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Abstract This paper deals with the Hitchcock transportation problem with m supply points and n demand
points. Assume that m < n and all the data are positive integers which are less than or equal to an integer
M. We propose two polynomial time algorithms for solving the problems. The algorithms are based on
the interior point algorithms for solving general linear programming problems. Using some features of the
transportation problems, we decrease the computational complexities. We show that one of the algorithms
requires at most O(m>n?log nM + n?) arithmetic operations and the other requires at most O(n*lognM)
arithmetic operations.

1. Introduction

This paper deals with the Hitchcock transportation problem with m supply points and n
demand points. The problem is formulated as a linear programming problem in the following
way:

(P) min Zig)en CiiTijs
subject to  Y,eszi;=a; for i €1,
Eie[ Ty = bj for j € J,
zi; >0 for (2,]) € N,

where
I={12,....m}, J={1,2,...,n} and N=1xJ.

We assume that m < n, ¥ierai = X,¢s b; and all the ¢i;((4,5) € N), a;(i € I} and b;(j € J)
are positive integers.

There are several algorithms for solving the transportation problem (see, for example, [1]
or (10]). Edmonds and Karp [2] and Tkura and Nemhauser [4] especially propose polynomial
time algorithms. The methods are based on the simplex algorithm. On the other hand, for a
general linear programming problem, there are many polynomial time algorithms (Gonzaga
(3], Khachiyan (6], Karmarkar [5], Kojima, Mizuno and Yoshise (7, 8], Monteiro and Adler
[9], Renegar [11], Vaidya {14] etc.). Each of the methods generates a sequence of interior
feasible points. So they are called the interior point algorithms. Some of the interior
point algorithms (Gonzaga [3], Kojima, Mizuno and Yoshise [8], Monteiro and Adler [9)
and Vaidya [14]) attain the O(A3L) computational complexity in terms of the number of
arithmetic operations, where # is the number of variables and L is the input size of the
linear programming problem. If we apply these algorithms to the transportation problem
(P), the computational complexity is

O(m®*n3L)
for
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L=1T Y log(e;+1)+ log(ai + 1)+ > log(h; + 1) + 2mn],
(. )EN iel jeJ

where [6] denotes the smallest integer which is not less than 6.

In this paper, we propose two interior point algorithms, Algorithm A and Algorithm
B, for the transportation problems. The algorithms attain the computational complexi-
ties lower than O(m3®n3L). Algorithm A is based on the O(7*L) algorithm proposed by
Kojima, Mizuno and Yoshise [7]. If we directly apply the algorithm to the transportation
problems, the complexity is O(n*m#L). Using some features of the transportation problems,
we decrease the computational complexity of Algorithm A to

O(m3n*L' + n?),
where

(1) L' = lognM,
(2) M = max{a; (i€l), bj(je€J), cj((i,7) € N)}.

Note that the value of L’ is much less than that of L. Algorithm B is based on the O(#%°L)
algorithm proposed by Kojima, Mizuno and Yoshise [8] for linear complementarity problems.
We show that Algorithm B requires at most

Oo(n*L')

arithmetic operations.

The computational complexity of the algorithm [2] is O(n®log M) and that of [4] is
O(n®log M). So the computational complexities of our algorithms are less than that of [4]
but greater than that of [2] except for the case m® < n in Algorithm A. The algorithms
[2, 4] need to solve O(L) subproblems which are obtained by scaling an original problem.
On the other hand, our methods directly solve an original transportation problem and need
not to generate subproblems. Tardos [13] proposes a strong polynomial algorithm, i.e., the
computational complexity is a polynomial of m and n. Although our algorithms are not
strong polynomial, it is possible to construct a strong polynomial algorithm by using our
algorithms for solving the subproblems in Tardos’ algorithm.

In Section 2, we outline Algorithms A and B. Then we describe Algorithms A and B in
detail in Section 3 and Section 4, respectively. In Section 5, we obtain the computational
complexities of Algorithms A and B. Section 6 gives the conclusions.

2. The outline of algorithms

Here we outline Algorithm A and Algorithm B. The dual problem of (P) is formulated as

(D) max Yier Gitli + ey biv;,
subject to  wu; + U; + 2i; = ¢y for (i,j) €N,
u; =0, 2 20 for (z,]) € N.

Since one of the constraints of (P) is redundant, we impose the constraint u; = 0 on (D).
We represent the problems (P) and (D) by the following matrix forms:

(P) min Tz,
subject to Az =d, z2>0.
(D) max dy,

subject to ATy+z=¢, 31 =0, z2>0.

where
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$T=($11,$12,...,1’mn), yT=(ul,uz,...,um,vl,...,v,,), ZT:(leazIZ,--~7ann);
CT=(C11,612,...,Cmn), dT=(al,ag,...,am,bl,...,bn)
and
11 1 ]
11 1
1 1. 1
A=1 4 1 1
1 1 1
i 1 1 1]

Let S, and S,. denote the primal and dual feasible regions, i.e.,

S, ={z: Az =d, z > 0},
Syzz{(y,z)ZATy+z:c’ y1=0, ZZO}

From the duality theorem of the linear programming, a primal feasible solution z* and a
dual feasible solution (y*, z*) are optimal if and only if the complementarity condition

(3) 2z =0 for (i,j)€ N

holds. We call the pair of primal and dual feasible solutions a feasible point or simply a point.
Each of Algorithms A and B generates a sequence of feasible points (z¥, y*, z¥) € S, x S, for
k =0,1,... such that the complementarity values z*Tz* decrease. Each algorithm consists
of the following five steps:

Step 1: Find an initial point (z° 4% 2%) € S, x S, and set k «— 0.
Step 2: Compute a feasible direction (Az, Ay, Az).
Step 3: Get a step size t and compute the next point by

($k+1’yk+l,zk+l) — (mk’yk’zk) — t(AiE,A:%Az)‘

Step 4: If a stopping criterion holds then go to Step 5, otherwise set k «— k+ 1 and return
to Step 2.

Step 5: Compute an optimal solution z* of (P) from the last point (z¥+!,y*+1 2F+1),

3. Algorithm A

Algorithm A consists of five steps given in the previous section. Now we describe each step
in detail.
In Step 1, we take the following point as the initial point of Algorithm A:

gl = aiby/r for (i,j) €N, " =0, 2 =¢,
where

(4) r=>a=> b

i€l jeJ
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In Steps 2 and 3, we use the method of [7] so that the iteration number is bounded by a
polynomial. According to [7], we shall show how to compute the feasible direction and the
step size t. The direction (Az, Ay, Az) is Newton direction at the point (z*, y*, z¥) for the
system

Xz=o0fk e Az =d, ATy+z=c¢ 3y =0,

where o is a constant in (0,1), f£,, = 2*T2*/mn, T = (1,1,...,1) and X = diag(x), which
is the mn diagonal matrix with the diagonal elements z;; ((z, j) € N). Then the direction

(Az, Ay, Az) is the solution of the linear system

ZFAz 4+ XFAz = p,
(5) AAz = 0,
ATAy +Az = 0,
Ayl = 0,
where X* = diag(z*), Z dzag(z )and p = X*z%F — o f% e.

In order to compute the step size t, they {7] introduce the following functions:

fis(t) = (2 — tAzy;)(2h — tAz;) for (i,5) € N,
(t) - mm - ( ::u‘n =T :vc) t

where 7 is a constant in (0,0) and f£,, = ming ey zf;25. Then the step size ¢ is computed
as the largest value in [0, 1] such that

fii(t) > g(t) for (4,5) € N,

i.e., the value f;;(t) of each complementarity component is bounded by the positive value
9(t)

In Step 4, we have to employ a stopping criterion such that we can compute an optimal
solution. Such a criterion is given by

1

Y mn—-m-n+2

1 .
or 245 < m—'+n for (1,,]) €N,

or equivalently

(6) Pz)uQ(z) =

where

(1) Pla)={(i)) € Nz < ————1——}

mn—-—m-n-+2

Q) = {G) eV iz < ——}.

Theorem 1 If the condition (6) holds for feasible solutions x € S, and (y,z) € S, then
there is a primal feasible solution x* which satisfies

(8) =zi; =0 for (i,j) € P(z),

and such z* is optimal.
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Proof: Let m; and m; be the dimensions of the convex sets S; and S, = {z: (y,2) €
Syz}, respectively. Since A is the incidence matrix of the transportation problem (P), the
rank of A is m 4+ n — 1. So we have

(9) mi<mn-m-n+1 and my<m+n-1.

From Caratheodory’s theorem ([12]), we have

mi+1 mi1+1
z:ZA,;,qh+q’, ZA;,:I, A 20 for h=1,2,...,my +1,
h=1 h=1

where ¢* (h = 1,2,...,m, + 1) are vertices of S, and ¢’ is an unbounded direction of S, ( in
this case, ¢’ = 0 because .S, is bounded). Then there is an index £ such that A\, > 1/(m;+1).
Since ¢* > 0 and ¢’ > 0, we have

(10) ¢* < /\lx < (my+ 1)z
L

From (7), (9) and (10), we obtain
qu <1 for (i,j) € P(z).

Since all the components of each vertex of S; are integral, we have (8) for z* = ¢
In the same way, we can show that there is a dual feasible solution (y*, 2*) which satisfies

(11) 2 =0 for (i,5) € Q(z).

From (6), (8) and (11), the complementarity condition (3) holds. Therefore z* is optimal.
- In Step 5, we consider the following problem

(12) Az =d, >0, z;; =0 for (i,5) € P(z*"?),

where z**! is the last primal feasible solution obtained in Step 4. From Theorem 1, the
solution of the above problem (12) exists and it is an optimal solution of (P). We can easily
convert (12) into a max flow problem which will be easily solved (see [10]).

4. Algorithm B

Algorithm B consists of five steps given in Section 2. Algorithm B is the samne as Algorithm
A in Steps 4 and 5. Here we describe Steps 1, 2 and 3 of Algorithm B.

Algorithm B is based on the O(735L) method of Kojima, Mizuno and Yoshise [8]. For
a constant a € (0,0.1], it generates a sequence of feasible points in the set

S(a) = {(1')y’z) € Sz X Syz : “XZ - fa’ueeH < @faves fm,e = J;Tz/mn} X
In order to find an initial point, we construct the following artificial transportation problem:
(P) min s gem Giiiso i
subject to  Xje5 Ty = G for 1 € 1,
TierTij = b; for jeJ, _
7y > 0 for (i,) € A,
where

I={12,....m+n}, J={1,2,...,n+m}, N=IxJ,
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(13) G = a; + M, for 1 E.I, B = bj + M, for j E J,
* M, otherwise, g My otherwise,
Cij for (Z,]) € N,
(14) &;=¢ 0 for j=n+i, i€l and i=m+j, j € J,
M. otherwise,

for integers M,, and M,. We illustrate the graph of the artificial problem in Fig. 1. The
next theorem shows the relation between optimal solutions of (P) and (P).

Theorem 2 Suppose that M, > M and Mg, > 0. For any optimal solution Z* of (P), the
mn vector £*(N) of Z}; for (,j) € N is an optimal solution of (P).

Proof: The dual problem of (P) is formulated as

(D) max Tier Gilli + Tjer b, _
subject to @; + U; + Zij = G5 for (Z,]) (S JY,
ﬂl == 0, 2,] 2 O fOI' (Z,]) € N

Let ' and (v, v, 2’) be optimal solutions of (P) and (D), respectively. Then we have

(18) xi;2;; =0 for (4,5) € N,

(16) u+v; <y for (i,5) € N.

Since (u', v, ') is optimal, there exist an 3’ € J foreach ¢ € [ and a j' € I for each j € J
such that

(17) 'U,: + 'Ué: = Cii'y

(18) u;, + ’U_,I,' = Cjij5.

Let
z;;  for (i,5) €N,
(19) ;=4 Ma for j=n+i,i€l and i=m+j, j€J,
0 otherwise,
N for i ¢ I, P for j € J,
(20) @ = { —v}_,, otherwise, i~ { —u;_, otherwise,

(21) z; =&, —a;— ) for (i,j) € N.

Now we shall show that Z’ and (@, #', Z') are optimal solutions of (P) and (D), respectively.
We easily see that Z' is a feasible solution of (P). So we shall first prove that (@', Z') is
a feasible solution of (D), i.e., Z > 0. From (14), (16), (17), (18), (20) and (21), for each
1, 9€I(i#g)and j, h€J(j+#h), we have

#) 7 = e si-i= 20
(28) Py = 0-—uf—(-u)) =0,
(24) 2:n+jj = 0~ (—U;») - v;. =0,
(25)  Zopp = Mo—ul+u

2 Mc - Cg,‘/ + G > O’
(26)  Znugn = Mo+ —w,

2 M ~cint+ciy >0,
(27) Zppjnei = Me+vi+y

M, + (¢jr; — ujy) + (Ciar — Vi)
M. - cjy + Ciiy + Cir > 0.
Hence 7' > 0. From (15), (19), (23) and (24), we also see that

v
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Z;%; =0 for (i,j) € N.

This 1mp11es that (@', 7', ') is an optimal solution of (D).
Since Z* is an opt1ma.1 solution of (P), we have

(28) Zj;2; =0 for (i,j) € N.
From (25), (26), (27) and (28), we have

(29) Z,.s = Ofori,gel(i#g),
(30) ZL4u = O for j, he J(j#h),

Zppinsi = 0 for (4,5) € N.
So we see
(31) j:n+i buti — ngn+1 =M, for i€,
g#i
(32) j:n+1] = a/m+] bl Zj:n-l-]h = Mab fOI' ] € J.
hit
From (29), (30), (31) and (32), we obtain
257;} = Z intg = Gi— Mgy = a; for i€ 1,
jeJ (134
SE; = b= Y Fhn = bj— May = b; for j€J.
i€l hed

Therefore £*(N) is a feasible solution of (P). Since (v',v',2") is a feasible solution of (D)
and (28) holds, Z*(N) is an optimal solution of (P). O _
From the above theorem, we may solve the artificial problem (P) instead of (P). Let

= [4(m +n)/a].
Algonthm B solves the artificial problem (P P) with My, = BM and M, = M. Let

F=>a,=) b,

il jeJ

S'(a) = {(3‘: @,7, ) ”XZ - fa'uee“ < afm;ea fxwe =z Z/(m""’l) }:

7 and (&, 7, Z) are feasible solutions of (P) and (D)
where X = diag() and &7 = (1,1, ...,1). We take the following point (z°,@°,7°, z°) as the
initial point of Algorithm B:
2 = ab; /7 for (i,j) € N,

o =0for iel, o0=—-fM for jeJ, 2z =¢;+pM for (i,j) € N.

1

Theorem 3 Suppose that My, = BM and M, = M. Then the above point (z°, 4% 2°, 20)
belongs to S(a).
Proof: It will be trivial that the point is feasible. So we shall only show that
1X°2° - foeel < e “ '

where X° = diag(z°) and f2, = 2°T2°/(m + n)% From (13) and (14), we have
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M <a; <(1+p)M for iel,

BM <b; < (1+B)M for jeJ,

o
IN
o

i <M for (Z,]) € N.
From the above inequalities and the definition of the initial point, we see
BM3 7 < 732 < (1+ B)°M3/F for (i,5) € N,

ﬂ3M3/ -= a‘ve — (1 +:6)3M3/T

Hence we obtain

1X°2° ~ faell < (m +n) max | 28,25 — fawe |
< (m+n){(1+8) - 8} M¥/r
< 4(m+n)BPM3/F
< afPMP/F
< aff

ave?

where the third inequality follows from 3 > 4. O

In Steps 2 and 3, we use the method of [8] so that the iteration number is bounded by
a polynomial. The fea31ble direction (Az, Ay, Az) is the solution of the system (5) for the
artificial problem (P), where

a

(1-a)a’

We always set the step size t = 1 because the next point for ¢ = 1 belongs to 5(a) whenever
a € (0,0.1] (see [8]).

oc=1-

5. Computational complexities
In this section, we obtain the computational complexities of Algorithms A and B.

Theorem 4 Algorithm A computes an optimal solution of (P) with O(m3n?lognM -+ n?)
arithmetic operations.

Recall that m < n. The above theorem is obtained from the following two lemmas and the
fact that there is an O(n®) algorithm for solving the max flow problem appeared in Step 5
(see [10)).

Lemma 5 Algorithm A terminates in O(mnlognM) iterations.

Proof: From Corollary 1 of [7], Algorithin A finds a point (z*, y*, z¥), which satisfies
2T 2% < € for € > 0, after

(33) O(mn(log m° + log(z®T2°/¢)))
iterations, where (20,10, 2°) is the initial point and

0T ,0
0_ %z

us
mn mm(, J)EN .'I? Z
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From the definition of the initial point of Algorithm A, we see that

72" = 3 abjeii/r < mnM3/r,
(i,7)EN

(II?jZ?j = aibjc,-,-/r Z 1/7‘.
So we have
(34) 7° < M3

Let € = 1/n%. If 2¥T2F < ¢, we have

1 1 .
mf]<ﬁ or zfj<ﬁ for (i,7) € N.

The above inequalities imply that the stopping criterion (6) holds for z = z* and z = 2*.

Then we see

(35) z972%/e < n®M3.

From (33), (34) and (35), the stopping criterion (6) holds after O(mnlog nM) iterations.

Lemma 6 Each iteration of Algorithm A requires at most O(m?®n) arithmetic operations.
Proof: From the system (5), we have

(36) A(Z*)'X*ATAy = —A(ZF)™'p and Ay =0.

Let

k
15

o wy =zk/z
e B be the m x n matrix with (3, j) elements w;;,

e D; be the m x m diagonal matrix with ith diagonal elements 3_;c; wij,
e D, be the n x n diagonal matrix with jth diagonal elements 3, wi;.

Since A is the incidence matrix and Ay = (A, Av), the first system of (36) is represented
as.

DiAu+ BAv = p,
BTAu+ DAv = po
for (p1,p2) = —A(Z*)"'p. From the above two equalities, we have
(D1 - BDz_lBT)A’U. =p1— BD;lpg
We can compute the matrix BD;'BT with O(m?n) arithmetic operations and solve the
above linear equation under Au; = 0 with O(m3?) arithmetic operations. Since we can

compute the other part with at most O(mn) arithmetic operations, we have the result. O

Theorem 7 Algorithm B compute an optimal solution of (P) with O(n*lognM) arithmetic
operations.

This theorem is obtained from the following two lemmas.

Lemma 8 Algorithm B terminates in O(nlognM) iterations.
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Proof: Algorithm B is the same as the O(73°L) algorithm of L8] in Steps 2 and 3.
Since the number of variables of the artificial problem (P) is (m + n)?, Algorithm B finds
a point (Z*, ¥, #*), which satisfies 27 2% < € for € > 0, after

(37) O(nlog(z"T7z%/¢))

iterations, where (z°, %, 2°) is the initial point. Hence the result is shown in the same way
as the proof of Lemma 5. O

Lemma 9 Each iteration of Algorithm B requires at most O(n®) arithmetic operations.

Proof: Since the artificial transportation problem (P) has (m + n) supply points and
(m + n) demand points, it follows from Lemma 6. O

6. Conclusions

In this paper, we propose two interior point algorithms, Algorithm A and Algorithm B,
for the Hitchcock transportation problem (P) with m supply points and n demand points.
Under the conditions that m < n and all the data are positive integers which are less than
or equal to an integer M, we show that Algorithm A requires at most

O(m®n?lognM + n®)
arithmetic operations and Algorithm B requires at most
O(n*lognM)

arithmetic operations.

In this paper, we only show the theoretical computational complexities of the algorithms
and do not refer to a practical implementation. According to our numerical experiments for
small size problems (m < 50 and n < 50), the algorithms were not superior to the primal-
dual simplex algorithm. In order to see the efficiency of the interior point algorithms, we
need to improve the algorithms from a practical point of view and to attempt the numerical
experiments for large size problems.
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