overbooking ratio for high 
fares, must jointly satisfy equations (6) and (7). Note that such an optimal booking strategy 
is no longer independent of G(.), the probability distribution of low fare demands. Equations 
(8) and (9) are the net profits obtained from high fare passengers when Z :::; (C - Y 1\ L )f3. 
Equation (7) can, therefore, be interpreted as follows; under the optimal booking strategy 
the expected profit from high fare demands when Y ~ L should be equal to the one when 
Y < L. It seems to us that finding a closed form of an optimal booking strategy jointly 
satisfying equations (6) and (7) is almost impossible. For this reason we consider a special 
case of overbooking problems where there is only one class of fares, say high fares. 

* A detailed but messy derivation of equations is omitted here but is available from the 
author by request.. 
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A special case of overbooking problems. 
Suppose that there is only one class of fares, say a high fare class. With each fare booked 

we associate a random variable 

D; = {I if the ith fare booked confirms, 

o if the ith fare cancels. 

Assume that {DI' D2, ... } are independent and identically distributed with mean E D; = O. 
If B seats are booked, then N(B) = 2:f!:1 D; seats are confirmed and the distribution of 
N(B) is binomial with mean BO. The revenue as a function of the number of seats available, 
L, and the number of fares booked, B, is assumed to be 

R(L,B) = PIN(B) - (PI + 7r2)[N(B) - L]+ -7rI(X - B)+. 

Since E[N(B)] = OB, the expected revenue function is 

ER(L, B) = PLOB - (PI + 7r2)E[N(B) - L]+ - 7rIE[X - B]+. 

We first compute the incremental revenue from an additional booking 

fl.R(L,B) = R(L,B + 1) - R(L,B) 

where 

and 

= pdN(B + 1) - N(B)]- (PI + 7r1)[(N(B + 1) - L)+ - (N(B) - L+] 

- 7rI[(X - (B + 1»+ - (X - B)+] 

= PIDB+I - (PI + 7rt}ZB + 7r I ZB 

if N(B) > L, 

if N(B) :::; L, 

{

I if X> B, 

ZB = 0 
if X :::; B. 

Now, the incremental expected revenue can be obtained. 

fl.ER(L, B) == ER(L, B + 1) - ER(L, B) = Efl.R(L, B) 

= PIE(DB+t} - (PI + 7rt}EZB - 7rI EZB 
= PlO - (PI + 7Q)OP{N(B) > L} + 7rI P{X > B}. 

Since N(B) is increasing in B, so is P{N(B) > L}. P{X > B} is also decreasing in B. 
Therefore, fl.ER(L, B) is decreasing in B, which implies that ER(L, B) is concave in B. So, 
we should book fares so long as ER(L, B + 1) - ER(L, B) is positive. Hence, we arrive at 
following theorem. 
Theorem. If we have L seats protected for high fares, it is optimal to book up to B* (L) 
where 

B*(L) = min{B;::: L;PIO:::; (PI + 7r2)OP{N(B) > L} + 7rIF(B)}. (11) 

Since P{N(B) > L} can be evaluated from a table of binomial distributions and F(B) 
is given, B* (L) can easily be calculated. Note that P {N (B) > L} and F( B) in equation 
(11) is strictly decreasing in B. So, there exists a unique solution satisfying (11). 
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4. Spill Rates and Overbooking 
If passengers may cancel their reservations without any penalties, airline compa.nies 

tend to overbook. However, such overbookings cause them compensation costs. If a small 
number of seats are allocated to each fare class to prevent them from overbooking, they also 
lose refused boarding passengers resulting in a cost of goodwill lost, which is called spilling 
passengers of the airline. Hence, a booking strategy must be balanced between overbooking 
and spilling passengers. In this section we discuss the concepts of spill rates and the expected 
number of over bookings when you must obtain a certain number of "confirmed" seats, say 
the number of seats equal to the airplane capacity. 

There are two possible interpretations of the term "spill rate" in the airline context. 
The first is that the spill rate is the expected proportion of flights on which some high 
fare reservations must be refused because of prior low fare bookings, which is often used in 
"Airline Yield Management" articles. (For Example, see [6], [10].) The second is that the 
spill rate is the expected proportion of high fare reservations that must be refused out of the 
total number of such reservations, which seems 1;0 be more meaningful since it relates more 
closely to the amount of high fare revenues lost. We provide formulae for calculating the 
spill rate under either interpretation and consider such spill rates associated with use of the 
revenue maximizing seat allocation rule. 

The proportion of flights refusing high-fare reservations, called the flight spill rate, can 
be expressed as 

RI = P{X + L /\ Y > C} (12) 

= G(L)F(C - L) + t F(C - y)dG(y). 
JO 

It is easy to show that when S seats are available for high-fare passengers the expected 
proportion of reservations refused will be F(S)E[X - S I X > Sl! E[X]. Thus we have for 
the expected proportion of high fare reservations refused R2 called the passenger spill mte; 

1 _ _ rC - s _ 
R2 = E[X] {G(L)F(S)UC_L + jJ F(C - y)uc_ydG(y)} (13) 

where 

Us = [(l/F(S)) fsoo xdF(x)]- S. 

Consider the simple seat allocation model discussed in section 2 where the revenue max­
imizing rule is used to determine L *, the number of low fare seats to protect. Let S* be the 

--1 
number of high fare seats to allocate. In this case we have S* = C - L* = F (P2/(Pl + 1rI)) 
from equation (2) .. F(S*) = P2/(pl + 1rI). In the extreme case that low fare demand always 
exceeds the allocation of low fare seats, we have 7.'J(L *) = 1, and the above formulae become: 

RI = P2/(pl + 1rd, and 

R2 = [P2/(Pl + 1rl)](us·/E[X]). 

Now, further assume that Pz/(Pl + 1rl) = 0.4 (a typical ratio) and that high fare demand is 
approximately normally distributed with mean 100 seats and standard deviation 20 seats. 
This will yield a spill rate (expressed as a percentage) of 40%, if the first interpretation 
(RI) is used. It seems to us that this figure is abnormally too high. However, if the second 
interpretation is used, we get us' ~ 32 and then R2 ~ (0.4)(32)/100 = 0.128. A spill rate of 
12.8% seems in closer agreement with actual airline practice. 
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Given the probability distribution for high fare demands, the problem of determining the 
seat allocation for each fare class is also of determining either spill rate. The more seats are 
protected, the smaller spill rate we have. However, the more bookings we accept, the higher 
probability of overbookings we have, while at that time the spill rate is close to zero. So, the 
seat allocation problem is of trade off between a low spill rate and a high overbooking ratio. 
Let us consider the following probability. What is the probability that we must accept a 
certain number of bookings, say E, in order to obtain the number of confirmed seats which is 
naturally equal to the capacity of airline seats C, E ;::: C. Let q(Bj C) be such probabilities. 
It is easy to see that such a random variable follows a negative binomial distribution, that 
IS, 

q(BjC) = (~= ~)(F(1- 9)B-C. (14) 

with mean C / 9 and variance C( 1-9) / 92 . Note that variance rapidly increases as () -..... o. This 
suggests that airline companies should make effort of reducing the cancellation probability. 
For example, the restriction on tickets or on booking procedures must be imposed. Equation 
(14) can be expressed in terms of binomial distribution ben, c), that is, 

q(Bj C) = 9b(B - 1, C - 1). 

which can be evaluated from a table of binomial distributions. 
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