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Abstract The present paper studies a discrete-time storage process with discrete states. This model has the 

inflow which is defined as independent random variables with a common negative binomial distribution and has the 

certain outflow discipline. Reversibility and quasi-reversibility for the process are investigated and the reversible 

measure is given. And thus, under a certain condition, it is shown that the process has time-reversibility with the 

stationary distribution constructed by the reversible measure. Also dynamic reversibility for the process is shown. 

As an application of the present results we consider an inventory model with a backlog for orders from substations. 

And the relationship between the Lindley process and this model is discussed. Moreover, we deal with tandem 

storage models of an open or a closed network whose each node has the outflow discipline of the certain form. 

For each model, the invariant measure of the product form is obtained. 

1. Introduction 

In general, it is said for an irreducible Markov chain {Yn ; n E N} to be reversible with respect 

to a measure {r(k),k E S} if {r(k)} is strictly positive and satisfies 

r( i)P(i, j) = r(j)P(j, i), 

for i,j E S where N is the set of all non-negative integers, S is the countable ~tate space and P(i,j) 

denotes the transition probability from i to j. It is known that if {Yn } is reversible with respect to 

a bounded measure then {Yn } is ergodic and has time-reversibility, that is, (Ynl , Yn2 ,· •. , Ynt ) and 

(Ym - nl , Ym - n2 ,·· ., Ym - nt ) have the same distribution for any sequence of finite number of integers 

nI, n2, ... , nk and m such as m ~ ni. Recently, a series of papers on reversibility of Markov processes 

have been published, for example Osawa ([4],[5],[6]) and Pollett ([7],[8]). Especially, Kelly [3] is 

well-known as a reference which dealt with reversibility of various stochastic phenomena. Moreover, 

in [3], Kelly introduced an important notion, quasi-reversibility, for continuous-time Markov chains 

associated with queues or queueing networks. 
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Discrete-Time Storage Models 219 

Suppose that {v(i),i E S} is an invariant measure for an irreducible Markov chain {Yn}. If 

v( i) > 0 for all i E S, then the transition probabilities defined by 

r(i,j) = v(j)P(j,i)/v(i), i,j E S, 

construct an irreducible Markov chain {Y';-}, called time-reversed chain for {Yn}. It is clear that 

{v(i)} is invariant for {Y';-}. If {Yn} is reversible with respect to some measure, then {Yn} is the 

time-reversed chain of itself. 

On the other hand assume that, to each state j E: S, there corresponds a conjugate state j' with 

(j')' = j and a strictly positive measure {v( i)} satisfies 

v( i) = v( i'); 

v(i)P(i,j) = v(j')P(j', it), i,j E S, 

then we call the M arkov chain {Yn} dynamically reversible with respect to a measure {v( i)}. In this 

case {v( in is clearly invariant. Moreover, if Li v( i) < 00 and the chain {Yn ; n E Z} is stationary 

then {Yn } is statistically equivalent to {(Ln)'}, see Kelly [3], where Z is the collection of all 

integers. Dynamic reversibility for queueing networks was discussed by Disney and Kiessler [2]. 

In this paper we consider a discrete-time storage process with discrete states and study re­

versibility of this process and associated models. Let {Xn; n E N} be the storage process taking 

values on N which is defined by 

(1.1) nE N, 

where the inflow process {An; n E N} is a sequence of independent random variables with the 

common distribution 

a(k) = PlAn = kJ, k = 0,1,···, 

and the outflow process is controlled by 

(1.2) 

for 0 :::; j :::; i, i ~: 0 and n E N. Further, assume that Xo and Do are arbitrary. For an outflow 

discipline D( i, j) of the certain form, Walrand [9] investigated such a model with a Poisson inflow 

and gave the quasi-reversibility of the model. Our question is "does such a property hold for a 

storage model with the other inflow process?". For the Lindley process 

with discrete states and the inflow An according to a geometric law, some results on reversibility 

were obtained by Osawa [6]. This process has a close connection with the present model as seen in 

Section 4. Moreover, considering the inventory model having geometric inflows described in Section 

3, we study the ca.se where {a(k)} is a negative binomial distribution. 
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220 H. Osawa 

In Section 2,.for the above storage model (1.1) with a certain outflow discipline, it is shown 

that the bivariate Markov chain {(Xn , Dn)} has an invariant measure of the product form and 

the trivariate chain {(An' X n, Dn)} is dynamically reversible. Moreover, it is seen that this model 

has quasi-reversibility and the process {Xn} has reversibility. In Section 3 an inventory model 

which has motivated the present problem is considered. The Lindley process with discrete states 

is represented as an application of this model, hence, in Section 4 the relationship between two 

processes is investigated and the results are compared with ones in Osawa [6]. In Section 5 a 

discrete-time tandem storage model in which each node has the outflow discipline of the [orm (1.2) 

is discussed and the invariant measure of the product form is obtained. Also quasi-reversibility for 

this model is deduced. In the final section, a closed storage model with two nodes is considered 

and dynamic reversibility for the model is discussed. 

2. Discrete-Time Storage Model with Discrete States 

For the storage model described in the previous section, consider the bivariate Markov chain 

{(Xn , Dn); nE N}. Its transition probabilities are given by 

(2.1) 

where ~ = (i, d), '!!.. = (j, e), B = {(~, '!!..) : j + e ~ i} and lE is the indicator of a set B. Assume 

that 

(2.2) D(i,j) = c(i)a(i-j)-y(j) IT j3(k), o ~ j ~ i, 
k=i-j+l 

where a(k) and j3(k) are positive valued functions defined on N, 13(0) = 1 and c(i) is the normalizing 

constant such that L~=o D( i, j) = 1 for each i ~ o. 

Theorem 2.1 Let {a(k), k ~ o} be a negative binomial distribution 

(2.3) a(k) = ( T/+ ~ -1 ) (1- ,x)'7,xk, k = 0,1,2, ... , 

where 17 > 0 and 0 < ,x < 1, and let 

"tU) := ( 17 + ~ - 1 ) , j=0,1,2,···. 

Then we have 

(i) the process {(Xn,Dn)} has an invariant measure {r(i)a(d): i,d ~ o} where 

(2.4) rei) =: a(i)Ai / IT j3(k), i=0,1,2,···, 
k=O 

(ii) trivariate Markov cha£ns {(An' X n, Dn)} and {(Dn, X n, An)} are reversed in time each 

other. 
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Proof: From (2.1) 

P( )= (1I+j+e-i-1 ) (1_,\)TJ,\J+e-i 
1;!;.'1!.. j+e-i 

·c(j+e)Q'(j) ( 1
/ +:-1) IT f3(k), 

k=J+l 

for;!;.= (i,d), J!... = (j,e) and j + e;::: i. Then we have 

L r(i)a(d)Pl(;!;.'J!...) 
(i,d) 

J+e ( . . ) J+e 
.c(j+e)LQ'(i) 77+).::=;-1 IT f3(k) 

.=0 ) k=.+l 
1'(j)a( e), 

for all j, e ;::: O. Hence {r(i)a(d)} is invariant for {(Xn' Dn)}. 

To prove the second part of the theorem, define a measure 

v(!!,) = a( a )1'( i)a( d), 

221 

for!! = (a, i, d) then the above result means that /'(.) is invariant for {(An' X n, Dn)}. The transition 

probabilities are given by 

where!! = (a, i, d), :!L = (b,j, e) and E = {(!!,:!L) : j +e = i+a}. Write!!' = (d, i, a) for!! == (a, i, d) 

and let 

then it is readily seen that 

Thus the theorem is established. 

Remark 2.2 Using the notation in Proof of Theorem 2.1, for the chain {(An' X n , Dn )}, it 

follows that Yi is a conjugate mapping and 

VC!!) == v(Yi), 

v(!!)P2(!!,:!L) == V(:!L')P2(!i &'), 

Hence {(An,Xn.Dn)} is dynamically reversible with respect to {v(-)}. In other words, under the 

condition that 2:= vC!!) < 00 and the process is stationary, {(An' X n, Dn)} is statistically indistin­

guishable from the reversed chain of the conjugate process {(An' X n, DJ! )'}. From this argument 

we can reach the following results: For the stationary storage process defined by Theorem 2.1, 
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(i) 

(ii) 

H.Osawa 

the ?utflow Dn has the same distribution {a( k)} as the inflow An, 

{Ak,k ~ n}, Xn and {Dk,k::; n} are independent for all n. 

The stationary storage model (1.1) having these properties is said to be quasi-reversible. To analyze 

networks connecting some storage nodes, quasi-reversibility is a powerful property. 

Theorem 2.1 also implies that {r(i)} is invariant for a Markov chain {Xn }. Moreover, we can 

have the result on reversibility of {Xn}' 

Theorem 2.3 The Markov chain {Xn} in Theorem 2.1 is reversible with respect to a measure 

{r(i),i ~ O}. Thus if C = I:~or(i) < 00, then {Xn} has time-reversibility with the stationary 

distribution 

7r(i) = r(i)/C, i=0,1,2,···. 

Proof: The transition probabilities are written as 

00 

P(i,j) = a(j + k - i)D(j + k, k), i,j ~ o. 
k=max(O,'-) ) 

Then we have 

r( i)P( i, j) a(i».' f: (17+j+k-i-1 ) (l-A)'1 Aj+k-· 

TIk=oP(k) k='-j J + k-I 

·c(j + k)a(j) ( 17 + ~ - 1 ) Yi P(l) 
1=)+1 

= 

r(j)P(j, i), i ~ j ~ o. 

The proof is completed. 

Remark 2.4 When the system has a Poisson inflow 

a(k) = exp(-A».k/k!, k = 0, 1,2,··· , 

and an outflow discipline 

I 

D(i,j) = c(i)a(i - j) IT ~(k)/j!, o ::; j ::; i, 
k=i-)+1 

then the similar results as given in Theorem 2.1 have been obtained by Walrand [9). In this case, 

we can also see that {Xn} is reversible with respect to {r(i)} of the same form as (2.4). 
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3. An Inventory Model 

The problem dealt with in the previous section has been motivated by the following simple 

inventory model. There is a factory which manufactures some kinds of goods by using machines_ 

One of these, which is expensive, is made to order from two branch offices of the factory_ Each 

branch gives an order for the article each day, the number of which is a.pproxima.tely distributed 

according to a geometric distribution (1 - ).),k. The orders are sent to the factory at the next 

morning and we denote by An the total number of these at the beginning of nth day. Let Xn 

be the number of backlog of orders. Then the factory produces the articles as follows_ Suppose 

that Xn + An =: i, then it produces the first article at rate ~(i)6(1), the second article at rate 

~(i - 1)6(2), "', jth article ~(i - j + 1)6(j), and so on. In this case, ~(k) are the rate depending 

on the number of backlog and 6(j) depend on the number of articles which are produced in the 

day. Then the r;tte at which j articles are produced is given by 

~(i)6(1)P(i - 1)6(2) ... ~(i - j + 1)6(j). 

Therefore, letting Dn be the number of articles which the factory produces in nth day, Dn is 

stochastically determined by 

, j 

D(i,j) = c(i)O'(i-j) IT ~(k)IT6(k), o ::; j ::; i, i.~ 0, 
k=i-J+l k=l 

where c( i) is the normalizing function and 0'( i - .i) is a factor with respect to backlog of orders. 

~talion 1 

I Sub,talion 2 
Center 

• Orders Supplies 

I Sub,talion K 

Figure 3.1 An Inventory Model 
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224 H.Osawa 

Here note that the empty product is unity. Under the above situation, in order to keep the balance 

between the manufacture of the articles and orders, what kind of the production policy should the 

factory take? Interpreting the balance as the matter that the distributions of the inflow (orders) 

and the outflow (production and shipment for orders) are almost the same, we get an answer from 

the arguments in the previous section. 

For the above problem, consider an inventory model represented in Figure 3.1. It contains the 

central station, called the center, and K substations and an inventory level is the total amount of 

backlog of articles ordered in the center. In the discrete time each substation orders the cent er k 

articles with the probability (1- A».k for non-negative integer k. Then the total number of articles 

ordered, say An, is distributed according to the negative binomial law 

k = 0,1,2,···. 

For the above orders the center supplies the articles in accordance with the outflow discipline of 

the form (2.2). In this model the total number of backlog of orders in the cent er at time n, say X n , 

are represented by (1.1). Note that -yU) = ( K + J - 1 ). 

Case (i): If the center choose the outflow discipline with f3(k) = p. for k 2: 1, that is, 

D( i, j) = c( i)a( i - j)-yU)p.J, j=O,l,···,i, 

then the reversible measure is given by 

rei) = a(i)l, i=0,1,2,···, 

where p = A/ p.. When a( i) = 1 and p < 1, then {Xn} has time-reversibility with the stationary 

distribution 

7r(i) = (1 - p)p" i=0,1,2,···, 

which corresponds to one of the queue-length in the (discrete-time) M/M /1 queue. 

Case (ii): If a(i) = i + 1 in Case (i) and p < 1 then {Xn} is time-reversible with respect to the 

stationary distribution (a negative binomial distribution) 

i=0,1,2,···. 

Case (iii): Choosing f3(k) = kp. for k 2: 1, that is, 

D(i,j) = c(i)a(i - j)-yU) ( ; ) j!p.J, j=0,1,···,i, 

then we have the reversible measure 

r(i) = a(i)pi /i!, i=0,1,2,···, 
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where p = A/J.t- Let a(i) 

distribution 

and p < 1, then {Xn} has time-reversibility with the stationary 

'/rei) = exp( -p)p' /i!, i=0,1,2,"', 

which equals to one of the queue length in an M/M /00. 

For the inventory model described in the first part of this section, it seems desirable that the 

factory has a little backlog of orders. Case (i) is a model in which the production rate is a constant 

regardless of backlog of orders. In Case (iii) the factory can improve manufacturing capacity in 

response to orders how much it has backlog. Comparing the means of backlog for these two cases, 

in equilibrium, it is found that 

{the mean of a backlog in Case (iii)} = (1 -- pHthe mean of a backlog in Case (i)). 

Suppose that a Markov chain {Xn} is irreducible a.nd recurrent, let #k(n) be the number of visits 

to state k during 0 ~ t ~ n, then we have 

lim #k(n)/#i(n) = r(k)/r{i), with probability 1, 
n .... oo 

from the ergodic theorem for Markov chains (see Chung [1]). The left-hand side of this equation, 

denote by R(k, i), is regarded as the ratio of the time spent in state k to that spent in state i on an 

infinitely long time interval. Therefore, it is expected that R(k, i) < 1 for k > i. For that purpose, 

in Case (i), it sufllces that p < 1. However, in Case (ii), this is rewritten as 

a(i+1)p<a(il, for alii, 

and thus we have 2p < 1. Since Case (ii) is a model in which the work takes much time in proportion 

of backlog of orders, the factory has to improve a production rate as compared with Case (i). In 

fact, for the stationary models, to keep up the mean of state Xn in Case (ii) less than that in Case 

(i) it is required that 

where J.tl and J.t2 are the production rates in Case (i) and Case (ii), respectively. 

For a Poisson inflow, we can also consider the similar model; that is, in the discrete time, 

substation j, 1 ~; j ~ K, orders k articles from the center with probability exp( -Aj )A; / k! for 

k :::: O. Then the total number of articles ordered is distributed according to the Poisson law 

a(k) = exp(-A)Ak/k!, k = 0,1,2"" , 

where A = L1~1 AJ . As seen in Remark 2.4, by rewriting as "'t(j) = l/j! for j :::: 0 the similar 

arguments in this section are available. So we should note that the assemble results are obtained 

in two cases, Poisson and negative binomial inflow models. 
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4. The Lindley Process 

Reversibility of Lindley processes was dealt with Osawa [6). In this section, we see the relation­

ship between the present storage models and Lindley processes. 

Let {X n} be a Lindley process taking values on N: that is, 

- - -
X n+1 = max(O, Xn + An - Dn+1), 

where {An} and {Dn} are sequences of mutually independent random variables with common 

distributions {a(k),k EN} and {d(k),k EN}, respectively. Let 

- -
if Xn + An> Dn+1 ; 

- -
if Xn + An ~ Dn+1, 

then {X:} is equivalent to the process {Xn} defined by (1.1) with 

{ 

d(j), 
D(i,j) = 

d(i) = Lk=i d(k), 

o ~ j < i; 

J = I. 

Assume that {a(k)} is the geometric distribution, i.e., 'f/ = 1 in (2.3), and moreover D(i,j) is of 

the form (2.2), then we have 

• 
(4.1 ) d(j)=c(i)a(i-j) IT j3(k), o ~ j < i; 

• 
(4.2) d(i) = c(i)a(O) IT ;3(k), i 2: 1. 

k=l 

By dividing (4.1) for j = i-I term by term by (4.2) it follows that 

d(i-1) a(l) 
-~ = a(O);3(l) = K(= constant). 

It is therefore found that 

hence also {d( i)} is a geometric distribution. This fact accords with the well-known result that, for 

a geometric inflow, the Lindley process {Xn} is reversible if and only if {d( k)} is a geometric distri­

bution (see Osawa [6]). As examples of such a reversible model, there are the waiting-time process 

in the discrete-time M/M /1 and the queue-length process in the bulk-arrival queue M A/M /1. 
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5. Tandem Storage Model 

Consider a discrete-time tandem storage model with J nodes illustrated in Figure 5.1. At the 

beginning of the nth slot of time, the inflow from the external into node 1, denoted by A~, is 

assumed to be a random variable with the distribution {a(k), kEN}. At the end of nth slot, the 

outflow from nodE' k to k + 1 is denoted by D~+1 which equals to the inflow A~!i into node k + 1 
at the beginning of (n + 1 )th slot for each 1 S k < J. Thus D~+1 denotes the number of customers 

who depart from the system at the end of nth slot. Assume that node k has the outflow discipline 

of the form (2.2): that is, 

P[D~+1 =j I X:;',D:;'.O S m S n;A~,X! +A~ = i] 
• 

ck(i)ak(i - jh(j) IT f3k(l), Os j S i, 1 S k S J. 
1=;-)+1 

Arrivals Departures 

Figure 5.1 A Tandem Storage Model 

Define three random vectors as 

Xn (X~, X;~, ... , X:), 

.4, (A~, A~, ... , A~), 

Dn = (D~, D;;, ... , D~), 

then the state of this tandem model is described by 

Theorem 5.1 Suppose that {a(k)} is the negative binomial distribution (2.3) and 'i'U) = 

( 77 + j - 1) Then the process {(Xn' Dn)} has (In invariant measure of the product form j . 

J 

IT rk(ik)a(dk), 
k=! 
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Proof: Transition probabilities are given by 

} 

P(:;!;.,1I) = a(h + el - i l ) IT Dk(jk + ek, ek)lF, 
k=l 

where !!!.=(il,···,i},dl,···,d.l), J!..=(h,···,j},el,···,e.l) and 

After some calculations we haVE! 
} 

LIT Tk(ik)a(dk)P(:;!;.,J!.) 
!!!. k=l 

} 11+"> 

= IT L Tk(jk)a(ek)Ck(jk + ek)CXk(ik)-y(jk + ek - ik ) 
k=l ik=O 

} 

= IT Tk(jk)a( ek). 
k=l 

Thus the theorem is established. 

m=ik+l 

When {Xn} is not stationary X n+1 is not stochastically determined without the information 

of l2.n which depends on X n-1. Therefore, since {x,,} is not a Markov chain we can not have the 

argument on reversibility of {Xn } which corresponds to one obtained in Theorem 2.3. However, 

associated with quasi-reversibility for the model, consider the process {(A~, X n(k), D~)} for < 

k S J where we put 

Xn(k) = (X~,X~, ... ,X~, D~, D~,···, D~-l). 
For the above Xn(k) we also use the notation 

Theorem 5.2 The process {(A~, X;;-(k), D~)} is the time-reversed chain of {(A~, X.n(k), D~)} 

for any 1 S k S J. 

Proof: From Theorem 2.1 this argument is available for k = 1. Consider the case 2 S k S J. 

The transition probabilities for {(A~,Xn(k),D~)} are 

k 

P('!:"J!.) = a(eo) IT Dm(im + dm - l , em)lc, 
m=l 

where!!!. = (do, i 1, ... ,ik , d1 , .•. ,dk- 1 , dk), J!. = (eO,)l, ... , Jk, el, ... , ek-l, ed and G = {C~, J!.)IJm == 

im + dm - 1 - em, 1 S m S k}. Let TA(!!!.) = IT;"=l Tm{im)a(dm) and define 

_ a(dO)TA(!!!.) 
P (y,:;!;.) = ( ) ()P(:;!;.,y). 

- a eo TA J!. -

Then, for (!!!., J!.) E G, we can easily have 

where we write :;!;.- = (dk, ik, ... , i 1 , dk- 1 , ... , d], do). This means the theorem holds. 
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Remark 5.3 Under the condition that Lt Tm(i) < 00 for 1 :::; m :::; k the stationary chain 

{(A;, X n( k), D~)} is quasi-reversible for 1 :::; k :::; J. This implies that, in equilibrium, D~ has the 

same distribution as A; and {A:"; m :::; n}, Xn(k) and {D~; m 2: n} are mutually independent for 

all n. Moreover, it is found that the system described by the reversed chain {(D~,X;;-(k),A;)} is 

also a tandem storage process where every nodes are in reversed order for the original model. 

6. Closed Storage Model 

A discrete-time storage model of the closed type represented in Figure 6.1 is considered. The 

outflow discipline from node k is assumed to be of the form 

• 
Dk( i, j) = Ck( i)ak( i - j) IT f3k(l), 0:::; j :::; i, k = 1,2. 

I=i-;+I 

Let L be the total storage level then the state of the system is described by (X~, X~, Dn) where 

X~ denotes the storage level in the node k at time nand Dn the level of outflow from node 1 to 

node 2. The state space of the process is 5 = {(i l , i2 , d) E N 3 1 i1 + i2 + d :::; L}. 

The transition probabilities are written as 

where !t = (ill i2,d), '!!.. = (h,h, e) and H = {(!t'!!..) E S21i2 + h + d + e == L}. Then we have 

Jl +e .,+d 
P(;!<,'!!..) = c(h + e)al(h) n f31(I)c(i2 + d)a2(h) n f32(I)lH. 

1=)1+1 1=)2+1 

I ...... 

I 
Node 1 

Node 2 

1 ......... I ,-

Figure 6.1 A Closed Model 
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Theorem 6.1 {(X';, X~, Dn)} has an invariant measure 

2 

IT rk(ik), 
k=l 

Proof: In a similar manner as the previous theorems, the present result is proved directly. 

In fact, we have 

)1 +e .,+d 
L r1(i1)r2(i2)c1(h + e)Cl'l(jd IT C(i2 + d)Cl'2(h) IT .82(I)lH 

JI+e JI +e 

== r1(h)r2(h)cdh + e) L Cl'1(i1) IT .81(1) 

L-JI-e L-)I-e 

·c2(L-h-e) L Cl'2(i2) IT .82(1) 
'2=0 1=.,+1 

for any (h,12, e) E S. 

Since the Markov chain {(X~, X;, Dn)} takes values only on finitely many states, it is found 

that, from this theorem, there exists the stationary distribution given by 

for ~ == (i1, i2, d) where C == E~ES r1 (i1 )r2( i2). If the process {(X~, X~, Dn)} is stationary then 

the outflow is distributed according to the distribution 

P[Dn == d] == 

Let D~ be the number of ou tflow from node 2 to node 1 at time n, then D~ == L - X~ - X~ - Dn. 

We write~' == (i ll i2,d') for ~= (i 1 ,i2 ,d) E S where d' == L - i1 - i2 - d. Since (d')' == d hence ~ 

is the conjugate state for ~. Then we have the following. 

Theorem 6.2 {(X~,X;,D~)} is reversed in time for {(X~,X;'~n)}. 

Proof: Define 

then we get 

JI +e i2+d 

C1(j1 + e)Cl'1(i1) IT c2(i2 + d)Cl'2(i2) IT .82(1) 

i l +d' J2+e
l 

c1(i1 + d')Cl'1(i 1) IT .81(I)C2(h + e')Cl'2(i2) IT .82(1) 
I=IJ +1 

D1(j1 + e, d')D2(h + e', d) 

P(1l,~), 
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for ~:= (it. i 2 , d), '1l = (it, 12, e) E H _ Thus the theorem is proved_ 

Remark 6.3 In view of Proof in the theorem, it is seen that {(X~, X~, Dn)} is dynamically 

reversible with respect to a measure {rl (il )r2( i2), (il' i2, d) E S}. Therefore, the reversed process 

for {(X;, X~, Dn)} represents the closed storage model in which the flow goes in the opposite 

direction of the original model. 
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