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Abstract In usual scheduling problem, machine speed is considered to be constant. Here we assume that 
the machine speed ;[s controllable for each job and consider the maximum lateness problem on the single 
machine. The objective is to determine an optimal schedule and optimal job wise speed of the machine 
minimizing the total sum of costs associated with the maximum lateness and jobwise machine speed. 

1. Introduction 

We consid'~r a generalization of a ciassical one machine maximum lateness 

problem. In this problem, machine speed is assumed to be not constant but 

controllable. That is, machine speed is changeable for each job. The objec­

tive is to det'~rmine an optimal schedule and optimal jobwise speed of the ma­

chine minimizing the total sum of costs associated with the maximum lateness 

and jobwise ma,:hine speed. 

In Section 2, we formulate a generalized version of one machine maximum 

lateness probl'~m. In Section 3, we show how our problem can be solved and 

propose an algorithm informally. In Section 4, we give an numerical example 

of this problem. 

2. Problem Formulation 

First some notations used in this paper are defined. Each job J j (1:;oj;;;n) 

has the due date d. and 'standard' processing time t. (1. e., processing time 
J J 

when machine speed is unit). Let C. be the completion time and 3' . machine 
J J 

speed for each job J.. For a convenienc,~ sake, we set 3.=1/3'.. We assume 
J J J 

that the cost of machine speed is linear and defined to be ajs'j' where aj 
(l~j~n) is a positive constant. Further, let dl:;Od2~···~dn without any loss of 

generality. Using these notations, the maximum lateness L is max. (C.-d.). 
max J J J 

We consider the following problem PO. 

(2.1) 
po: minimize (aOL +E. a .3'.) 

max J J J 

subje·ct to 3' .>0, 
J 
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where aO is a positive constant. Let Pj be the actual processing time' of each 

job (i.e., p.=t.8.), and set ~~a.t .• Then the problem PO is equivalent to 
J J J J J J 

the following PI. 

(2.2) PI: minimize (cOL +E. a ./p .) max J J J 

Let maximum lateness be t. Then we have the following inequalities, 

(2.3) (k= 1, 2, "', n) 

since we can assume the optimal processing order of jobs is J 1+J2+"'+J
n
[1]. 

Thus, from (2.2) and (2.3), we have the following P2 which is equivalent to 

PO. 

(2.4) 

n-
P2: minimize (aot+ .L1a ./p.) 

J= J J 

subject 

(k=l, 2, 

3. Solving P2 

n) 

To solve the problem P2, we use the Lagrange method. Let u. (l~:;;n) be 
J 

the Lagrange multiplier. Then P2 is equivalent to the following problem: 

(3.1) max >0 min L(p,u), u_ p 

where 

(3.2) Pk-drt ) 

- '~l u .(d .+t). 
J= J J 

Let L(u)=min
p 

L(p,u), then the inequality 

~k/Pk +j~kUjPk~2~akj~kuj 
of arithmetic and geometric means 

leads to 

(3.3) 

The equality in (3.3) is obtained, when 

(3.4) p .=! a '/k~' uk · 
J J =J 

Further, let Yk=!j~k u j ' 

i.e. J 

(3.5) 

or 
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Generalized One Machine Lmax Problem 

(k=l, , n-l) 

Using these notations, L(u) becomes the following function of y. 

1j r=- n-l 2 2 2 
L(u)=2k!;,l' ak Yk - k"'£l (Yk -Yk+l ) (dk+t)-Y n (dn +t) 

1j .;-=- 2 n 2 
=2k!;,1 ak Yk - Yl (dl +t)-k"'£2 Yk (dk-dk_1) 

(3.6) =-k~2(dk-dk-l)(Yk-'; ak /(dk-dk_1»2 

- 2 
-(dl+t) (y 1-.; a1/(d1+t» 

+k~2 ak/(dk-dk_l)+al/(dl+t)~G(Y). 
Now, ek(l:;!k:;!n) is defined as follows: 

(3.7) ek",Ak/Bk , 

where 

A
k

,,'; a
k for k=l, 2, "', n 

(3.8) Bl"dl+t, 

Bk"dk-dk_ l for k=2, n 

Then the equation(3.6) is 

(3.9) L(u) =-k~lBk (Yk -ek ) 2 +k~lAk 2 
/Bk:=G(y) . 

We have follmdng theorems. 
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Theorem 1. (i) If ekil:ek+l for k=l, "', n-l, then by setting Yj=e j (for 

j=l, , n), an optimal value f(t) (Le,., f(t)=maxUil:OL(u» is obtained as 

follows: 

(3.10) 

(ii) If there exists an index i such that ei<ei +l , an optimal solution Y giv­

ing f(t) satisfies the condition Y'=Y'+l ' 
'Z- 'Z- . 

Proof: Since the case (i) is clear from (3.5) and (3.9), in order to 

show (H), we prove that Y satisfying Y1:>Yi+l does not give f(t). 

(a) Yi>Yi+lil:e i +l 
As Yi tends to ei +l , the value of (;(.) increases. Thus, the solution is 

obtained by s,~tting Yi=Yi+l' 

(b) Yi>ei+l il:Y'i+l 

As Yi and Yi+l tend to ei and ei +l ,. respectively,. the value of G(·) in­

creases. Similarly, the remaining two eases (c) ei+l>yiil:ei>Yi+l' (d) ei<::Yi> 

Yi+l may be proved. Q.E.D. 
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Theorem 2. If ei<ei+l for some i (2~i:>n-1), then setting as Yi=Yi+land 

e.=(A.+A. 1)/(B.+B.+1) is valid. 
~ ~ ~+ ~ ~ 

Proof: Since validity of setting 

we prove that e.=(A.+A·+1)/(B.+B.+1). 
~ ~ ~ ~ ~ 

as Yi=Yi+1 is clear from Theorem 1, 

Now it is sufficient to take out terms 

associated with only the index i and i+1 from (3.6). That is, 

21 ai Yi + 2/~li+1 Yi+1 - Yi
2

(di -di _ 1) - Yi+1
2

(di +1-di ) 

=-(d·+1-d. 1)(1'·-(1 a. + 1 a·+1)/(d.+1-d. 1»2 
~ ~- '~ ~ ~ ~~-

+(1 a. + 1 a·+-1)2/(d·+1-d. 1) 
~ ~. ~~-

2 =-(B.+B. 1)(y.-(A.+A.+1)/(B.+B.+1» 
~ ~+ ~ ~ ~ ~ ~ 

2 
+(Ai +Ai +1) /(Bi +Bi +1)· 

Accordingly, an optimal value f(t) is obtained by setting as Yi=Yi+1 and 

e.=(A.+A. 1)/(B.+B.+1). Q.E.D. 
~ ~ ~+ ~ ~ 

Corollary 1. Theorem 2 holds for i=l. That is, if e
1

<e 2, then we can 

set Y 1=Y 2 and e1=(A1+A2)/(B1+B2). 

The above theorems suggest an algorithm to solve the problem P2. First, 

compute e. for j=2, ••• , Tl. 
J 

If the case (ii) of the theorem 1 occurs (i.e., 

ei <ei +1 for some i), update Yj' e j as follows (Otherwise, go to the next step 

without executing the revision.): 

Yj=Yj' ej=ej , if j=2, ••• , i-I, 

Yi=Yi+l' ei.=(A.i+Ai+l)/(Bi+Bi+l)' if j=i, 

Yj=Yj+l' ej=ej+l' if j=i+1, n-1, 

and further, update A., B. as follows: 
J .7 

A .=A., B .=B" if j=l, ••• , i-I, 
J J J J 

(3.11) 
Ai=Ai+Ai+1' B{=Bi+Bi+l' if j=i, 

Aj=Aj+l' Bj =Bj +1, if j=i+1, n-1, 

n=n-1. 

After the above revision, test e j for the case (i) of the theorem. If the 

case (ii) is happened again, the same revision is repeated. Since the times 

of revision is at most (n·-I), the case (i) certainly occurs, and then the op­

timal value f(t) is obtained. Next, by the following step, check whether e 1 
?e

2 
or not. If e

1
?e

2
, that is 

(3.12) t~1 0. 1 /e 2 - d
t

, 
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then set y
1
=e

1
, Y =e "', Y =e , where q is an integer that is lesS than or Z Z' q q 

equal to (n-1). Then the shape of objective function in the range (3.1Z) is 

(3.13) 

Since the differential of F(t) is 

/ - d Z dF(t) dt=a
O 

- a
1
/( l+t) , 

we obtain the optimal solution as follows: 

(3.14) 

Otherwise (i.e., e
1

<e
Z
)' then reset e

1 
as follows: 

(3.15) 
Y1='Y Z' e1=(A1+AZ)/(B1+BZ)' 

Yj-Yj+1' ej =ej + 1 , if j=Z, "', q. 

If e
1

<e
Z 

is occurs again, then the same revision is repeated. Since e 1<:e
2 

is 

certainly occurs after at most (q-1) revisions, we obtain eventually the ob-

jective function F(t) to be minimized is determined. And then, since each op­

timal value of u. is decided, the optima.l processing time is obtained from 
J 

(3.4) . 

Theorem 3. The optimal value y* of Y 1 is equal to rao. Thus, inequali­

ty e
1

<:e Z is equivalent to ~<:eZ' in other wards, e 1=1ClQ. 

Proof: First, we prove the case without updating e
1

• By definition, 

e
1
=A

1
/(d1 + t). Also, from (3.14), t=Ajlra; - d 1 • Thus, 

e1'=A 1/(d1 + Al/1""'aQ - d1)=¥CtO' 

Next, we consider the case after executing the revision (3.15). Then, 

the shape of the objective function is 

" 
F(t)=(aot + const. + (A

1
+A

Z
)'-/(d

1
+t+B

Z
»' 

Setting dF(t)/dt=O, we obtain t=(A
1
+A

Z
)/ra; - (d

1
+BZ)' Using this value of 

in the updated expression 

e(=(A
1
+A

Z
) / (B

1
+B

Z
)=(A

1
+A

Z
) / (;+d

1
+B

Z
)' 

we obtain el=~' Q.E.D. 

Since details of the solution proc.~dure are complicated, we illustrate it 

by an example in the next section. 

4. An Example 

We consider an example in order to show the procedure obtaining the solu-
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tion. The number of jobs is five and their triplets T·i=(t .,d .,a.) are as 
J J J J 

follows: 

T1=(S, 1, 3), TZ=(4, 4, Z), T3=(3, 4, S), T4=(3, s, 1), TS=(S, 9, Z). 

Also, let aO=4. First, eJ (j=2, ••• , S) are calculated from (3.7) and (3.8): 

e2=18i3=O. 943, e3=vTf/O= "", e 4 =13/1=1. 732, eS=1lo/4=O.791. 

The case (ii) of theorem 1 is happened, since e
2

<e
3

• Accordingly, update Yj' 

e. from (3.11) as follows: 
J 

Y 2=Y 3' e2=( r'8+/IS) 10+0)=2.234, 

Y3=Y4, e3=e4=13=1. 732, 

Y4=YS' e4=eS=O.791. 

(4.1) A2=18+/IS, B2=3+0, A3=/3, B3=1, A4=/IO, B4=4. 

Then, the case (i) occurs" that is, e Zi1: o 
0 o~eS. 

Next, check whether e1~e2 or not. From theorem 3, e1~e2 is equivalent to 

~~e2. Thus, we check 1~~e2. Since ~=2<2.234=eZ' the revision (3.1S) 

is executed: 

Y1'"'Y Z' e1=(A1+AZ)/(B1+B2) , 

Y2=Y3, e2=e 3=1.732, 

Y3=Y4, e 3=e4=O.791. 

(4. Z) Al =m+18+m, B1 =t+4, AZ=fi. B2=1, A3=1IO, B3=4. 

Now the case (i) occurs since rao=2~1.732=eZ. Thus, we compute t as follows: 

t=A/~ - Dk=(/IS+iS +m)/2 - 4=1.Z87, 

where Dk=B1-t. In this case, Dk=d3• Each optimal solution is obtained as 

follows: 

Y1=Y2=Y3=e1=~=2, 

y4=e2=1.73Z, YS=e3=O.791. 

Next Figure 1 illustrates flow of our solution procedure for this example. 

~1 ~2 ~3 ~4 ~S 
e 1 e

Z 
e

3 e4 eS revision(4.1) ~ ~ y ~ ~ 

revision(4.2) 
e 1 e2 e3 e4 :> 7 J. ~ 

1 e2 e
3 

Fig.! Flow of the solution procedure 
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Thus, the optimal processing time is obtained from (3.4), 

Pl=II5/2='1.936, p2=!8/2=1.414, P3=IIT/2=1.936, 

P4=137 1.732=1, p5=/I070.791=3.998. 

Accordingly, each optimal speed (8.'=t./p.) is decided as follows: 
J J J 

8 1 '=5/1.936=2.583, 8 2 '=4/1.414=2.829, 

8
3

'=3/1.936=1.550, 8
4

'=3/1=3, 8
5

'=5/3.998=1.251. 

389 

Theorem 4. The solution procedure illustrated by the above example re­

quires O(n log n) computational time. 

Proof: Each computational time of the procedure is shown as follows: 

(a) Sorting of due dates d.: O(n log n). 
J 

(b) Constraction of ej (j~2): O(n-l). 

(c) Revision of ej (j<:I): O(n), 

that is, finding e
2 

such that e
2
::ira;;- requires O(n-l) comparisons, and updat­

ing of e. is O(n). 
J 

(d) Remaining operations: O(n). 

Therefor~! (a) dominates others and so O(n log n) computational time is 

required. Q .. E.D. 
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