
Journal of the Operations Research 
Society of Japan 

Vo!. 32, No. 2, June 1989 

Abstract 

A STOCHASTIC PROGRAMMING MODEL 
FOR AGRICULTURAL PLANNING 

UNDER UNCERTAIN SUPPLY -DEMAND RELATIONS 

Teruaki Nanseki 
NatiolUlI Agriculture Research Center 

(Received April 15,1988; Revised October 28, 1988) 

The main purpose of this paper is to present a stochastic programming model for agricultural planning 

under uncertain supply-demand relations and to propose an algorithm for the model. We first illustrate that several 

economic problems under undertaint~ must be formulated as a quadratic programming model in which the linear 

coefficients are stochastic variables. The model is considered as an extension of the linear stochastic programming 

model reported by Freund (1956) and Kataoka (1963, 1967). 

The following alternative criteria for optimization are introduced to complete the model: (1) maximizing the 

expected value of utility; (2) maximizing aspiration level; (3) maximizing probability. The deterministic equiva­

lents are then derived with the mathematical characteristics of the solutions. The equivalence relations among the 

eqUivalents are also clarified. We propose an iteration algorithm for the equivalents by taking advantage of the 

relations. The algorithm is based on lhe secant method and the convex quadratic programming method. Finally, 

an application of the model is illustrated with a procedure for application. 

1. Introduction 

The regional planning models In which demand functions are incorporated directly 

into the objective function are widely applied for planning and analyzing both pricing 

and allocation problems for the commercial sector of agriculture (see e.g. Judge and 

Takayama, 1973). However, the models have been constructed without consideration of 

prediction errors associated with statistical estimation of the model parameters. The effects 

of uncertainty, whose main source is the variability of prices and costs as well as yields, 

on the optimal solutions of the models have not been evaluated as a result. We therefore 

introduce the stochastic prediction errors into the current alternative deterministic regional 

and interregional planning models. 

Various types of stochastic linear programming models (SLPM) have been developed 

and reported by many authors. Some of these models have been successfully applied 

in empirical studies. As considered by N anseki(1986), however, certain types of agricul-
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Stochastic Model for Agricultural Planning 201 

tural planning problems with stochastic linear demand functions must be formulated as a 

quadratic programming model with stochastie coefficients in the linear term (abbreviated 

to SQPM). 

In this paper, an algorithm is proposed and additional data are supplied with a view 
to further improving the model. In Section 2, we restate the model formulation described 
in the previous paper and illustrate how an interregional equilibrium model with stochas­

tic linear demand and supply function must also be formulated as SQPM. In Section 3, 

alternative criteria for optimization are introduced and the mathematical characterist.ics of 

SQPM are analyzed. Equivalence relations among these criteria and an algorithm based on 
the relations for the solutions are considered in Section 4. A procedure for application of 

the model and a simple example based on actual data are illustrated in Section 5, followed 

by concluding remarks in Section 6. 

2. Model Formulation 
2.1 Regional production planning model 

Consider an agricultural production planning model for a region with stochastic de­

mand functions in the Case of m commodities and single period (see e.g. Nanseki(1986) 

for details). Let 

p: vector of the commodity price 

(2.1) 

Xa : 

vector of the consumption quantity (demand) 

vector of the production activity level (supply) 

do: vector of the constant of the demand function 

D: matrix of the coefficient of t.he demand function 

v: vector of the prediction error of p 

t: vector of the unit transport cost 

T: vector of the prediction error of t 
c: vector of the unit production cost 
f'-: vector of the prediction error of c. 

The set of price-dependent demand functions may be written as 

p = do + DXd + v. 

Then the regional aggregated profit functions can be defined as 

(2.2) 1r(X"Xd) = [-(c+f'-) do+v-(t+T)1[::]+[X8 xdl[~ ~] [::]. 

For each commodity, we assume that the actual quantity consumed, Xd, is less than 
or equal to the effective supply, x., from all the production activities. The resource inputs 

for production and transport are assumed to be less than or equal to the resource quantity 

available. These constraints imposed on variables may be written as 

(2.3) 
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where 

T. Nanseki 

All: matrix of the yield of production 

A 12 : matrix of the input-output coefficient of production 

A22 : matrix of the input-output coefficient of transport 
b2 : vector of the resource availability 

I: suitable unit matrix. 

2.2 Interregional equilibrium model 
Consider an interregional price equilibrium model for an n region single commodity 

with stochastic demand and supply functions (see e.g. Takayama and Judge(1971) for the 

deterministic version). Let 

(2.4) 

(2.5) 

Pd: vector of the commodity price at the demand points 

P.: vector of the commodity price at the supply points 
Xd: vector of the consumption quantity at the demand points 
x.: vector of the production activity level at the supply points 

do: vector of the constant of the demand function 

D: matrix of the coefficient of the demand function 

v: vector of the prediction error of Pd 

so: vector of the constant of the supply function 

S: matrix of the coefficient of the supply function 

e: vector of the prediction error of P. 

Xt: vector of the transport activity level between the supply and demand 

points 
t: vector of the unit transport cost 
T: vector of the prediction error of t. 

The set of regional demand and supply functions may be written as 

Pd = do + DXd + v 

P. = So + Sx. + e. 
Then the interregional net social payoff function can be defined as 

(2.6) 

1 
+-[x 

2 • [

-S 
xt] ~ 

For each region, we assume that the consumption quantity, Xd, is less than or equal to 

the quantity shipped into the region from the supply regions. The actual supply quantity, 
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x., is assumed to be greater than or equal to the effective supply from some region to all 
the regions. These constraints imposed on variables may be written as 

(2.7) or 
o 
I 

where both Ad and A. are suitable matrices to complete the model and consist of 1, -1 
and 0 element. r is a suitable unit matrix. 

2.3 Quadratic programming model with stoehastic coefficients in the linear term 

The stochastic quadratic function such as (2.2) and (2.6) may be rewritten as 

(2.8) d(x) = ,IX + XIQX 

where, is a vedor of stochastic coefficient and Q is a deterministic matrix. The set of 

linear constraints such as (2.3) and (2.7), and nonnegativity conditions of variables may 
be rewritten as 

(2.9) C = {xlAx ~ b, x ~ a}. 

For simplicity, we, then, make the following assumptions on SQPM. 

Assumption 1. ,IX is a random variable and has a normal distribution N(rlx,xIEx), 
where rand E ,ue a mean vector and a variance-covariance matrix of, , respectively. 

The mean, p., and variance, (72, of the objective function d are denoted as 

(2.10) p. = E[d(x)] = rlx + XIQX 

(2.11) (72 = Var[d(x)] = xlEx. 

Assumption 1 obviously holds when each stoc:hastic error vector (/I, e, ~,r) is distributed 
as a multivariate normal distribution. Even if each stochastic vector is not a multivariate 
normal variable, the assumption is approximately met by the Central Limit Theorem (see 

e.g. Hoel et al. 1971) when the number of commodities or regions is sufficiently large. 
From the definition of variance, it is obvious that xlEx is positive semi-definite. For 

theoretical simplicity, however, we can make the following assumption without any loss in 
application for the time. 

Assumption 2. xlEx > 0 for all x # O. 

In the regional planning model, D is a diagonal matrix with nonpositive elements when 
cross price flexibility coefficients between commodities are zero. The following assumption 
consequently holds in this case. The assumption also holds in the single commodity in­
terregional equilibrium model, since D and S are diagonal matrices with non positive or 
nonnegative elements, respectively. 
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204 T. Nanseki 

Assumption 3. x'Qx::; 0 for all x # o. 

We introduce the following deterministic quadratic programming problem and make 

the following assumptions for later discussion. 

Problem O. 

maximize J1- = r' x + x' Qx 

subject to x E C 

Assumption 4. An optimal solution of Problem 0 exists and is finite. 

Assumption 5. C does not include x = o. 

Assumptions 1, 2 and 5 can be removed in the applied study (see Section 5). 

3. Deterministic Equivalents and Properties of Solution 

We have alternative criteria for optimization depending upon the purpose of the ap­

plied research. One of the well-known criteria in agricultural economics is to maximize the 

expected utility function specified by a suitable function form with constant absolute risk 

aversion. This criterion is often employed in empirical studies for modeling and simulating 

the economic behavior of a farm or a region. The criterion, however, is not appropriate 

to practical agricultural planning since it is difficult for policy makers to specify the risk 
aversion parameter. From the managerial view point of agriculture, the criteria corre­

sponding to a satisfaction approach are more practical. Maximizing probability criterion 

and maximizing aspiration ( or satisfactory) level criterion are two plausible criteria. 

In this section, the three alternative criteria above are adopted for formulating prob­

lems. We call each model U-model, S-model and P-model, in this order, respectively. 

Problem 1. U-model 
maximize E[u(d(x))] 
subject to x E C 
where u(d) = 1 - exp( -ad), a :2: 0 . 

Function u(d) is the utility function employed by Freund(1956) and parameter a is a 
positive risk aversion constant, which may be considered as a measure of the aversion to 
risk. 

Problem 2. S-model 

maxlmlze 9 

subject to Prob(g ::; d) :2: T/, x E C 

where 0.5 ::; T/ < 1.0. 
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The stochastic linear programming problems based on this criterion were considered 

in several papers (e.g. Kataoka, 1963). Parameter 'fJ is a reliability constant, which may 
be considered as a measure of the reliability of the planning. 

Problem 3. P-model 

maximize Prob(l ::; d) 
subject to x E C 
where parameter I is less than or equal to the optimal value of Problem O. 

The stochastic linear programming problems based on this criterion were considered 

in several papers (e.g. Charnes and Cooper, 1963; Kataoka, 1967). Parameter I is an 

aspiration level eonstant . 

Because of the normality of the distribution of d, the deterministic equivalent (Charnes 

and Cooper, 1963) of Problem 1 is Problem 4 (see Appendix 1 for details). 

Problem 4. U-model 

maXImIze 

(3.1) 

subject to x E C 
where a 2 O. 

Since /(x) is a strictly concave function of x for a > 0 by Assumptions 2 and 3, the 

optimal solution can be found by the known convex quadratic programming method (see 

e.g. Martos, 1975). When a = 0, Problem 4 is equivalent to Problem O. Denote an optimal 

solution and an optimal functional value as a function of a by x(a) and j(a) , respectively. 

The following properties can be derived (see Appendix 2 for the proofs). 

Proposition (i) x(a) is unique for a > O. 
(ii) j( a) is a strictly monotone decreasing function of a. 

(iii) o-(a) = jx(a)/Ex(a) is a strictly monotone decreasing function of a. 
(iv) jt(a) = r'x(a) + x(a)'Qx(a) is a strictly monotone decreasing function of 

a. 

Now define 

(3.2) J
+OO 1 p2 

<I>(k) = -=exp(--)dp 
-k V21r 2 

where p == N(O, 1) . The deterministic equivalent of Problem 2 is the following (see Ap­

pendix 3 for det ails). 

Problem 5. S-model 

maXImIze 

(3.3) 
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subject to x E C 

where k = 4>-1(17), k ~ O. 

Parameter k is a nonnegative safety constant which corresponds to a reliability con­

stant, 17 . Since J x'Ex is strictly convex (Kataoka, 1963), 9(X) is strictly concave for k > O. 
The optimal solution therefore may be found by the known convex programming method. 

When 17 = 0.5, that is k = 0, Problem 5 is equivalent to Problem O. 

Denote an optimal solution and an optimal functional value as a function of k by 
x{k) and g(k) , respectively. The following properties then can be derived. The proofs are 
similar to those of (i) '" (iv), respectively, and they are omitted. 

Proposition (v) x(k) is unique for k> O. 

(vi) g(k) is a strictly monotone decreasing function of k. 

(vii) iT(k) = y'x(k)'Ex(k) is a strictly monotone decreasing function of k. 
(viii) jJ,(k) = r'x(k) + x(k)'Qx(k)is a strictly monotone decreasing function of 

k. 

The deterministic equivalent of Problem 3 is the following (see Appendix 3 for details). 

Problem 6. P-model. 
maXImIze 

(3.4) h(x) = r'x + x'Qx -I 
v'x'Ex 

subject to x E C 

where 1 ~ max{E[d(x)llx E C} . 

Since the numerator of h( x) is concave and the denominator is positive and strictly 
convex, an optimal solution of problem 6 may be found by applying the Dinkelbach's 
nonlinear fractional programming method (Dinkelbach, 1967). When parameter 1 is equal 
to the optimal functional value of Problem 0, the optimal solution of Problem 6 is equivalent 
to that of Problem 0 (see Theorem 2). 

Denote an optimal solution and an optimal functional value as a function of / by x· (/) 

and h*(I) , respectively. Then the following properties can be derived. The proofs are also 
similar to those of (i) '" (iv), respectively, and they are omitted. 

Proposition (ix) x*(I) is unique for 1 ~ max{E[d{x)llx E Cl. 
(x) h*(l) is a strictly monotone decreasing function of I. 

(xi) O'*(l) = yIx*(/)'Ex*(I) is a strictly monotone increasing function of 1 . 

(xii) /1*(1) = r'x*(l) + x*(/)'Qx*(l) is strictly monotone increasing function of 
I . 
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4. Equivalenee Relations among the Criteria and Algorithm for P-model 
In this section, we determine the equivalence relation between Problems 4 and 5, and 

that between Problems 5 and 6. Based on the relations, an algorithm for the P-model is 
proposed. 

From a computational point of view, the equivalence relations are useful in applied 

research. Particularly in the case of a large model, it is difficult to solve Problems 6 and 5 
directly by the known non linear optimizing method due to the non linearity of the objective 

function. Because Problem 4 is, however, a convex quadratic programming problem for 
which several efficient optimizing methods are known, an optimal solution of the problem 
is more easily found than in the case of Problems 5 and 6. The solution of Problem 4 then 

can be interpreted as that of Problems 5 and 6 by the equivalence relations. Furthermore, 
the relations give us more information and are useful to identify a wider implication of the 
optimal solutions for the applications. 

4.1 Equivalence relations 
We can derive the following equivalence relation between Problem 4 and Problem 5 

with the same notation described as in the previous section. 

Theorem 1. An optimal solution of Problem 4, z(a), is that of Problem 5, 

x(k), if the value of parameter k satisfies k == ay'z(a)'l:x(a) . An optimal solution of 

Problem 5, x(k), is also that of Problem 4, :c(a), if the value of parameter a sati.ifies 

a = k/y'x(k)'l:x(k). 
Proof: Based on the convex programming theory, an optimal solution of Problem 

4, x(a) , is the x-part of the solution of the following Kuhn-Tucker condition KTL(a) 
(Martos, 1975). 

KTL(a). 

( 4.1) r + 2Qz(a) - al:x(a) - A'A + ~ = 0 Ax (a) - b + 11 = 0 

( 4.2) 

where A is an m dimensional vector ( Lagrange multiplier ); ;j; is an n dimensional slack 
vector; 11 is an m dimensional slack vector. 

On the other hand, an optimal solution of Problem 5, x(k), is the x-part ofthe solution 
of the following K uhn-Tucker condition KTL(k). 

( 4.3) r + 2Qx(k) - kl:x(k) - A'~ + ~ = 0 
y'x(k)'l:x(k) 

Ax(k) - b + y = 0 

( 4.4) x(k)), y, ~ ~ 0 
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where)' is an m dimensional vector (Lagrange multiplier); -if; is an n dimensional slack 
vector; f) is an m dimensional slack vector. 

Therefore if k = a..jx(a)/Ex(a) holds, x(a) is the optimal solution of Problem 5, be­

cause x(a) satisfies the KTL(k) equations. Similarly if a = kj..jx(k)/Ex(k) holds, x(k) is 
the optimal solution of Problem 4, because x(k) satisfies the KTL(a) equations. I 

Moreover we can find the following properties for the solution of Problem 4 (see Ap­
pendix 4 for the proofs). 

Corollary 1. a(k) as a function of k is unique. a(O) = 0 and lim a(k) = 00. 
k-+oo 

Corollary 2. a(k) is (! strictly monotone increasing function of k. 

It is obvious that k(a) = a..jx(a)/Ex(a) as the inverse function of a(k) has similar 
properties to Corollaries 1 and 2. 

We can derive the following equivalence relation between Problems 5 and 6. 

Theorem 2. An optimal solution of Problem 5, x(k) , is that of Problem 6, if the 

value of parameter I satisfies 

( 4.5) 1= r'x(k) + x(k)'Qx(k) - kVx(k)/EX(k). 

An optimal solution of Problem 6, x*(/), is also that of Problem 5, x(k) , if the value of 
parameter k satisfies 

( 4.6) 
r' x* (/) + x* (I)' Qx* (/) - I 

k = -....:....V-'-;;=x*=;=(/~)/~Ex=*::;=;;(I)~-

Proof: Since C = {xlAx ~ b, x 2: O} is compact and the denominator of the ob­
jective function of Problem 6, ';x'Ex , is positive for all x E C by Assumptions 2 and 4, 
the theorem of Dinkelbach (1967) for nonlinear fractional programming can be applied to 
Problem 6. A direct application of the theorem yields that x" is an optimal solution of 
Problem 6 and the optimal value is k", if and only if x" is an optimal solution of problem 

5 with k = k* and the optimal value is I. The theorem therefore is obvious. I 

We can now find the following properties (see Appendix 4 for the proofs). 

Corollary 3. l(k) as a function of k is unique. 1(0) = max{E[d(x)Jlx E C} and 

lim l(k) = -00 holds, where max{E[d(x)llx E C} is the optimal value of Problem O. 
k-+oo 

Corollary 4. l(k) is a strictly monotone decreasing function of k. 
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We can prove that k(l) as the inverse function of /(k) has similar properties to Corol­

laries 3 and 4, and the proofs are omitted. Furthermore, we can find that I(k) is a convex 

function of k , and so is k(l) of I. The proof is similar to that of lemma 1 of Dinkelbach 

(1967) and it is omitted. By Theorems 1, 2 and Corollaries 1 IV 4, the following properties 

obviously hold. 

Corollary 5. I(a) as a function of a is unique. 1(0) = max{E[d(x)]lx E C} and 
lim I(a) = -00 holds. 

a-+OO 

Corollary 6. /(a) is a strictly monotone decreasing function of a. 

4.2 Algorithm for P-model 

We propose here an iteration algorithm for the P-model. It is obvious that an optimal 

solution of Problem 4, £(a), is that of Problem 6, x*(I), if the value of parameter a 
satisfies I(a) = I by Theorems 1 and 2. We ean evaluate the functional value of I(a) by 

solving Problem 4 and find a solution of the equation I(a) -I = 0 by secant method (see 

e.g. Makinouchi and Torii, 1986). The solution is obviously nonnegative and unique by 

Corollaries 5 and 6. 

Algorithm 
[Step 0] 
Solve Problem 4 with i := 0 and ao := 0, and continue. 

[Step 1] 
Solve Problem 4 with i := 1 and al := (i(O) -/)/u(0)2, which is a lower bound of 
the value of a corresponding to the value of I, and continue. 

[Step 2] 

Set i := i + 1 and 

Solve Problem 4 with a = aj and continue. 

[Step 3] 
If i(a;) == I and/or laj - ai-Il ::; E then x(ad is the optimal solution. Otherwise 
return to Step 2, where 

I: an aspiration level assumed to be less than or equal to the optimal value 

of Problem 0 

ai: an estimated risk aversion constant at ith iteration 

x(a;}: an optimal solution of Problem 4 with a = aj 

i(a;}: the aspiration level calculated from x(ai) 
u(aj)2: the variance calculated from £(a;) 

!: iteration number 
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(;: tolerance parameter 

Similar algorithm for S-model will be easily constructed. 

5. Procedure for Application and Illustrative Example of P-model 

5.1 Procedure for application 

A procedure for application of the P-model, which is a more attractive formulation in 
practical planning, is outlined. In the applied problems, the propriety of the assumptions 

in Section 2 may not be verified apriori. Accordingly, we must verify the assumptions and 

then apply the algorithm described in the previous section. The procedure consists of the 

following five steps. 

If Assumption 1 does not hold then the deterministic equivalents, Problems 4,5 and 

6, can not be derived from Problems 1, 2 and 3. However Problem 6 can be interpreted as 
maximizing a lower bound for probability Prob[d ~ I] by the application ofthe Chebyshev's 

Inequality (see e.g. Hoel et aI. 1971 and Appendix 5). This interpretation is based upon 
the lack of assumption on the distribution of "f'x other than that it has finite variance. 

Procedure 

[Step 1] 
If Assumption 3 holds, then continue. Otherwise stop (failure). 

[Step 2] 
If we have a finite optimal solution of Problem 0 (Assumption 4 holds)' then con­
tinue. Otherwise stop (failure). 

[Step 3] 
Solve Problem 6 by the algorithm and denote an optimal solution by x·, and con­

tinue. 

[Step 4] 
Solve the following problem. If we have a zero optimal solution or a nonfeasible 
solution ( Assumption 2 holds), then x· is an optimal solution of the P-modeI. Oth­
erwise denote the optimal solution of Problem 7 by x and continue. 

Problem 7 
maximize r'x + x'Qx 

subject to ~x = 0, Ax:S; h, x ~ 0 
[Step 5] 
If g(x) < I then x· is an optimal solution of the P-model. Otherwise x is an optimal 
solution of the P-modeI. 

C = {xJAx :s; h, x ~ O} in an applied model may include x = 0 . In this case we must 
theoretically add an inequality to exclude x = 0 in order to meet Assumption 5. When 
an optimal solution of the problem without such an inequality is not a zero vector, all the 
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theorems and properties proved in this paper hold, however. We consequently need not 
add such an inequality in practice. 

5.2 Illustrative example 
In order to illustrate our algorithm and procedure, we consider the following simple 

example, which is based on an actual economic problem. One of the main issues in agri­
cultural policies in developing countries is to determine the optimal allocation of resources 
of a region under uncertain supply-demand relations and production constraints. For eval­
uating the resource allocation in Indonesian agriculture, the regional production planning 
model is applied based upon data presented by the UN/ESCAP CGPRT Centre. The data 
cover commodity production (103 t), prices (lOB Rp./103 t) expressed in 1985 Rp. from 

1982 to 1985, average yields (103 t/103 ha), production cost (lOB Rp./103 ha), transport 
cost (lOB Rp.f1l)3 t), input-output coefficients (103 ha, 103 man-day/103 ha) and resource 
availability (103 ha, 103 man-day/103 ha per month) of upland and labor. 

Main upland crops in Garut, Indonesia are maize, cassava, soybean and upland rice. 
Since an additional demand for rice, maize and cassava has not been generated recently, 

the increase in production leads to lower prices. On the other hand, prices of soybean are 
not sufficiently affected by the expanded production due to the increasing demand and 
price policy. 

The set of the demand functions for markets in Garut is statistically estimated as 

P = do + DXd + 1/ 

where 

[ p,;" 1 [38840] [ -1.2177 0 0 

-oLl Pmaize do = 
235.40 D= 0 -1.0242 0 

P= 
Pea •• avo, 192.20 0 0 -0.6160 
P.oybean 544.80 0 0 0 

E[v[~ m [ 210.619 66.056 62.420 -29{l.077] 
66.056 35.095 9.728 -92.914 

Var[l/] = 62.420 9.728 30.839 -100.413 . 
-290.077 -92.914 -100.413 444.250 

We assume that the cost vector for production and transportation are deterministic and 
estimate the coefficients as 

Cl = [61.99 18.91 23.38 90.00] t' = [154.00 15.00 25.00 15.00]. 

The yield matrix, input-output matrix and resource availability vector are also estimated 

as 
1.0 1.0 1.0 1.0 

[2~75 0 0 

oU 
32.1 35.7 57.1 37.5 

2.459 0 
A21 = 

34.3 17.9 0.0 30.3 
All = 0 0 10.175 30.3 10.7 0.0 16.1 

0 0 0 14.3 0.0 0.0 16.1 
14.3 21.4 0.0 21.4 
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14 = [73.3 3014.0 3014.0 3014.0 3014.0 3014.0]. 

Our problem is now restated as 
maximize Prob[l :::; d] 
subject to Ax :::; b 

where 

E _ [0 0] 
- 0 Var[v] . 

In this example, we selected I = 33677 as the aspiration level of the aggregated 
agricultural profit in the region. The corresponding Problem 6 and Problem 0 are solved 
by a hand-made program coded in C language with double precision on a personal computer 
NEC/PC-9801 VX. 

Since the matrix D is negative definite and Problem 0 has a finite optimal solution, 
Assumptions 3 and 4 obviously hold. We have also an optimal solution of Problem 6 at 

Iteration 11 by the algorithm with E = 1.0e-6. Table 1 presents the optimal solutions 
of both Problems 0 and 6 with a range of actual output levels from 1980 to 1985. The 
iteration process is presented in Table 2. Furthermore the corresponding Problem 7 has 
the only one feasible solution x = O. Assumption 2 therefore holds. We know as a result 

according to the procedure that the optimal solution of problem 6 is that of our problem. 

Table 1 Optimal solution of Problems 0 and 6 

Variable Unit Problem 0 Problem 6 Range of Actual Output 

1=33677 1980 rv 1985 
Area x. 

nee 103ha 4.089 1.598 8.848 22.652 
maIze 103ha 11.427 23.847 10.972 32.909 

cassava 103ha 10.164 8.775 18.262 rv 24.186 
soybean 103ha 47.620 39.080 9.950 rv 32.471 

Production Xd 

nee 103t 8.484 3.315 19.192 44.425 
maIze 103t 28.100 58.640 25.361 65.724 

cassava 103t 103.415 89.285 180.445 rv 276.282 
soybean 103t 42.382 34.782 9.185 rv 28.272 

J.L 106Rp. 35449.429 34338.658 
er 106 Rp. 241.046 34.689 
h 0.000 19.074 

106 Rp. 35449.429 33677.000 
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Table 2 Iteration process of the algorithm 

( €=1.0e-6, 1= 33677 ) 

ai ai - ai-l k(ai) ['(ail i(ai) -/ jc( ail o-(ai) -
0 0.000000 0.000 35449.429 1.772e+3 35449.429 241.046 

1 0.030505 3.050e-2 4.048 34787.987 1.111e+3 35325.240 132.711 

2 0.081742 5.124e-2 7.830 34359.093 6.821e+2 35109.123 95.789 

3 0.163227 8.14ge-2 11.406 34065.;371 3.884e+2 34862.368 69.877 

4 0.270970 1.077e-1 14.467 33877.'766 2.008e+2 34650.200 53.391 

5 0.386271 1.153e-1 16.761 33767.061 9.006e+1 34494.390 43.393 

6 0.480071 9.380e-2 18.189 33709.120 3.212e+1 34398.231 37.887 

7 0.532071 5.200e-2 18.860 33684.493 7.493e+0 34353.033 35.447 

8 0.547893 1.582e-2 19.051 33677.806 8.061e-1 34340.219 34.771 

9 0.549800 1.907e-3 19.073 33677.023 2.277e-2 34338.702 34.691 

10 0.549856 5.545e-5 19.074 33677.000 3.753e-5 34338.658 34.689 

11 0.549856 9.152e-8 19.074 33677.000 2.470e-5 34338.658 34.689 

6. Concluding Remarks 
6.1 Extension of the equivalence relations of the alternative criteria 

The equivalence relations of the alternative criteria may be extended to other criteria 

considered in several papers. The criteria are (1) maximizing the expected value of the 
objective function and (2) minimizing the variance of the objective function. The problems 
based on each criterion, which we call in order E-model and V-model, are the following, 

respectively; 

Problem 8. E-model 
maximize E[d(x)] subject to Var[d(x)] ~ v, x 'c C . 

Problem 9. V-model 
minimize Var[d(x)] subject to E[d(x)] 2: e, x E: C . 
where parameters v and e are suitable constants. These formulations for which the nor­

mality of d ( Assumption 1) is not a requirement may be useful in some applied fields. 

6.2 Relation between SLPM and SQPM 
One should note that in case of Q = 0, Problem 4 is reduced to the model presented 

in Freund(1956), and Problems 5 and 6 are reduced to the linear version considered by 

Kataoka (1963, 1967). The relations among optimal solutions of the linear version of the 
U-model, S-model and P-model have been discussed with numerical examples (without 
theoretical considerations) in several papers (e.g. Boussard, 1969, Sengupta, 1982). The­
orems 1 and 2, which are extensions of Kataoka's theorem (1963, 1967), establish the 
equivalence relations among the U-model, S-model and P-model, however. 
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Kataoka (1967) has proposed an algorithm for solving the linear version of the S-model 

and P-model. The algorithm, which is more sophisticated than the previous algorithm 
(Kataoka, 1963), takes advantage of the parametric quadratic programming method of 
Wolfe (1959). Ishii et al.(1978) have also proposed a similar algorithm for solving a variant 

of the S-model. However the algorithm can not be applied to Problems 5 and 6 due to 
the nonlinearity of the objective function, 1-'. This paper therefore presents an iteration 

method which is capable of solving the problems. 

6.3 Further applicability of SQPM 

An application study of SQPM to agricultural development problems in South East 
Asia has been undertaken in cooperation with experts of developing economies. In the 

case study, a stochastic interregional planning model based on SQPM will be built for the 

economic analysis of production and marketing systems under uncertain demand condi­

tions for selected commodities in Indonesia. 
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Appendix 1. Derivation of Problem 4 

By integration, 

E[u(d»] = 1+00 

u(d)CI>(d)dd = - ~ 1+00 

exp[- (d - ~)2]dd 
-00 cry 211' -00 20' 

a 1 1+00 (d - p. - a0'2)2 
-exp[a(-20'2)] J7C exp[- 2 2 ]dd 

O'y 211' -"" 0' 

= 1 - exp[a( ~ )0'2 - p.] 
2 

Therefore an optimal solution for maximizingE[u(d»] is equivalent to that of maximizing 
p. - (aj2)0'2 for a 2: o. 

Appendix 2. Proofs of Propositions (i)/'V (iv) 
(i) Since the objective function f(x) is strictly concave for a > 0, it is clear. 
(ii) For a2 > al 2: 0, 
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(iii) For a2 > al 2: 0, from optimality of x(at) and x(a2) 

j(al) = Mad - a
2
1 u(al)2 > Ma2) - a; u(a2? 

j(a2) = Ma2) - a
2
2 u(a2)2 > Mad - a

2
2 u(at)2 

By adding two inequalities, 

(iv) For a2 > al 2: 0, 

> Ma2) - a
2
1 u(at)2 (from Proposition(iii)) 

holds. Therefore M a 1) > M a2)' 

Appendix 3. Derivation of Problems 5 and 6 

By simple subtraction and derivation, the first constraint of Problem 2 becomes 

9 -J-t d- J-t 
Prob[g :::; d] = Prob[-2- :::; -2-] = Prob[-k :::; p] = <p(k) 2: 7J 

(J (J' 

g-J-t 
where k = --2- , 

(J 

d-J-t 
p= -2-' 

(J 

Since p is distributed according to a standard normal distribution, Prob[g :::; d] 2: 7J may 
be replaced by k 2: <p- 1 (7J) or 9 :::; J-t - <p- 1 (7J)(J2. An optimal solution of Problem 2 is 

consequently equivalent to that of Problem 5. Similar transformation of Problem 3 gives 
Problem 6. 

Appendix 4. Proofs of Corollaries 1 '" 4 
1. Since x(k) is unique by Proposition (x), so is a(k). Furthermore u(k) is bounded and 
the value is not zero by Assumption 4. Therefore the corollary is clear. 

2. For k2 > kl 2: ° , 
kl kl 

a(k1 ) = u(kt) :::; U(k2) (from Proposition(vii)) 

3. Since x(k) is unique, so is /(k). Furthermore x(k) is bounded and the value is not zero 
by Assumption 4. Therefore it is clear. 
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4. By Proposition (vi) and Theorem 2, it is clear. 

Appendix 5. Derivation of Problem 6 without Assumption l. 
The Chebyshev's inequality may be written as Prob[ld - fLl ~ c) :::; (1'2/C2 for any real 

number c > 0 where d is a general random variable with mean, fL, and finite variance, (1'2. 

Furthermore 

Prob[Jd - fLl ~ c) > Prob(d - fL < _·c) = Prob(d < I) = 1 - Prob[d ~ ~ 

holds where c == fL - I. A lower bound of Prob(d ~ I) is then 1 - (1'2/{fL - 1)2. 
The optimal solution for maximizing the lower bound is equivalent to that of maxi­

mizing {fL - 1)/(1' since we assume fL ~ I. 
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