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Abstract The Lal;uerre transform developed by Keih;on, Nunn and Sumita (1979,1981, 1981) provides 
an algorithmic basis for mechanizing various continuum operations such as multiple convolutions, integra­
tion, differentiation, and multiplication by polynomials and exponential functions. In this paper, we develop 
a numerical procedure for finding the Laguerre coefficients of a product of functions in terms of the La­
guerre coefficients of individual functions. The procedure enables one to evaluate multiple convolutions and 
other continuum operations described above even when product form functions are involved, thereby further 
enhancing the power of the Laguerre transform. 

1. Introduction 

In certain reliability models, one often encounters lifetime distributions in the form of 

a product of functions. Consider, for example, a system consisting of two independent 

components with lifetimes X and Y. If thE' system fails when either one of the two 

components fails, the system lifetime T is given by T = min{X, Y} so that P[I' > 
xl = P[X > xlP[Y > xl. Upon system failure, a repair action is taken place, requiring the 

random duration R. The system is renewed when the repair is completed. Clearly the model 

can be formulated as an alternating renewal process. In order to study the time dependent 

availability of the system and the associated renewal function, one has to calculate multiple 

convolutions of the probability densities associated with T and R. 
The Laguerre transform [3, 4, 6, 8, 10, 11] has been introduced as an algorithmic basis 

for computer evaluation of various continuum operations such as multiple convolutions, dif­

ferentiation, integration and multiplication by polynomials. Ample and useful operational 

properties are developed, which enable one to evaluate numerically many distribution re­

sults of interest in applied probability and statistics. The operational properties developed 

so far, however, heavily depend on the propertie3 of Laplace transforms (see, §1.3 of [l:m. 
In contrast, no operational properties of Laplace transforms exist for product of functions. 

Consequently, the approach taken in the literature is not available here. 

In this paper we develop a numerical procedure for finding the Laguerre coefficients of 

a product of functions in terms of the Laguerre coefficients of individual functions. The 

procedure enables one to study the time dependent performance of stochastic models with 

product form lifetime distributions, thereby further enhancing the power of the Laguerre 

transform. A key tool for this purpose is the transition probability matrix governing the 

linear growth birth-death process of Karlin and McGregor [1,2]. For numerical applications 
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demonstrating applicability and accuracy of the procedure, see Kijima [6]. 

2. The Laguerre Transform of Product of Functions 

The Laguerre polynomials Ln(x) = -;jU!Jn(xne-X
) form a set of orthonormal polyno­

mials with weighting function w( x) = e-X on [0,00). The associated Laguerre functions 

fn(x) = e-x
/

2Ln(x) constitute an orthonormal basis of a Hilbert space L2 (0,00) = {f 1 

J: P(x)dx < oo} with inner product < f,g >= 1000 f(x)g(x)dx, and the functions satisfy 
the recursion formula 

1 
fn+t(x) = :n + 1 [(2n + 1 - x)fn(x) - nfn_t(x)], n 2 l. (2.1 ) 

For any f E L2 (0, 00), one has the Fourier-Laguerre expansion 

00 

f(x) = L f~fn(x) (2.2) 
n=O 

with fJ =< f, fn >, where Equality (2.2) holds in the sense of the limit in the mean. 
The speed of convergence of the Laguerre dagger coefficients UJ)';' to zero depends on 

the smoothness and the boundedness of f(x). In particular, it has been shown in Keilson 

and Nunn [3] that if f belongs to the class of rapidly decreasing functions denoted by 

Cr(O, 00), then the set of the dagger coefficients UJ)';' is also rapidly decreasing in the 

sense that n k 1 fJ 1--+ 0 as n --+ 00 for any positive integer k. Consequently for any 

f E Cr(O, 00), the ordinary pointwise convergence in (2.2) is assured almost everywhere. 
In what follows, we restrict ourselves to this class to avoid inessential situations in practice. 

The reader is referred to [3, 4, 5, 8] for further detailed discussions. 

For f(x) defined on (-00,00), let f+(x) = f(x)U(x) and f_(x) = f(x)U(-x) 
where U(x) = 1 for x 2 0 and U(x) = 0 for x < o. Then f(x) = f+(x) + f-(x) 
except x = O. One then easily sees that f(x)g(x) = f+(x)g+(x) + f_(x)g_(x) for x:f- O. 
Hence it will be sufficient to develop the operational property for f, 9 in Cr(O, 00). For 
r(x) = f(x)g(x), it can be readily seen that 

00 00 

r(x) = L L f~g~fm(x)fn(x). (2.3) 
m=On=O 

We define the matrix A(k) by 

A(k) = [amn(k)]j amn(k) = 100 

fm(x)fn(x)fk(x)dx, rn, n, k 2 o. (2.4) 

From (2.2) through (2.4), the following proposition is then immediate. 

Proposition 1 

where ft = [fd, ft, .. Y , !It = [g~, gt, .. y and T denotes the transpose. 
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Let N(O) be the linear growth birth-death process considered in Karlin and McGregor 

[1, 2]. It is shown there that the transition probabilities Pmn(O) of N(O) involve the 

Laguerre functions. Namely, 

(2.5) 

It is known [8, 9] that 

00 00 1 
.J(u,VjO)=EEPmn(O)umvn = ()( )0. 

m=O n=O 1 - uv + 1 - u 1 - v 
(2.6) 

To develop a numerical procedure for calcula.ting A(k), we consider a truncated process 

NM(O) obtained from the original process N(t') by making state (M + 1) absorbing. The 

infinitesimal generator governing NM(O) is given by 

-1 1 0 
1 -3 2 

2 -5 3 
Q(M) = (2.7) 

(M - I) -(2M -1) M 
0 M -(2M + 1) 

For convenience, we define V(M) = -Q(M). We note that V(M) is symmetric and 

positive definite. Let 1ftM+1(X) = jV(M) - dj, where I is the identity matrix. By 

expanding it at the last row, one has 1fto( x) = 0, 1ftl (x) = 1 - x, and 

The characteristic polynomials 1ftM(X) are then related to fM(X) by 1ftM(X) = M!fM(x) . 
Let aj(M) be positive eigenvalues of V(M) with corresponding eigenvectors Yj(M), 0 ::; 

j ::; M. Without loss of generality, we assume ';hat 

Noting that 1ftM+1(aj(M)) = fM+1(aj(M)) = O. it follows from (2.1) and the fact (V(M)­
aj(M)I)Yj(M) == 0 that 

Yj(M) = [fo(aj(M)), £1(aj(M)),' ., £M(aj(M)W, 0::; j ::; M. (2.8) 

Let 

(2.9) 

and define 

(:UO) 
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We note that Jj(M) are idempotent and of rank one satisfying the matrix orthonormality, 

i.e. Ji(M)Jj{M) = DijJj(M), Dij = 1 if i = j and Dij = 0 if i -# j. One then has the 
spectral representation of V(M) given by 

M M 

V(M) = L aj(M)Jj(M)j 1= LJj(M). (2.11) 
j=O j=o 

Let PM(O) = [PM;mn(O)] be the transition probability matrix of NM(O). Since 

PM(O) = exp{ - V(M)O}, one sees from (2.11) that 

M 

PM(O) = L e-Cti(M)O Jj(M), (2.12) 
j=O 

or componentwise 

M 

PM;mn(O) = L e-Ct](M)Olm(aAM))ln(aAM))r/j(M), 0 ~ rn, n ~ M. (2.13) 
j=O 

Recall that In(x) = e-x/2 Ln(x),n;::: O. Hence PM;mn(O) in (2.1:~) can be written as 

111 

PM;mn(O) = L e-Ct](M)O Lm(aj(M»Ln(aj(M»e- Ct](M)1Jj(M). (2.14) 
j==O 

To convert the right hand side of (2.14) to a Stieltjes integral, we introduce a nondecreasing 

step function PM(X) by 

One then sees from (2.14) and (2.15) that 

if 0 ~ x < ao(M), 
if ar(M) ~ x < ar+l(M), 
if aM (M) ~ x. 

(2.15 ) 

(2.16) 

It is clear that pM(X) is non decreasing in x;::: 0 and is uniformly bounded in M;::: 0 
and x;::: O. Hence from Lemma H of Ledermann and Reuter [7) there exists a subsequence 

(PMk(X» such that PMk(X) -t p(x) as k -t 00 at all points of continuity of p(x). 
Furthermore 

lim tOO e-oXLm(x)Ln(x)dPMk(X) 
k-.oo 10 
100 e-Ox Lm(x)Ln(x)dp(x) ~ Pmn(O). 

(2.17) 

Note that PM;mn(O) = Dmn for any M. So, Pmn(O) = Dmn. Since the Laguerre polynomials 
have the unique weight function eX, one concludes that dp( x) = e-X dx, x .:::: 0, and 

Pmn(O) = Pmn(O). The sequence PM(X) must converge as it stands. For, if not, there 
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would exist two subsequences with distinct limit functions. But, this is impossible from the 
arguments following (2.17). Therefore, 

(2.18) 

We are now in a position to develop a numerical procedure for calculating rk, k ?:: ° of 
Proposition 1. We define 

A(k;M) = [amn(k;M)] = fk(V(M)), k 20. 

Then the following theorems can be established. 

Theorem 2 

(a) For any 1n, n 2 0, limM_oo amn(k; M) ==: amn(k). 
(b) A(k + 1; M) = kll [{(2k + 1)1 - V(M)}A(k; M) - kA(k - 1; M)], k 2 1, 

where A(O; M) = PM(I/2) and A(1; M) = (1 - V(M))A(O; M). 

Proof. It should be noted from (2.11) that 

M 

A(k;M) = 2:i\(Oj(M))Jj (M), k 2 0. 
j=O 

This can be rewritten componentwise as 

One then sees as in (2.18) that 

(2.19) 

(2.20) 

proving (a). Statement (b) follows immediately from (2.1) and (2.20). In particular, 
A(O; M) = L,~o e-"'J(M)/2J j (M) = P M (1/2). 0 

Theorem 3 Let fit = [fci,···, flty and git = [g6,"" gitf· Define d(M) 
f~A(k;M)gl.t. Then r!(M) ---+ rt as M ---+ 00. 

Proof. This follows immediately from Proposition 1 and Theorem 2(a) and the assump-

tions j,gECr(O,oo). 0 

Theorems 2 and 3 provide an efficient approximate numerical procedure for calculating 

r!, k 2 0, provided that the initial matrix A(O; M) = P M (I/2) is found. Let P M(l/2) 

be the (M + 1) x (M + 1) principal submatrix of P(I/2). Although P M(I/2) closely 
approximates P M(1/2) when M is large, we can develop an algorithm to obtain the exact 

matrix P M(I/2) directly. 
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It can be seen from (2.6) that 

2 [1 ] -1 2 00 (1); . 
J(u,v;lj2)=- 1--(u+v+uv) =-2: -3 (u+v+uv)'. 

3 3 3 ;=0 

One then finds 

m+n. 

Pmn(lj2) = 2 L t(m, n; i); 
i=mVn 

where m V n = max{m,n}. It can be shown after a little algebra that 

and 

1 
t(m,m;m) = 3m +1 ' 

t(m,n;i + 1) = t(m,n;i) (~-1) /3 (1- . m
1

) (1 + _. 1_), 
t-n t+ t-n 

t(m,n + l;i + 1) = t(m,n;i)j3 (1- i: 1)' 

(2.21 ) 

(2.22) 

(2.23) 

(2.24) 

starting with POn(1/2) = 2/3n+1 • The matrix PM(1/2) may be calculated alternatively 

using Theorem 2.2 of Sumita [9J. 
Remark. The accuracy of the algorithm depends heavily on the tail behavior of functions 

f(x) and g(x). The matrix A(k; M) may be taken as an (M + 1) x (N + 1) rectangular 
matrix (M:::; N) where the truncation points M and N should be determined by 
those of un~ and (g~)r: using the moment formula (see §1.2 of [12]). In the recursion 
formula of Theorem 2(b), the matrix V(M) should still be an M x M square matrix. 

Extensive numerical experiments suggest that the recursion formula is numerically stable 
for 0:::; k :::; M-I. When M ~ 30, the recursion formula should be modified for 

A(k; M)/v'kf to assure the numeric';'l stability. 

Acknowledgement. The a,uthors wish to thank to A. Tamura for his extensive technical 

contributions. 
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