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Abstract This paper deals with the Hitchcock transportation problem with m supply points and n demand 
points. Assume that m ~ n and all the data are positive integers which are less than or equal to an integer 
M. We propose two polynomial time algorithms for solving the problems. The algorithms are based on 
the interior point algorithms for solving general linear programming problems. Using some features of the 
transportation problems, we decrease the computational complexities. We show that one of the algorithms 
requires at most O(m3 n2 10g nM + n3 ) arithmetic operations and the other requires at most O(n4 10g nM) 
arithmetic operatioD!!. 

1. Introduction 

This paper deals with the Hitchcock transportation problem with m supply points and n 
demand points. The problem is formulated as a linear programming problem in the following 
way: 

where 

(P) min 
subject to for i EO I, 

for j E J, 
for (i,j) E N, 

I={1,2, ... ,m}, J={1,2, ... ,n} and N=IxJ. 

We assume that m ::; n, 2:iEI ai = 2:JEJ bj and alJ the Cij (( i, j) EN), ai (i E I) and bj (j E J) 
are positive integers. 

There are several algorithms for solving the transportation problem (see, for example, [1] 
or [10]). Edmonds and Karp [2] and Ikura and Nemhauser [4] especially propose polynomial 
time algorithms. The methods are based on the simplex algorithm. On the other hand, for a 
general linear programming problem, there are many polynomial time algorithms (Gonzaga 
[3]' Khachiyan [6], Karmarkar [5], Kojima, Mizuno and Yoshise [7, 8], Monteiro and Adler 
[9], Renegar [11], Vaidya [14] etc.). Each of the methods generates a sequence of interior 
feasible points. So they are called the interior point algorithms. Some of the interior 
point algorithms (Gonzaga [3], Kojima, Mizuno and Yoshise [8], Monteiro and Adler [9] 
and Vaidya [14]) attain the O( n3 L) computational complexity in terms of the number of 
arithmetic operations, where n is the number of variables and L is the input size of the 
linear programming problem. If we apply these algorithms to the transportation problem 
(P), the computa.tional complexity is 

O(m3n3 L) 

for 
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372 S. Mizuno & K Masuzawa 

L = r L log( Cij + 1) + L log( ai + 1) + L log( bj + 1) + 2mn 1 , 
(i,j)EN iEl jEJ 

where rOl denotes the smallest integer which is not less than O. 
In this paper, we propose two interior point algorithms, Algorithm A and Algorithm 

B, for the transportation problems. The algorithms attain the computational complexi­
ties lower than O(m3n3 L). Algorithm A is based on the O(n4 L) algorithm proposed by 
Kojima, Mizuno and Yoshise [7]. If we directly apply the algorithm to the transportation 
problems, the complexity is O(n4m 4 L). Using some features of the transportation problems, 
we decrease the computational complexity of Algorithm A to 

O(m3n2 L' + n3
), 

where 

(1) L' = 10gnM, 
(2) M = max{ai (i E 1), bj (j E J), Cij ((i,j) EN)}. 

Note that the value of L' is much less than that of L. Algorithm B is based on the O( n3.5 L) 
algorithm proposed by Kojima, Mizuno and Yoshise [8J for linear complementarity problems. 
We show that Algorithm B requires at most 

O(n4L') 

arithmetic operations. 
The computational complexity of the algorithm [2J is O(n3 10g M) and that of [4J is 

O(n5 10g M). So the computational complexities of our algorithms are less than that of [4J 
but greater than that of [2] except for the case m3 < n in Algorithm A. The algorithms 
[2, 4J need to solve O( L) su bproblems which are obtained by scaling an original problem. 
On the other hand, our methods directly solve an original transportation problem and need 
not to generate subproblems. Tardos [13J proposes a strong polynomial algorithm, i.e., the 
computational complexity is a polynomial of m and n. Although our algorithms are not 
strong polynomial, it is possible to construct a strong polynomial algorithm by using our 
algorithms for solving the subproblems in Tardos' algorithm. 

In Section 2, we outline Algorithms A and B. Then we describe Algorithms A and B in 
detail in Section 3 and Section 4, respectively. In Section 5, we obtain the computational 
complexities of Algorithms A and B. Section 6 gives the conclusions. 

2. The outline of algorithms 

Here we outline Algorithm A and Algorithm B. The dual problem of (P) is formulated as 

(D) max 
subject to 

L:iEI aiUi + L:jEJ bjvj, 

Ui + Vj + Zij = Cij 

Ul == 0, Zij 2: 0 
for (i,j) EN, 
for (i,j) EN. 

Since one of the constraints of (P) is redundant, we impose the constraint Ul = 0 on (D). 
We represent the problems (P) and (D) by the following matrix forms: 

where 

(P) 

(D) 

min 
subject to 
max 
subject to 

CTx, 

Ax = d, x 2: o. 
~Y, 
AT 1/ + Z = C, Yl = 0, Z 2: o. 
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and 

1 1 ... 1 

A= 1 
1 

1 

1 1 ... 1 

1 
1 

1 

1 1 ... 1 
1 

1 

1 

Let Sx and Syz denote the primal and dual feasible regions, i.e., 

Sx = {x : Ax = d, x ~ O}, 

Syz = {(y, z) : AT y + z = C, Yl = 0, Z ~ O}. 

From the duality theorem of the linear programming, a primal feasible solution x* and a 
dual feasible solution (y*, z*) are optimal if and only if the complementarity condition 

(3) x:jz:j = ° for (i,j) E N 

holds. We call the pair of primal and dual feasible solutions a feasible point or simply a point. 
Each of Algorithms A and B generates a sequence of feasible points (Xk, yk, zk) E Sx X S:1Z for 
k == 0,1, ... such that the complementarity values xkT zk decrease. Each algorithm consists 
of the following five steps: 

Step 1: Find an initial point (XO, yO, ZO) E Sx x Syz and set k +- 0. 

Step 2: Compute a feasible direction (~x, ~y, ~z). 

Step 3: Get a step size t and compute the next point by 

Step 4: If a stopping criterion holds then go to Step 5, otherwise set k +- k + 1 and return 
to Step 2. 

Step 5: Compute an optimal solution x· of (P) from the last point (Xk+1, yk+1, Zk+l). 

3. Algorithm A 

Algorithm A consists of five steps given in the previous section. Now we describe each step 
in detail. 

In Step 1, we take the following point as the initial point of Algorithm A: 

X~j = aibj/r for (i,j) EN, yO = 0, zO = c, 

where 

(4) r=Lai=Lbj. 
iEI jEJ 
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In Steps 2 and 3, we use the method of [7] so that the iteration number is bounded by a 
polynomial. According to [7], we shall show how to compute the feasible direction and the 
step size t. The direction (~:l:,~y,~z) is Newton direction at the point (Xk,yk,Zk) for the 
system 

X z = 0' f:vee, Ax = d, AT Y + z = C, YI = 0, 

where 0' is a constant in (0,1), f:Ve = XkT Zk /mn, eT = (1,1, ... , 1) and X = diag(x), which 
is the mn diagonal matrix with the diagonal elements Xij ((i,j) EN). Then the direction 
(~x, ~y, ~z) is the solution of the linear system 

(5) 

Zk~x+Xk~Z 
A~x 

AT~y+~Z 
~YI 

p, 
= 0, 

= 0, 
= 0, 

where Xk = diag(xk), Zk = diag(zk) and p = Xk zk - 0' f:ve e. 
In order to compute the step size t, they [7] introduce the following functions: 

fij(t) = (x~j - t~Xij)(Zt - t~Zij) for (i,j) E N, 

where T is a constant in (0,0') and f!in = min(i,j)EN X~jzt. Then the step size t is computed 
as the largest value in [0,1] such that 

fij(t) ~ g(t) for (i,j) E N, 

i.e., the value f;j(t) of each complementarity component is bounded by the positive value 
g(t) 

In Step 4, we have to employ a stopping criterion such that we can compute an optimal 
solution. Such a criterion is given by 

1 1 
Xij < or Zi' < -- for (i,j) EN, 

mn - m - n + 2 J m + n 

or equivalently 

(6) P(x) U Q(z) = N, 

where 

(7) P(X)={(i,j)EN:Xij < 1 2}' mn-m-n+ 

Q(z) = {(i,j) EN: Zij < __ 1_}. 
m+n 

Theorem 1 If the condition (6) holds for feasible solutions x E So; and (y, z) E Sy. then 
there is a primal feasible solution x· which satisfies 

(8) x:j = 0 for (i,j) E P(x), 

and such x· is optimal. 
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Proof: Let ml and m2 be the dimensions of the convex sets So; and Sz = {z : (y, ,~) E 
Syz}, respectively. Since A is the incidence matrix of the transportation problem (P), the 
rank of A is m -+- n - 1. So we have 

(9) ml:::; mn -- m - n + 1 and m2:::; m + n - 1. 

From Caratheodory's theorem ([12]), we have 

m,+l m,+l 
X= L Ahqh+q', L Ah=l, Ah2:0 for h=I,2, ... ,ml+l, 

h=l h=l 

where qh (h = 1,2, ... , ml + 1) are vertices of S •. and if is an unbounded direction of So; ( in 
this case, if = 0 because S", is bounded). Then there is an index f such that Al 2: 1/(ml + 1). 
Since qh 2: 0 and q' 2: 0, we have 

1 
(10) l:::; Al x:::; (ml + l)x. 

From (7), (9) and (10), we obtain 

qfj < 1 for (i,j) E P(x). 

Since all the components of each vertex of Sx are integral, we have (8) for x' = ql. 
In the same way, we can show that there is a dual feasible solution (y', z·) which satisfies 

(ll) z:j = 0 for (i,j) E Q(z). 

From (6), (8) and (ll), the complementarity condition (3) holds. Therefore x· is optimal. 
D 

In Step 5, we consider the following problem 

(12) Ax = d, x 2: 0, Xij = 0 for (i,j) E P(X
k+I

), 

where Xk+l is the last primal feasible solution obtained in Step 4. From Theorem 1, the 
solution of the above problem (12) exists and it is an optimal solution of (P). We can easily 
convert (12) into a max flow problem which will be easily solved (see [10]). 

4. Algorithm B 

Algorithm B consists of five steps given in Section 2. Algorithm B is the same as Algorithm 
A in Steps 4 and 5. Here we describe Steps 1, 2 and 3 of Algorithm B. 

Algorithm B is based on the O(fi3.5L) method of Kojima, Mizuno and Yoshise [8]. For 
a constant a E (0,0.1]' it generates a sequence of feasible points in the set 

S(a) = {(:r, y, z) E So; x Syz : IIXz - fat/eell :::; afat/., fa,'e = xT z/mn}. 

In order to find an initial point, we construct the following artificial transportation problem: 

where 

(P) min 
subject to for i E 1, 

for j E J, 
for (i,j) E iV, 

1={1,2, ... ,m+n}, J={1,2,· ... ,n+m}, N=lxJ, 
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(13) - {a i + Mab 
ai = Mab 

for i E I, 
otherwise, 

S. Mizuno & K. Masuzawa 

for j E J, 
otherwise, 

{ 

Cij for (i,j) E N, 
(14) Cij = 0 for j = n + i, i E I and i = m + j, j E J, 

Mc otherwise, 

for integers Mab and Mc. We illustrate the graph of the artificial probl~m in Fig. 1. The 
next theorem shows the relation between optimal solutions of (P) and (P). 
Theorem 2 Suppose that M" 2': M and Mab 2': O. For any optimal solution x* of (P), the 
mn vector x*(N) of xij for (i,j) E N is an optimal solution of (P). 

Proof: The dual problem of (P) is formulated as 

(b) max 
subject to 

LiE f aiui + LjEJ bjVj, 

Ui + Vj + iij = Cij for (i,j) E il, 
Ul == 0, iij 2': 0 for (i,j) E il. 

Let x' and (u', Vi, ZI) be optimal solutions of (P) and (D), respectively. Then we have 

(15) x:jz;j = 0 for (i,j) E N, 

(16) u: + vj ::; Cij for (i,j) Eo N. 

Since (u' , Vi, ZI) is optimal, there exist an i' E J for each i E I and a j' E I for each j E J 
such that 

(17) u: + v;, = Cii', 

(18) u~, + vj = CPj. 

Let 

(19) >:; ~ { p ... for (i,j) E N, 
for j = n + i, i E I and i = m + j, j E J, 
otherwise, 

(20) u '. = { u: I for i Eo I, Vi. = { vj I for j E J, 
• -vi-m otherwise, J -uj _ n otherwise, 

(21) z:j = Cij - U: - vj for (i,j) E il. 

Now we shall show that x' and (u', VI, il) are op~imal solutions of (P) and (D), respectively. 
We easily see that x' is_ a feasible solution of (P). So we shall first prove that (ul

, VI, 2/) is 
a feasible solution of (D), i.e., z' 2': o. From (14), (16), (17), (18), (20) and (21), for each 
i, gEl (i =I- g) and j, hE J (j =I- h), we have 

(22) 2;j Cij - u: - vj = Z;j 2': 0, 

(23) 2:n +i 0 - u: - (-uD = 0, 

(24) z;"+ii 0 - (-vj) - v~ = 0, 

(25) Z~n+i = Mc - u~ + u; 

(26) 

(27) 

M - ul + (c··, - VI,) 
C g " 1 

> Mc - Cgi' + Cii' > 0, 
M I I 

c + Vj - Vh 

> Mc - Cj'h + Cpj > 0, 
M I I 

c + Vj + ui 

Mc + (cpj - uj,) + (Cii' - v;,) 
2': Mc - Cj'i' + Cpj + Cii' > O. 

Hence Zl 2': O. From (15), (19), (23) and (24), we also see that 
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bn +Ma b 

am +Ma b Ma b 

Ma b Ma b 

Mab 

Ma b M a b 

F'igl.The artifitlal problem (P) 
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X~jZ:j = 0 for (i,j) E N. 

This implies that (U/,V/,Z/) is an optim~ solution of (b). 
Since x* is an optimal solution of (P), we have 

(28) x:jz:j = 0 for (i,j) E N. 

From (25), (26), (27) and (28), we have 

(29) X;n+i = 0 for i, gEl (i f. g), 

(30) X:"+jh 0 for j, h E J (j f. h), 

x:"+jn+i 0 for (i,j) E N. 

So we see 

(31) X:n+i = bn+i - LX;n+i = Mab for i E I, 
g",i 

(32) x:"+jj = iim+j - L X:"+jh = Mab for j E J. 
hi} 

From (29), (30), (31) and (32), we obtain 

iii - LX:n+g = iii - Mab = ai for i E I, 
gEl 

= bj - L X:"+hj = bj - Mab = bj for j E J. 
hEJ 

Therefore x*(N) is a feasible solution of (P). Since (u/, v', Z/) is a feasible solution of (D) 
and (28) holds, x*(N} is an optimal solution of (P). 0 _ 

From the above theorem, we may solve the artificial problem (P) instead of (P). Let 

{J = r4{m + n}/ol 
Algorithm B solves the artificial problem (P) with Mab = (JM and Mc = M. Let 

f = L iii = L bj, 
iEI JEJ 

S-() {( ) IIXz - !aveell ::; O:!ave, !a,.e = xTz/(m + nF, } 
0: = x, u, v, z : x and (u, v, z) are feasible solutions of (P) and (b) , 

where X = diag(x) and eT = (1,1, ... , 1). We take the following point (XO, uO, vO, ZO) as the 
initial point of Algorithm B: 

x?j = iiibJr for (i,j) E: iI, 

-0 0 £ • 1- -0 {JM £ • J-Ui = lor t E , Vj == - lor J E , z~ = Cij + {JM for (i,j) E iI. 

Theorem ~ Suppose that Mab = (JM and Mc = M. Then the above point (XO,uO,VO,ZO) 
belongs to S{ 0:). 

Proof: It will be trivial that the point is feasible. So we shall only show that 

11 
-0-0 -0 - <ill X Z - javeell _ o:jave' 

where XO = diag(xO) and !2,'e = XOTZO /(m + n)2. From (13) and (14), we have 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Algorithms for Transportation Problems 

j3M ::; o,i ::; {I + j3)M for i E J, 

j3M ::; bj ::; {I + j3)M for j E J, 

0::; Cij ::; M for (i,j) EN. 

From the above inequalities and the definition of the initial point, we see 

j33M 3/f::; x?jZ~::; {I +j3)3M3/f for (i,j) E N, 

j33 M3 If ::; flt>e ::; {I + j3? M3 If. 

Hence we obtain 

(m + n) Illax_ I x?j'~~ - f';.t>e I 
(l,,)EN 

< (m + n) {{1 + j3)3 - j33} M 3/f 
< 4{m + n)j32 M3 If 
::; O'.j33 M3 If 
< O'.f';.ve' 

where the third inequality follows from j3 ~ 4. 0 

379 

In Steps 2 and 3, we use the method of [8] so that the iteration number is bounded by 
a polynomial. The feasible direction (~x, ~y, ~z) is the solution of the system (5) for the 
artificial problem (P), where 

a 
(J = 1 - (I _ O'.)y'n' 

We always set the step size t = 1 because the next point for t = 1 belongs to 8{O'.) whenever 
a E {0,0.1] (see [8]). 

5. Computational complexities 

In this section, we obtain the computational complexities of Algorithms A and B. 

Theorem 4 Algorithm A computes an optimal solution of(P) with O(m3n2 1ognM +n3
) 

arithmetic operations. 

Recall that m ::; n. The above theorem is obtaJned from the following two lemmas and the 
fact that there is an O{n3 ) algorithm for solving the max flow problem appeared in Step 5 
(see [10]). 

Lemma 5 Algorithm A terminates in O( mn log nM) iterations. 

Proof: From Corollary 1 of [7], Algorithm A finds a point (x\ yk, Zk), which satisfies 
xkT Zk < f for f > 0, after 

(33) O(mn(log 7r0 + log(xOT zO If))) 

iterations, where (xO, yO, ZO) is the initial point and 

x OT ZO 
~o _ 
n - • 0 o· 

mn mlll(i,ilEN XijZij 
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From the definition of the initial point o(Algorithm A, we see that 

XOT 
ZO = L aibjCij/r ~ mnM3/r, 

(i,j)EN 

So we have 

(34) 11"0 ~ M3. 

Let € = 1/n4 . If XkTzk < €, we have 

k 1 k 1 C ( •• ) N Xij <""""2 or Zij <""""2 lor 2, J E . 
n n 

The above inequalities imply that the stopping criterion (6) holds for x = Xk and z = zk. 
Then we see 

(35) xOTzO/€ ~ n6M3. 

From (33), (34) and (35), the stopping criterion (6) holds after O(mnlognM) iterations. 

Lemma 6 Each iteration of Algorithm A requires at most O(m2n) arithmetic operations. 

Proof: From the system (5), we have 

(36) A(Zk)-1 Xk AT !::J.y = _A(Zktlp and !::J.Yl = O. 

Let 

• B be the m x n matrix with (i, j) elements Wij, 

• Dl be the m x m diagollal matrix with ith diagonal elements L:jEJ Wi;, 

• D2 be the n x n diagonal matrix with jth diagonal elements L:iEI Wij' 

Since A is the incidence matrix and !::J.y = (!::J.u, !::J.v), the first system of (36) is represented 
as, 

D1!::J.u + B!::J.v = PI, 
BT !::J.u + D2!::J.v = P2 

for (PbP2) = _A(Zktlp. From the above two equalities, we have 

(Dl - BD;;1 BT)!::J.U = 111 - BD;;lp2' 

We can compute the matrix BD;;1 BT with O(m2n) arithmetic operations and solve the 
above linear equation under !::J.Ul = 0 with O(m3) arithmetic operations. Since we can 
compute the other part with at most O( mn) arithmetic operations, we have the result. 0 

Theorem 7 Algorithm B compute an optimal solution of(P) with O(n410gnM) arithmetic 
operations. 

This theorem is obtained from the following two lemmas. 

Lemma 8 Algorithm B terminates in O(nlognM) iterations. 
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Proof: Algorithm B is the same as the O( fi3.5 L) ~gorithm of ~8] in Steps 2 and 3. 
Since the number of variables of the artificial problem (P) is (m + n) , Algorithm B finds 
a point (xk, yk, .zk), which satisfies XkT Zk ~ 10 for 10 > 0, after 

(37) O(nlog(xOTzO 110)) 

iterations, where (xO,yO,ZO) is the initial point. Hence the result is shown in the same way 
as the proof of Lemma 5. 0 

Lemma 9 Each itemtion of Algorithm B requires at most O(n3 ) arithmetic opemtions. 

Proof: Since the artificial transportation problem (F) has (m + n) supply points and 
(m + n) demand points, it follows from Lemma 6. 0 

6. Conclusions 

In this paper, we propose two interior point algorithms, Algorithm A and Algorithm B, 
for the Hitchcock transportation problem (P) with m supply points and n demand points. 
Under the conditions that m ~ n and all the data are positive integers which are less than 
or equal to an integer M, we show that Algorithm A requires at most 

O(m3n2 lognM +n3
) 

arithmetic oper.ations and Algorithm B requires at most 

O(n4 log nM) 

arithmetic opera.tions. 
In this paper, we only show the theoretical computational complexities of the algorithms 

and do not refer to a practical implementation. According to our numerical experiments for 
small size problems (m ~ 50 and n ~ 50), the algorithms were not superior to the primal­
dual simplex algorithm. In order to see the elficiency of the interior point algorithms, we 
need to improve the algorithms from a practical point of view and to attempt the numerical 
experiments for large size problems. 
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