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The linear programming relaxation of the zero·one optimiza.tion problem to schedule n independent 

tasks nonpreemptivdy on m unrelated processors with the objective of minimizing the maximum completion time 

is considered. This relaxed problem is solved by mapping tasks into m-I dimensional unit simplex Am-l and by 

dividing it into m sub-simplexes (hyper cones), where each processor processes the tasks or the fractions of tasks 

whose images locate inside (including boundaries) of corresponded sub-simplex. The properties of the division of 

Am-l (the associat,~d partition of tasks) which generates the optimum relaxed solution and the existence of such 

a division are shown as two Theorems. They are proved, first, abstractly using Duality Theorem, and then dlfectly. 

The latter elementary but intuitive proofs give helpful informations to find the optimum division of Am-l dlfectiy. 

Finally applications of these theorems are discussed. 

1. Introduction 

We are given a set T = {TI , T2"'" Tn} of n independent tasks and a set P = {PI, Pl , ... , 

Pm} of m unrelated processors. Task Ti(i = 1,2, __ .,n) becomes available for execution 

at time zero and requires a positive processing time {lij if it is scheduled on processor 

PjU = 1,2, ... , m). When processors are identical, then {lij is constant with respect to j 

i.e. is equal to T'i (processing requirement of task Ti). When processors are uniform, then 

{lij is expressed by using the notion of processor's speed (Sj) as r;/sj_ In general case, 

matrix ({lij) has mn arbitrary positive entries. There is no precedence relations among 

tasks. A processor can work on only one task at a time, and a task can be worked on by 

any (one) processor. Tasks are processed nonpreemptively, i.e., once a task having started 

execution it will not be interrupted until its completion. 
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234 K. Numata 

The problem is to schedule T on P so that the maximum completion time is minimized. 

Such a schedule is called an optimum schedule. The decision problem of determining 

whether T can be processed within a given finishing time is known to be NP-complete 

even in the case of two( m = 2) identical processors[I,3J. Hence it is unlikely that the 

polynomial time exact algorithm can be found to solve the problem. So the investigation 

has been directed to heuristic algorithms which provide an approximate solution. 

Horowitz and Sahni[4J proposed an E-approximate algorithm of time complexity Q( 

n 2m / E) which can generate schedules arbitrarily close to the optimum for general m. Several 

heuristics were analyzed by Ibarra and Kim[5]. They also presented an n log n time 6-

approximate (with fixed worst-case performance ratio 1 +6) algorithm for m = 2 processors 

case, which is guaranteed to be at most (1+V5)/2 times worse than the optimum (6 ~ 0.6). 

Davis and Jaffe[2J presented several heurjstics using the notion of efficiency for general m, 

and proved them to be at most 2..;m '" 1.5..;m times worse than the optimum. Potts[lOJ 

developed a linear programming based heuristic for general m. This algorithm has a worst­

case performance ratio of 2 for m > 3, and a modified version of it for m = 2 has a ratio 

1.5. Lenstra et al.[7] presented an algorithm based on the similar idea to [10J which has 

better time complexity and the same error bound. Recently, Numata[9J proposed an E­

approximate algorithms for the case m = 2 which runs faster than [4J and generates more 

precise schedules than [5,7,10J. 

Most of these works, explicitly or implicitly, make use of the linear programming 

relaxation in order to determine an initial solution, to estimate errors, or to guide a heuristic 

procedure, where inherent properties of the relaxed optimum solution to this problem 

plays an essential role. Of course, it is necessary to compute numerical solutions. But 

such general methods as simplex method or alternative ones take not a little running time 

to find a solution, so fast algorithms based on the special structure of the problem (i.e. 

solution) are desired by approximate heuristics which solve relaxed problems repeatedly 

many times. From these points of view, few researches are known except for the case of 

m =2. 

In this paper we consider the linear programming relaxation problem of the general 

unrelated processors system. In section 2 by normalizing m-tuple (J-lil, J-li2, . .. ,J-lim), task 

Ti is mapped into the m -1 dimensional unit simplex A m - I in R m (i = 1,2, ... , n). In 

section 3 we divide Am - I into m sub-simplexes, which correspond to m processors, under a 

certain constraint, where the tasks or the task-fractions whose images locate inside of a sub­

simplex are assigned to the corresponded processor, and those on a boundary are shared 

at certain ratio by the processors (sub-simplexes) which constitute the boundary. Then, 

we present Theorem 1 that asserts the existence of the division which satisfies specified 

conditions and Theorem 2 that assures such a division generates the optimum relaxed 

solution. In section 4, first, these theorems are proved abstractly using Duality Theorem, 

and then directly. The latter elementary but intuitive proofs are helpful to guide the 

algorithm which directly determines the (near) optimum division of Am-I' Applications 

of these theorems are discussed in section 5. 
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Optimum Relaxed Sohltion for Scheduling 235 

2. Preliminaries 

When m = 2, using continuous variable Xi in the interval [0,1]' which represents that Xi 

portion of Ti is processed by PI and that (1- ;I:i) portion by P2 (i = 1,2, ... n), our relaxed 

problem is written as follows. 

(2.1) 

mlmmlze y 

subject to 
n 

2: /lil . XiS Y 
i=1 

n 

2: /li2 . (l. - Xi) S y 
i=1 

y ~ 0, ° S Xi S 1 (i=I,2, ... ,n). 

In [6], execution times list (/lil, /li2) of Ti is regarded as coordinates of a point and is plotted 

on a plane R2. Then, solution of (2.1) is found by using the slopes of lines connecting the 

origin and these points as the index (Fig.l). Instead of the slope, we can use the point 

(/lit/(/lil + /li2), /li2/(/lil + /li2)) as an equivalent index. This corresponds to projecting 
tasks to points on the segment connecting (0,1) and (1,0) (Fig.2). 

IJ,. 

(0, 1) 

(0,1) (1,0) 
I~-*.-----*M~M~.M~.~M~~I 

Cl,O) 

Fig.l point representation of tasks Fig.2 normalized tasks 

The solution is to assign points (tasks) to PI from the side of (0,1) and to P2 from (1,0) 

one by one so that the processing times of both processors may become equal, where the 

last assigned task may be divided to both PI and P2 at some ratio (see Fig.3). 

(0,1) 1r ~1.0) '/ 
"-------v----,JL"-----v-----' . 
IN .. M .... MI'i 

l.~ ____ ~ 

Fig.3 relaxed solution of the case m = 2 
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236 K. Numota 

When increasing the number of processors to m = 3, we can consider the problem in the 

same way by mapping tasks to points on the equilateral triangle (2-dimensional simplex 

Az) that consists of three vertices (0,0,1) (0,1,0) and (1,0,0) (Fig.4). 

(0,0,1) 

Fig.4 case of m = 3 

/ 1/ (0" ,0) 

Fig.5 representation in Az 

The mapping (projection) r.p from T to Az is defined as; 

( 
Jl.il Jl.iZ Jl.i3) 

r.p: T i =(Jl.il,Jl.iZ,Jl.i3)E:T 1--+ " , where Si = L J

3
=IJl.ij. 

Si Si Si 

This expression of a task on Az generally is called "area coordinates" or "barycentric 

coordinates". When the image of task Ta is given by 

r.p(Ta) = (Jl.al,Jl.aZ,Jl.a3) (where L~=IJl.aj = 1), 

then, the point which is located at distances (heights) Jl.al, Jl.aZ and Jl.a3 from three edges 

of A z (the height of the equilateral triangle is assumed to be 1), 

/1/ ; (0,0,1)-(0,1,0) 

/2/; (1,0,0)-(0,0,1) 

/3/ ; (0,1,0)-(1,0,0) 

(1st coordinate is fixed to 0), 

(2nd coordinate IS fixed to 0) and 

(3rd coordinate IS fixed to 0) 

corresponds to Ta. Each edge of Az is isomorphic to Al (Fig.5). Task Tx whose image, 

r.p(Tx) = (Jl.xl, Jl.xz, Jl.x3), satisfies the relation 

Jl.xj/Jl.xk=Jl.aj/Jl..ak j,kE{1,2,3}, jlk 

is on the straight line which passes a point of the intersection of jj / and / k/, and has the 

ratio Ilaj ; Jl.ak of distances to / j / and / k / (distances mean the lengths of perpendiculars 

from a point on the line to h/ and /k/). If Ilxj/Pxk < Jl.aj/Jlak then Tx lies in /i/'s side 

of this line, and if Itxj/Jl.xk > Jl.aj/Pak then in /k/'s side. 
\\Then the dimension (number of processors) is increased as m = 4,5, ... the above 

idea is naturally extended. In the case of m = 4, A3 is given by a regular tetrahedron 

(Fig.6), and each task is expressed by "volume coordinates". 
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\l 000) 

(0001) 

(0 I 00) 

Fig.6 case of m = 4 

For general m, A m - I is an m-I dimensional unit simplex in Rm and determined as 
m 

j=I 

The mapping from T to A m - I is given by 

( .. l1il_ l1i2 l1im ) 
J----+ , , .•• , , 

Si si si 
Here, we consider (m - 2)-dimensional faces (edge simplexes) of A m - I [11]. Each of 

them is isomorphic to A m - 2 and consists of remaining m -1 vertices after exclusion of 

some one vertex out of m vertices of Am-I. The face obtained by deleting the vertex 

(0, ... ,0,1 (j), 0, ... ,0) is designated by I j I and expressed as follows. 
m 

hi = {(~I"" ,~j-],O'~i+I"" ,~m) I :L~k = 1, ~k ~ O} 
k=I 

When the image of task Ta is given by <p(Ta) = (l1aI,l1a2"",l1am), in the same way as 
the case m = 3, it corresponds to the point loeated at the distance (height) l1aj from face 

hi (j = 1,2, ... ,m), where the height of A m - I (the distance between an face and the 

excluded vertex) is assumed to be 1. Task Tx whose image, 'P(Tx ) = (l1xI, I1x2, .. . , jt xm ), 

satisfies the relation 

I1xjll1xk = l1ajll1ak j,k E {1,2, ... ,m}, j #- k 

is on the hyperplane which passes points of the intersection of h I and I k I, and has the 

ratio l1aj : l1ak of distances from it to hi and Ikl. If I1xjll1xk < l1ajll1ak then Tx lies in 

hI's side of this hyperplane, and if I1xjll1xk > l1ajll1ak then in Ikl's side. 

3. Definitions and Theorems 

We call a part of a task "task-fraction", and let 0 . Ti denote the 0 part of Ti (0 :::; 0 :::; 1). 

Fig.7 task-fraction 
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238 K. Numata 

A part of a task-fraction is denoted by 82 . (81 . Ti) = (8182 ), Ti and again is called task­

fraction. Generally we consider that 8k · (8k-1 . (- .. (81 , T;) ... » = 8k8k-1 ... 81 , Ti, where 

1· T; means Ti itself, and o· Ti a null task. Here after, let Il j(') denote the time requirement 

for processor Pj to process a tasks, a task-fraction or a set of them, U = { 8; . T, liE I C 

{1, 2, ... , n} }. For example, we have 

/l..(T..) - 11·' r) • - r.) 

Ilj(8. Ti) = 8· Ilj(Ti) = 81lij 

Ilj(U) = L 8i · Ilj(Ti) = L 8ill ij ' 
iEI iEI 

For a set of task-fractions U, we define its similar reduction U(8) by 

U(8) = {8· 8 j • T j liE I}. 

U(8) is a set of 8 parts of all task-fractions of U, and has the same composition ratios in 

tasks as U. On any processor Pj (j E {1, 2, ... , m}), we have 

Ilj(U(8» = (). lli(U), 

Next, let a feasible solution X = (Xij) of the relaxed problem 

(3.1) 

minimize y 

n 

subject to L Ilij . Xij ::; Y j = 1,2, ... ,m 
i=l 
m 

x·· > 0 .) -

i = 1,2, ... , n 

i = 1,2, ... , n; j = 1,2, ... ,m 

correspond to the partition of T, ({Vj} (j = 1,2, ... , m) by 

Vj = {Xjj ·T;li = 1,2, ... ,n} j=1,2, ... ,m. 

Since Xij denote the ratio of Ti which is processed on Pj, so Vj means the set of all task­

fractions that is processed by Pj. 
The schedule length of the partition X ~ {Vj} is noted and defined as length( X) = 

maxlli(Vj). A partition is said to be "even", if 
) 

Now we consider the hyper-cone (sub-simplex) Ci(a) whose vertex is given by the point 

a = (0'1,0'2, ... , am) in A m - 1 and which has the face fj / as its base (j = 1,2, ... , m). In 

other words, C i (a) is a intersection for k = 1, 2, ... , m( k -:/:- j) of the fj I's side of t wo parts 

of A m - 1 divided by the hyper plane which includes the intersection of faces fj / and / k/ 
and has the ratio O'j: O'k of distances to fjl and /k/. So it is written as 

m 

Cj(a) = {(6,6, ... '~m) I L~k = 1 and 
k=l 
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Then, all tasks of T distributed in A m - 1 is partitioned by these hyper-cones, that is, Vj 

is given by a set oft asks (task-fractions) whose images belong to Cj(a). Because the base 

of Cj(a) is 
m 

hi = {(~l, ... ,~j-I,a'~i+l, ... '~m)1 L~k = 1, ~k:::: a}, 
k=1 

it is natural to assign tasks near this face to processor Pj. Such a partition as this is called 

a-simple one. More strictly, a task partition {Vj} of the given T is a-simple, if and only if 

{ 

'P(Ti) E= Int( Cj(a)) ===} T. E V] i.e. Xi] = 1 

'P(Ti ) E= Cj1 (a) n Ch ( a) n ... n C]eC 01) ===} 

B.,j, . Ti E Vj, I.e. x,,], = B"j" where :2::=1 Bi,j, = 1 . 

Fig.8 shows two partitions of the case m = 3, where (a) is a-simple but (b) is not. 

L_~---", 
/1/ 
Ca) 

Fig.8 a-simple partitions 

/1/ 

Cb) 

Since a task on a boundary may belong at arbitrary ratios to more than one VjS corre­

sponded to sub-simplexes (processors) which share the boundary, it should be noted that 

infinitely many o:-simple partitions exist for a fixed a. 

After the above preparations, we have the following theorems. 

Theorem 1. For any T and P, there exists such a point (aI, a2, ... , am) E A m - 1 that 

realizes the a-simple and even partition X = (:Cij) ~ {Vj} ofT. 

Theorem 2. The a-simple and even partition X = (Xij) ~ {Vj} is the optimum solution 

of the relaxed problem (3.1). 

Theorem 2 describes the sufficient condition of the optimum relaxed solution in terms 

of the task partition in Am-I, and Theorem 1 asserts the existence of the partition that 

satisfies this condition. 
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240 K. Numata 

4. Proofs 

In this section we prove Theorem 1 and 2, assuming without loss of generality that 

(4.1 ) VTi ET, 'P(Ti ) E Int(Am_d, I.e. Vi,j Jlij > O. 

If Jlij = 0 then it suffices to assign Ti to Pj (this assignment has no effect on processors) 

and consider the remaining T - {Ti}. 

4.1 Proof by Duality Theorem 

Problem (3.1) is rewritten as 

mInImIZe z=y 

n 

subject to L -Jlij . Xij + Y 2: 0 j=1,2, ... ,m 

( 4.2) i=I 
m 

i = 1,2, ... , n 

x·· > 0 .) - i = 1,2, ... , n; j = 1,2, ... , m . 

Associating dual variables ~l , ~2' ... , ~m with first m constraints of (4.2) and 771,772, ... ,77n 

with remaining n (equality) constraints, we have the following dual problem 

mruomIze 

subject to 

(4.3) 

w = 771 + 772 + ... + 77n 

-Jlij . ~j + 77i ::; 0 i = 1,2, ... , n; j = 1,2, ... , m 

m 

t. > 0 
<") - j = 1,2, ... ,m. 

Since (4.2) has the bounded optimum solution, so (4.3) also does. Let z, y and Xij (i = 

1,2, ... , n; j = 1,2, ... , m) be the optimum solution of (4.2) and w, ~j (j = 1,2, ... , m) and 

i'Ji (i = 1,2, ... , n) be that of (4.3), where z = w. And let Vj be the set of task-fractions 

{ Xij . Ti I i = 1,2, ... , n }. 

First mn constraints of (4.3) are equivalent to 

i=1,2, ... ,n. 

Since the objective function of (4.3), w = 2:7=1 77i is maximized, these constraints must be 

satisfied with equality at the optimum point. That is, it holds that 

( 4.4) i = 1,2, ... , n . 

Furthermore, we have 

( 4.5) Vj 

Because, if ~j = 0 for some j then we have i'Ji = 0 for all i by (4.4), hence w = O. But (4.1) 

implies that z > O. These contradict w = z. 
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Here, Duality Theorem (complementary slackness condition, see e.g. [6]) asserts that 
n 

(4.6) ~i . (- L Ilii xii + fj) == 0 j = 1,2, ... ,m, 
i=1 

and that 

( 4.7) i = 1,2, ... , n j j = 1,2, ... , m. 

From (4.5) and (4.6) it holds that 
n 

fj = L Ilii xii j = 1,2, ... ,m, 
i=1 

that is, 

(4.8) 

Next, let i; be \O(1/~I' 1/~2"'" 1/~m) (it is possible by (4.5)), that is, 

i; = (t, ~ , ... , ~:) where A = 1 /~j=1 ~ . 
The hyper-cone (sub-simplex) Ch(i;) determined by vertex i; and base Ihl is written as: 

(by reversing the inequality symbol and ratios of both sides of the definition formula of 

Cj ( a) in section 3) 
m 

Ch(a) = {((1,(2, ... ,(m) I L(i = 1 and 
j=1 

If 'P(Ti) belongs to the interior of Ch( i;), we have 

(4.9) Vj (-# h) Ilij > ~h 
Ilih ~j 

=> Vj (-# h) Ilij~j > Ilih~h 

~ 1}i=llih~h and Vj(-#h) 1}i<llij~j 
(4.7) 
=> Vj(-#h) Xij=O. 

Generally it holds that 

(4.10) 

=> Vs,t E {1,2, . .. ,e} Ili,h, and 

Vj rf:- {hJ,h2, ... ,he}, Vs E {1,2, ... ,e} 

=> 1}i = Ili,hl ~hl = Ili,h2~h2 = ... = Ili,h, ~h, and 

Vj rf:- {h 1 ,h2, ... ,he} 1}i < Iliij 
e 

Pij ~h, -- > ---
Ili,h, ~j 

Xij = 0 i.e. '" Xi h = 1. ~ " 
.=1 

The existence of i; = (AI ~1' A/~2' ... , A/~m) and (4.8),( 4.9) and (4.10) complete the proofs 

of Theorem 1 and 2 at the same time. D 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



242 K. Numata 

4.2 Another proof of Theorem 1 

Instead of proving Theorem 1 directly, we consider the following Lemma 1, which intro­

duces a parameter [ related to the number of fixed boundaries between two sub-simplexes 

in Am-I. When [ = 1, it coincides with Theorem 1. Lemma 1 is proved through a 

mathematical (backward) induction on [. 

Lemma 1. For any T and P, there exists such a point 

(where al'" am -10) 

that can realize the partition of T which is ti-simple and even as for [ '" m, i.e. III (Vi ) = 
J-l1+1 (Vi+d = ... = J-lm(Vm), under the condition that mutual ratios among a1, a2, . .. , al 

(-I 0) are arbitrarily fixed and the percentages with which each of tasks on bmmdaries 

among Cl '" Cl is shared by corresponded Vjs (Pjs) are also arbitrarily fixed. 

proof of Lemma 1: First, we see that this Lemma holds when [ = m - 1. In this 

case, only 8 = 2:;:-;:1 aj (or 1 - 8 = am, 0 < 8 < 1), i.e. boundaries between Cm(ti) 

and Cj(ti) (j = 1,2, ... ,m - 1) are movable. It is shown that J-lm-I(Vm- 1) and J-lm(Vm ) 

can be equalized by adjusting the value of 8. Hereafter any task on mutual boundaries 

among Cl '" Cm - l is assumed to be divided into sub-tasks according to the percentages 

with which it is shared by corresponded Vjs (Pjs). 

Let 8 become sufficiently small. More precisely, let it take the value 8° which satisfies 

0<8°<-l
w

, +w 
J-l" where w = min -.!L . 

ij J-lim 

Assumption (4.1) guarantees the existence of such a value. For this 8° , 

Vi(l::; i::; n), VJ(I::; j::; m-I) 
aj 8° J-lij -<---=w<-­
am 1 - 8° - J-lim 

holds, then all tasks belong to Cm(ti). Therefore, we have 

{ 

J-lm(Vm) > 0 

J-lm-I(Vm-t) = O. 

Next, let 8 increase from 8° little by little. During this operation, only the boundaries 

between Cm(ti) and Cj(ti) (j = 1,2, ... ,m -1) are moved. For ti' = (a~,a~, ... ,a~) 

determined by 8' and ti" = (ll'~, a~ , ... , a~) determined by 8", where 8' < 8" , we have 

at a" _J<_J. 
a:.,. a~ 

Vj E {I, 2, ... , m - I} 

Consequently, all movable boundaries are moved toward Iml when 8 increases (Fig.9). In 

short, the region ofCm(ti) shrinks monotonously (Fig. 10). When 8" -8' -+ 0, obviously 

a'j I a~ - aj I a~ -+ O. So, Cm (ti) shrinks continuously on 8. 
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/j / 

Im I 

Fig.9 movement of a boundary Fig.lO shrinkage of Cm 

As 8 is increased like this, it occurs that boundaries pass tasks. When a boundary 

meets a task, keeping 8 stationary, we decrease the percentage with which the task belongs 

to Vm little by little. The task which at first entirely belongs to Vm is gradually shifted to 

the participant Vj of the boundary. If boundaries meet more than one tasks at the same 

time, these tasks are treated in sequence. When 8 takes the value 81 which is sufficiently 

close to 1 at last, Cm (a) does not contain any task. So we have 

{ 

J-lm(Vm) == 0 

J-lm-l(Vm-d ~ o. 
While 8 increases from 8° to P in the above manner, J-lm(Vm) and J-lm-l(Vm- 1 ) change 

continuously as Fig.l1. J-lm(Vm) is a nonincreasing n-steps function of 8 and J-lm-l(V,n-d 
is a nondecreasing n'-steps (n' ::; n) function of 8. Steps appear at the values of 8 s where 

boundaries meet tasks. J-lm(Vm) or J-lm-l (Vm-.t} is multivalent for such 8 s. 

~ 
---'-----0 flm-jCVm-j) 

0* 0* 

0 1 1 0 
Ca) Cb) 

Fig.ll changes of J-lm(Vm) and J-lm-l(Vm-d Fig.12 two types of the crossing 

The graphs of P.m(Vm) and J-lm-l(Vm-d intersects at 8*(8° < 8* < 81
) in such a manner 

as either (a) or (b) of Fig.12. In case ,Ca), a-simple partition uniquely determined by 8* 

realizes J-lm-I(V~-I) = J-lm(Vm). In case (b), Tx is being shfted from Vm to Vm_1 at 
8 = 8*. Let € (0 ::; € ::; 1) be the percentage with which Tx belongs to Vm- 1 , then this 

process is shown as Fig.13. 
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Pm CVm ) 

-----. 

o 

Fig.13 shifting of a task from Vm to Vm- 1 at 0 = 0* 

From Fig.13 it can be seen that 0* gives a-simple partition which realizes !-lm-l(lIm-d = 
!-lm(Vm ) also in case (b). 

Next, assuming that Lemma 1 holds for I = m - 1, m - 2, ... , h (hypothesis of 

induction), we consider the case I = h - 1. That is, we will show that there exists such 

a point of Am - l that can realize the partition of T which is a-simple and even as for 
h -1,,", m i.e. 

!-lh-l(Vh-J) = !-lh(Vh) = !-lh+l(Vh+J) = ... = !-lm(Vm) , 

under the condition that mutual ratios among 01,02, ... , Oh-l (=f. 0) are arbitrarily fixed 

and the percentages with which each of tasks on boundaries among Cl ""' Ch-l is shared 

by corresponded VjS (Pjs) are also arbitrarily fixed. Here we can only adjust :c7;:; OJ 

(or 'L-'j=h OJ) and mutual ratios among Oh, 0h+l, ... , am (=f. 0). Any task on mutual 
boundaries among Cl ""' Ch _] is assumed to be divided into sub-tasks in the same way as 

l=m-1. 

At first let 0 = 'E7;:; a j be sufficiently small, and Oh be sufficiently large (relative 

to 01 ""' Oh-d. More precisely, using the notation a = 'E7=1 0j, we select the values of 
o and Oh so that, = o/a (1 -, = oh/a), satisfys 

w !-lij 
0<, < -1--' where w = min n1in + w l~i~n l~j~h-l !-lih 

(This is possible from assumption (4.1).) For a that has mutual ratios among 0],02, ... , 

Oh-I, Oh determined as the above, no task belongs to any of Cl (a), C2 ( a),· .. ,Ch-l (a). 
And, by hypothesis of induction, under these given ratios among 01 ""' Oh , adjustment of 

mutual ratios among 0h+l,Oh+2, .. . ,Om (=f. 0) realizes (see Fig.14) 

(4.11) 

We assume that (4.11) holds at a = aa, and let 0° denote 'E7;:; o~. Here let Lh~m be 

the value of Jlh(-) ""' !-lm(-) when (4.11) is realized, that is 

Lh~m = !-lh(Vh ) = !-lh+l(Vh+d = ... = !-lm(Vm). 

Now we have 

{ 

Lh~m > 0 

!-lh-l (Vh- l ) = o. 
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h· '" 
h -I 

, \ 
• I \ • 

, j \ 
" \ Fig.14 initial state 

The following Operation 1 is applied to this partition state (&0,80 , X ~ {Vj}). 

Operation 11 Increase the value 8 = l.:~:::1 0j (from 80
) little by little, with keep-

ing mutual ratios among 01,02,' .. ,Oh-l and those among Oh, 0h+l,' .. , om constant. 

With this operation the boundaries between the group of Cl '" Ch - l and the group of 

Ch '" Cm (represented by the bold line in Fig.14) are moved toward the sides of I hi '" 
Iml little by little. Let us suppose that these boundaries first meet a task at 8 =: 800 

and a = &00
• While the partition state is changed from (aO

, 80
, X) to (&00 ,800

, X) by 

Operation 1, no task crosses any boundary. So relation (4.11) is conserved. 

Let Tx be the task which one of moving boundaries meets at (&00 ,800
, X). If bound­

aries meet more than one tasks at the same time, these tasks are treated in sequence. 

We assume without loss of generality that T" is on the boundary between Ch(&OO) and 

Ca(aOO
) (1 ~ a :::; h -1) (if otherwise then reindex h '" m). If Tx is also on the boundary 

between some of Ch '" Cm and belongs to more than one of Vh '" Vm , then Tx is assumed 
to be divided into sub-tasks according to the percentages with which it is shared by them 

( Fig.15). 

I 
• I 

I 
I 

I 

\ 

.i 
\ . 
\ 
\ 
\ 

\ 
\ 

\ 

Fig.15 preparation 

h +1 

/ 

/ 

I 
I 

\ ••• I 
\ I 

\ I 
\ I 

)-~--\., 
",'" " 

/ 
/ 

/ 
/ 

/ 

h 

\ 
\ . 
\ 
\ 
\ 
\ 

m 

h-I 

, , , 

Fig.16 shifting of tasks 

, , , 

After these preparations, we apply the following Operation 2 to the partition state 

( aDO, 800 , X ~ {Vj}). 

IOperation 21 If the partition state (a,8,X ~ {Vj},Lh_m) has other tasks than Tx 

which locate on the boundaries between Ca and Cb (1 ~ a ~ h - 1, h + 1 ~ b ~ m), then 
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their fractions belonging to Va are moved a little toward / a/ off the boundary. In the same 

way, tasks on the boundaries between Ch and Cb (if any) are moved a little toward / hi and 

the resultant decrease of J-lh(llh) is compensated by increasing the processing requirement 
of that task (Fig.16) so that J-lh(') rv J-lm(-) are kept to be even. By this modification, 

the fixed set of all tasks under consideration is slightly changed from T to T. But the 

partition X ~ {Vi} is kept to be a-simple and even as for h ,...., m (the value Lh~m is 

unchanged). After this treatment, we decrease the percentage with which Tx belongs 

to Vh by f, i.e. f· Tx is shifted from Vh to Va' Then, under the condition that mutual 

ratios among aI, a2, ... , ah and the percentages with which each of tasks on boundaries 

amongCl '" Ch is shared by corresponded Vjs(Pjs) are all fixed as they are, J-lh(') '" J-lm(-) 

are re-equalized a-simply for T by adjusting L:~=1 aj (or L:;;'=h+l ak) and mutueJ ratios 
among ah+l, ah+2, . .. , am. (This is possible from induction hypothesis.) Assuming that 

it is realized at a == (a~,a~, ... ,a:n), let (a',8',X' ~ {Vj},L~~m) denote this partition 
state. Last, task-fractions modified at first (if any) are restored to originals. The 

partition X' ~ {Vj} for T is also a-simple and even for h rv m for T (the value L~~m is 

unchanged). 

The above operation 2 has the following properties, PI, P2 and P3. (Their proofs 

are given in Appendix.) 

[PI]. When J-lh(') '" J-lm(-) are re-equalized for T and then for T, the boundary between 

Ca and Cb never moves toward I al for any a, b (1 :S a :S h, h + 1 :S b :S m). That is, it 
holds that 

VaE{I, ... ,h-l,h}, VbE{h+l,h+2, ... ,m} 

[P2]. Operation 2 changes Lh~m for T continuously and decreasingly with respect to 

f (E [0,1 D. That is, it holds that 

Lh~m - f· J-lh(Tx) :S L~~m < Lh~m . 

[P3]. Operat ion 2 changes J-lh-l (Vh-l) for T continuously and non decreasingly with 

respect to f (E [0,1 D. That is, it holds that 

M : a positive constant. 

Operation 2 with f = 1 shifts entire Tx to Va. We repeat Operation 2 until all of 

tasks on boundaries between Ca (a = 1,2, ... , h-l) and Cb (b = h, h+l, . .. , m) (including 

the tasks which newly locate on the boundaries while these operations) are shifted to VI 

,...., Vh- l . Let (aI, 81 , X) denote the partition state where all tasks on the boundaries are 

shifted out, and we again begin to apply Operation 1 to this state. 8 being increased 

from 81 , the boundaries again pass a task at some value of 8, say 811 , then Operation 2 

is applied, and so on. 
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By PI and definition of Operation 2 the above process terminates at some partition state 

(ae ,he) (he < 1) where any ofCh, ... ,Cm contains no task in it. Consequently we have 

{ 

Lh~m = J-lh(Vh ) = J-lh+l (vh+d = .. , = J-lm(Vm) = 0 

J-lh-l (Vh_ 1 ) ~ O. 

P2 and P3 assert that Lh~m and J-lh-l (Vh- l ) change monotonously as a partition state 

is changed from (00 ,8°) to (ae ,be) (see Fig.17). 

a e-J ae 

U/ 
a e-I. e-I 

Fig.17 changes of Lh~m and J-lh-l (Vh-d 

Lh~m decreases monotonously, and J-lh-I(Vh.-J) changes nondecreasingly, therfore they 

cross in some interval, say [( a ii ,hii), (ai+I, hi+l)]. Let Txt , Tx2 , •.• ,TxN be tasks on 

boundaries (including those newly located) shifted from Vh to Va (1 :S a :S h - 1) by 

Operation 2 in this interval, and let E denote the shifted portion of the current task. 

o € * o 
Ca*. \/* ) ai +1 

Fig.18 the crossing interval 

P2 and P3 guarantee that Lh~m and J-lh-I(Vh.-J) are continuous with respect to E E [0,1]. 

Then there exist such Tx. and E* that correspond to partition state (a* ,h* ,X*) which 

realize 
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Here, a* -simple partition keeps the fixed mutual ratios among aI, a2, ... ,ah-l and the 

fixed percentages with which each of tasks on boundaries are shared. And it is ea.3ily seen 

that ah 'V a;" i- O. This means the induction hypothesis holds for 1 = h - 1. 

The above completes the mathematical induction, i.e. Lemma 1 holds for / = m -

1, m - 2, ... ,1. Therefore we have Theorem 1. 0 

4.3 Another proof of Theorem 2 

We prove Theorem 2 considering directed graphs associated with exchanges of task­

fractions among processors, where a reduction to absurdity (proof by contradiction) is 

used. 

proof: We suppose that some a-simple and even partition XO = (Xij) 2:' {Vt, V2°, ... , 
V~} does not give the minimum schedule for some task set T. From this supposition we 

can derive a contradiction. 

The optimum solution of (3.1) computed by, say, the simplex method determines 

the partition X* 2:' {Vt, V2*, . .. , V;} that gives the minimum schedule length. Here we 

consider to change XO into X* by shifting elements of each ~o (dividing them again if 

necessary) to the others. Let Tjk (1 :::; j, k :::; m) denote the set of task-fractions which are 

shifted from Pj (~o) to Pk (Vt) when the partition is changed from XO to X*. That is, 

m m 

~* = ~o - LTjk + LTkj. 

k=l k=l 

Generally let T = (Tjk) denote a collection of these m 2 sets of shifted task-fractions which 

can be applied to XO 2:' {~o}. And let # T denote the number of non-empty entries of 

T. We select from possibly plural X*s (there may be many optimum solutions when 

(3.1) degenerates), X*, one of the partition that has the smallest #T (= Vo) among all 

that gives the minimum schedule length. Let T = (:r..jk) be the shifting of task-fractions 

which changes XO into X*. 

Now by these assumptions of a reduction to absurdity we have 

• length(X*) < length(XO) 

• #T = Vo 

• Any exchange of task-fractions T' (applicable to XO) s.t. # T' < Vo can not change 

XO into the partition that gives the schedule length less than or equal to length(X*) 

(= length(X*)). 

In the followings we consider the directed graph G( T) whose vertices are corresponded 

to processors PI, P2 , ..• , Pm and which has the edge from Pj to Pk if and only if Ejk i- <p. 

When XO is changed into X* by T, from every processor some task-fractions must 

be shifted to others. That is 

v j, :3 k s.t. Ijk i- <p. 

If otherwise, for some j, V/ is not decreased, then we have that /l-j(V/) :::: /l-j(V/). Since 
the partition XO is even, this contradicts that length(X*) < length(XO). Consequently 
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each vertex ef the graph G( '1') has one er mere eutgoing edges, and we can trace these 
edges in sequence. There are m finite vet'tices, sO' m 'Or less O'perations ef tracing necessarily 
lead to the same vertex visited before. In ether wO'rds, there exists a f'Ollewing sequence 
ef processors (a cycle O'f G(XJ) , 

Pit ,Ph,'" ,Pi .. , Pie+l =: Pit 

where !.i.,i • ..f-\ i= <? $:::::: 1,2, ... ,e (see Fig. 19). 

Fig.19 cycle of G( T) 

Here we apply the follO'wing Operation 3 to this cycle (sequenee ef processors). TO' 

keep nO'tatiO'ns compact, prO'e€$SOrs are reindexed so that the index j!J on the cycle is 

cilanged to $ ($ ::::< 1,2, ... I e, where e + 1 El). 

@perat~on si 
'h +-1 
fot' $ :== 2 to e do [ 

J 

if {t"(!.s-1,i8,,-1» ~ p,,(Z:s,S+l) 

then (* Fig.20 *) 
let 01$ +- PlI(!.,g-l,s(Os-d) 

{t"(!.$,8+1) 

else (* Fig.21 *) 

let 6a +- 1 i 
let fJ +- .{t8(r..s,S+1) 

p$(.!$_1,s(9,,-1 » 
for i := 1 to .$ - 1 dO' r 

(}j +- Oi • t> 

Fig.21 the case of ps(In) > ftiOut) 

For the values 81 J1'J' ... ,Oe computed by Operation 3, we ha.ve the following Lemma 2, 
3 and 4. 
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Lemma 2. There exists such Bs that equals to 1 among 6}, 62 , ..• ,6e. 

proof of Lemma 2: It is clear through the mathematical induction on e. 0 
Lemma 3. At processor Ps (s = 2,3, ... , e) it holds that 

Ils(Ls-l,s( 6s- 1)) = Ils(Ls,s+1 (Bs)) . 

proof of Lemma 3 Obvious from the description of Operation 3 (see Fig.:~2). 0 

2 3 . . . e-! e 

I12 Ie-Le r 

Fig.22 sequence of similarly reduced Ls,s+1 by Operation 3 

Lemma 4. At processor PI it holds that Ill(L12(Bd) :::; Ill(Le,I(Be)). 

proof of Lemma 4: Because the partition XO is a-simple and Ls,s+I(Bs) is a subset 

of Vso, every element w of Ls,s+1(Bs), satisfies the following relation (see Fig.23). 

Ils(w) < ~ 
Ils+l(W) - Os+1 

PH! (0)) 

is+l / 

a 

Fig.23 task-fraction that belongs to Ls,s+1 

Consequently it holds that 

(4.12) 
Ils(Ls,s+I(Bs)) < ~ 

Ils+l(Ls,s+I(Bs)) - 0.+1 . 
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The Inequality of (4.12) is rewritten with s = 1,2, ... , e as 

I-lI(LdBd) 

1-l2(L23(B2)) 

I-le-I (Le_l,e(Be- l )) 

l-le(Le,1 (Be)) 

/ 
/ 
/ 

/ 
/ 
/ l-le(Le_Le(Be-J)) 

/ I-lI(Lel(Be)) 

< 
< 
< 

251 

Multiplying these inequalities, we have I-lI(LI2(Bd)/I-'I(Le,I(Be)) :::; 1 by Lemma 3. That 

is, it holds that I-lI(LdBI)) :::; I-lI(Le,I(Be)). 0 
Now we subtract {L.,.+I(B.)} (s = 1,2, ... ,e) from the original T, and let 1~­

(Lji) be the dijference. More strictly, 

(j,k)4 (s,s+1) (s = 1,2, ... ,e) 

(j,k) = (s,s + 1) (s = 1,2, ... ,e). 

The schedule length of the partition X- obtained by applying T- to the original XO 
satisfies that length(X-) :::; length(X*) by Lemma 3, 4. At the same time the edge 

corresponded to Bi• = 1 (by Lemma 2) is deleted, so we have that # T- < I/o. These 
contradict the Hrst assumptions. Therefore XO must give the minimum schedule length, 

then Theorem :2 holds. 0 

5. Application of Theorems 

Most of approximate algorithms for the original (nonpreemptive) problem solve relaxed 

problems of type (3.1) repeatedly [7,9). So it is needed to solve them as fast as possible. 

Theorem 1 and 2 give the possibility to obtain the solution of (3.1) faster than by such 

general methods as Simplex or Interior ones. 

In the case of m = 2, the optimum value of a E Al can be found directly in G( n) 
time. This is implicitly used in [8). When m = 3, the G(nlogn) algorithm which finds 

a-simple and almost even (even within cert.ain error bound) partition of T is guided 

naturally by considering the process of the proof of Theorem 1. Using this procedure 

we can construct an approximate algorithm with worst case performance ratio 5/3 based 

on the idea of partial enumeration (essentially similar to [8)). It solves several hundred 

variants of (3.1), but takes no more than a second or so to produce the approximate 

solution for n == 50 on ordinary large scale computer. 

For general m, direct search procedure of the optimum a, temporarily sketched as 

stepO: let a +-- (~,~, ... ,~) (* center of A m - I *) 
m m m 

step1: search the maxl-li(Vj) (* j* gives maximum *) 
) 

t ? 1 t - (a, ~.t..=..!..- {j aj. +, am) 
S ep~: e Q +-- l-aj.+6'···' I-OIj.+6,Qj.- , l-aj.+6'···' l-aj.+6 
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step3: adjust 8 and update task assignment 

step4: if schedule length is improvable 

then goto step1 else stop, 
seems to work similarly to (dual) Simplex method. But updating both a and task assign­

ment (i.e. exchange of basic variables) needs relatively small operations, so this procedure 

is expected to run faster than general methods. 

Furthermore our Theorems can be used in order to prepare the initial basic wlution 

(initial task assignment) for various methods. 

6. Conclusion 

By extending the study of the case m = 2, we introduced a new approach to the problem 

(3.1) which uses m -1 dimensional unit simplex Am-I' Theorems which interpret the 

optimum solution of (3.1) as the certain division of A m - I i.e. the even and a-simple 

partition of T are interesting by themselves. The compact proof using Duality Theorem 

is convincible of the correctness of these theorems. On the other hand the elementary 

and lengthy proofs give helpful informations to design direct search algorithms of the 

optimum a as stated in the previous section. 

Numerical experiments on the approximate algorithm for m = 3 are under way, 

including the comparison with other methods. To complete the direct search algorithms 

for general m is the subject of following works. 
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Appendix 

The properties PI, P2 and P3 of Operation 2 are proved. 

At first we note the following fact (Lemma AI), next prove that inequalities of P2 

are true for T (Lemma A2), then prove PI '" P3 using these Lemmata. 

Lemma AI. In Operation 2, the a-simple re-equalization of Ph '" Pm for T after 

shifting of f.. Tx can be realized by T = (Tjk) such that G( T) has no cycle. Here Tjk (1 ~ 

j, k ~ m) denotes a set of task-fractions which are shifted from Vj to V£ when the partition 

state forT is changed from (a, 8, x ~ {Vj}, Lh~m) to (a', 8', X' ~ {Vj}, L~~m)' and G( T) 

denotes the directed graph whose vertices are corresponded to processors PI, P2 , .•• , Pm 

and which has the edge from Pj to Pk if and only if Tjk ::J. ~. 

proof of Lemma AI: Suppose that G( 7') has a cycle Pj" Ph, ... , Pje , Pje+1 == Ph' 

The existence of non-empty Tj"j'+l (5 = 1,2, ... , e) means that the boundary between Cj , 

and Cj'+l moves toward /i.1 or it does not move at all (in this case shifted task-fractions 

are on the boundary) when the partition state is changed from X to X' (see Fig. A.I). 

That is, along t he cycle (for 5 = 1, 2, ... , e) it holds that 

(where 0'. ,O'~ > 0). 

I js / 

Fig.A.I boundary between Cj , and Cj'+l 

All of these inequalities hold, in fact, with equality, because, if some of them hold with 

true inequality then we have the contradiction that 1 < 1 by multiplying them for s = 
1,2, ... ,e. Therefore the boundary between Cj , and Cj'+l is not moved, and all elements 

of Tj, ,j,+l are on this boundary (for 5 = 1,2, ... ,e). Then, we can eliminate at least one 

edge on each cycle by reversing some parts of Tj"j.+l s of the cycle in the same way as 

Operation 3 of section 4.3. At this time it is easily seen that the resultant partition X" 

is kept to be a·simple and even (for h, . .. ,m). Repeating this operation leads to Lemma 

AI. 0 
Hereafter, without loss of generality, we assume that re-equalization in Operation 2 is 

performed by the shifting of task-fractions T = (Tjd such that G( T) has no cycle. 
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Lemma A2. PI whose T is replaced with T is true, That is, after I1hO '" I1rnO are 

re-equalized for T, it holds that 

Lh~m - f 'l1h(Tx) :::; L~~m < Lh~m' 

proof of Lemma A2 First, we show that L~~m < Lh~m' Since G( T) has no cycle, 
there exists the following finite sequence of processors which starts from Ph and terminate 

at some processor Pje to which no task-fraction is shifted from any other processor during 

Operation 2 (Fig. A.2). 

Pje' Pje - I "", Pit == Ph 

where Pj. f:. Pj, iff. s f:. t, 7j"j._1 f:. cl> (s = e, e - 1, ... ,2) 

and 7k,je = cl> (Vk E {I, 2, ... , m}) 

-- task-fraction 

c=:> boundary 
/js / 

Fig.A.2 the sequence of processors 

coming into Ph 

Fig.A.3 movement of a boundary 

Here, if je E {h, h + 1, ... , m} then it holds that 

L~~m = l1ieCVJJ < l1ie(ViJ = Lh~m' 

because 10e decreases strictly. Now supposing that j e et. {h, h + 1, ... , m}, let j c be the 

first index departing from {h, h + 1, ... , m}. That is 

jI,j2, .. ·,jc-I E {h,h+1, ... ,m} 

jc E {1,2, ... ,h-l}. 

Since 7j.+I,j, is not empty set, we have, as shown in proof of Lemma AI, 

a' a', _1_,- < _1_,_ 
a' - a', 

1,+1 1.+1 

s = 1,2, ... , c - 2. 

On the other hand, the partition X for T has no task-fractions on the boundary between 

Ca and Cb for any a,b (1:::; a:::; h, h+ 1:::; b:::; m) which can be shifted from Va to Vb (see 

Fig, A.4). Consequently Tj"je_' f:. cl> implies that 

a'. 
Jc-l 

a', 
le 
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And, in Operation 2, mutual ratios among 0'1,0'2, ... , ah are fixed, so we have 

a'· 
le 

d.""" 
}I 

(because j1 = h, 1 ~ je ~ h - 1). 

255 

By multiplying all these (in)equalities we have the contradiction that 1 < 1. Therefore je 

must belong to {h, h + 1, ... , m}, and it holds that L~_m < L h_m . 

Next, we see that Lh_m - f· Jlh(Tx) ~ L~_m. If no other task-fraction than Tx is 

shifted from Ph to other processors then this assertion is true. So, suppose that there 

exists some processor Ph to which task-fractions are shifted from Ph during Operation 

2, i.e. Th,i2 1= cP· j2 satisfies that h + 1 ~ j2 :::; m by definition of Operation 2. Now, by 

Lemma AI, we can consider the following finite sequence of processors which starts from 

Ph == Pi! and terminates at some processor }~e from which no task-fraction is shifted to 

any other processor during Operation 2 (Fi.g;. A.5). 

Ph == Pi" Ph,···, Pie 

where Pi, 1= Pi, iff. 81= t, Tj"j,'+1 1= cP (8 = 1,2, ... , e - 1) 

and Tie,k = cP (Vk E {1,2, ... ,m}) 

\ I 
\ , 

h+! \ " 

I 
I 

.. /4 ~, 

) 

">-... --;r.(,,, 

1 h 

.,;".,,,,,..,,,,. ... 

I 
I 

I 
I 

I 
I 

\ 
\ 
\ 
\ 
\ 

\ 

m 

h -I 

........... task-fraction 

C::::> boundary 

Pje -1 

Fig.A.4 boundary condition on T Fig.A.5 the sequence of processors 

starting from Ph 

Here, if je is a member of {h,h + 1, ... ,m} then we have the relation that JljJV!J > 
JljJVjJ, which contradicts the relation that L~_m < Lh_m. Consequently we have 

je E {I, 2, ... , h - I}. Now, we examine the movements of boundaries between Cj , and 

Cj'+1 for 8 = 1,2, ... , e (sub-index e + 1 is interpreted as 1). The boundary between Ch 

and Ch must move toward /h/, that is 

at 
ah < -f-, 
O'h O'h 

because 7 has no task-fraction on the boundary between Ch and Cb for any b (1 ~ b ~ m) 

which can be shifted from Vh to Vb (see Fig.A.4). About other boundaries, in the same 
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way as the former case, we have 

Q. Qt 

..2!.±!... < ..2!.±!... 
Qj, - 0'1, (s = 2,3, ... , e - 1) , 

0' 0'1 ---.!::...=_h 
Q. 0'/. 

(because 1 ~ j e ~ h - 1) . 
le Je 

By multiplying these (in)equalities we again have the contradiction that 1 < 1. Therefore 

no task-fraction can be shifted from Vh to any other V k (k E {I, 2, ... ,m}) except for 

E' Tx to some Va (1 ~ a ::; h - 1). That is, it holds that Lh~m - E' J.Lh(Tx) ::; L~~m . 0 
proof of PI Suppose that for some a, b (1 ::; a ::; h, h + 1 ~ b ::; m) the boundary 

between Ca and Cb moves toward lal, that is 

Q a Q~ 
- > " O'b O'b 

Since mutual ratios among 0'1, 0'2, ... , Qh are fixed during Operation 2, we have 

Vj E {1,2, ... ,h} (because Q a O'~ ) - = , = constant . 
Qj Q j 

Consequently, for any j (E {I, 2, ... , h}), Tbj = <p. But, considering that J.Lb(V;) < J.Lb(Vb), 

there exists some k (E {h + 1, h + 2, ... , m}) such that Tbk f= <p. Then, by Lemma AI, 

we can find the following finite sequence of processors which st.arts from Pb == Pit and 

terminates at some processor Pje from which no task-fraction is shifted to any other 

processor during Operation 2. 

P b == Ph, Pj" ... , P j , 

where Pj, f= P j , iff. s f= t, Tj"j,+1 f= <p (s = 1,2, ... ,e - 1) 

and Tj"k = <p (Vk E {1,2, ... ,m}) 

The same discussions about the above sequence as in the latter half of proof of Lemma A2 

conclude that je belongs to {l, 2, ... , h - I}. Multiplication of (in)equalities representing 

movements of the boundaries between every two consecutives of Ca, Cb == Cjl' Ch, ... , 

Cj'_il Cj" Ca bring the contradiction that 1 < 1, hence PI holds. 0 
proof of P2 PI assures that the partition XI ~ {Vj} of T is kept to be even for 

h '" m and a-simple when the task set is restored to original T. (the value of Lh~m is 

also unchanged). Consequently Lemma A2 holds for the original task set T. In other 

words Operation 2 changes the partition for T from X to XI. 0 

T I(,r, Lh~m) 

modify task-l 
fractions on 
boundaries 

T I(/t', Lh~m) 
re-eq ualization 

after f.·Tx is shifted 
> 

T I ( XI , L~~m ) 

,
restore 
modified 
task-fractions 

TI(XI,L~~m) 
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proof of P3 : PI and definition of Operation 2 show that no task-fraction is shifted 

out from Vh- 1 during Operation 2. From this fact it is obvious that J1.h-l (Vh- 1 ) ~ 

J1.h-l (V~_l)' So, it suffices to estimate the processing requirements of task-fractions which 
are shifted into Vh - 1 . We introduce following notations. 

Q {I, 2, ... , h - I}; set of indeces of processors. 

R: {h, h + 1, ... , m}; set of indeces of proeessors. 
P,jk • ( 11 k) f' . f p: max max -- j maXImum over a tas S 0 maXImum ratIO 0 J1. s. 

I J,k j'lij 

Here let h/Ob denote the sets of all incominl~/outgoing task-fractions into/from Vb (b E 

R). Since PI assures that ther is no task-fraction shifted into Vb from Va during Operation 

2 (a E Q, b ER), they are written as 

Ib = LTjb 
jER 

Ob = L Tbj + L Tbk 
jER kEQ 

bE R 

bE R. 

Measuring both sides of these equalities by J1.h-l (-) (i.e. processing requirements on pro-

cessor Ph-I), we have 

J1.h-l(h) = L J1.h-l(Tjb) 
jER 

J1.h-l(Ob) = L J1.h-l(Tbj) + L J1.h-l(Tbk) bE R. 
jER k,=Q 

Summing up respective equalities for all b E R and taking the difference between them, 

we have 

(a.1) LJ1.h-l(Ob) - LJ1.h-l(h) 
bER bER 

= L L J1.h-l(Tbj) + ~= L J1.h-l(Tbk) - L L J1.h-l(Tjb) 
bER jER bE,R kEQ bER jER 

= L L J1.h-l(Tbk). 
bER kEQ 

Here, by Lemma A2 we have 

(a.2) Vb ER. 

From this inequality we have 

Vb ER 
(a.3) 

Vb ER. 

Because if J1.b(h) or J1.b(Ob) is 0(1) for some b then we have the contradiction as follows. 

Suppose /1b o(h o) = 0(1) (by (a.2) J1.b(Ob) = 0(1) is equivalent to J1.b(Ib) = 0(1)). This 

means that for some b1 E R, J1bo (Tb\ ,bo) = 0(1). Here, by definition of p, it holds 

1 
-J1.bo(Tb\,b o) ~ J1.b\ (Tb\,b o) :::; PJ1.bo(Tb\,bo)· 
P 
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Consequently, I-l-b, (Ob,) is also o( 1), and it follows that I-l-b, (Ih,) = 0(1). Again starting 

from b1 we can find b2 s.t. I-l-b 2 (h 2 ) = 0(1) and Tb 2 ,b, =I=~. This process can be repeated 

endlessly as bo, b1 , ... , that is, G( T) has a cycle. But this contradicts the assumption 
that G( T) has no cycle. 

Obviously 

From (a.1) we have 

( a.4) 

I-l-h-l(V~_l) - I-l-h-l(Vh- 1 ) < L L I-l-h-l(Tbk). 
hER kEQ 

I-l-h-l(V~_.l) - I-l-h-l(Vh-d < L L I-l-h-l(Tbk) 
bER kEQ 

< Ll-l-h-l(Ob). 
bER 

By (a.3) and definition of p, we have (for certain constant Cb) 

Vb ER. 

Substituting these inequalities into (a.4), we have 

I-l-h-l(VLl) - I-l-h-l(Vh-d -::; L I-l-h-l(Ob) 
bER 

-::; L€Cb 

bER 

-::; €·M, 

where M = L:bER Cb is constant. 0 
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