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In this paper we propose practical algorithms for solving the nonlinear minimum cost network flow 

problem which has many fields of application such as production-distribution systems, pipe network systems, and 

communication systems. Here we assume that the problem is defmed on an open subset of the affine subspace 

corresponding to the flow conservation equations. This assumption offers great flexibility in choosing a basis to 

represent feasible solutions, and the conventional capacitated network flow problems can be put into this framework 

by exploiting an interior penalty function technique. The algorithms proposed in this paper belong to the class of 

feasible descent methods which successively generate search directions based on the idea of Newton method. We 

give some practical strategies of determining search directions which approximate solutions of Newton equations. 

We also discuss ways of maintaining a desirable basis which makes those strategies effective. We examined the 

efficiency of the algorithms by means of some computational experiments. The proposed algorithms could practi­

cally solve a problem with more than 500 nodes and 1500 arcs, which is quite large as a nonlinear optimization 

problem. 

1. Introduction 

Many important problems in engineering and economics are formulated as nonlinear minimum 

cost network flow problems. In particular, typical applications of such problems may be found 

in production-distribution systems, pipe network systems, resistive electrical network systems and 

communication systems. For solving such problems, there have been proposed many algorithms 

including the Frank-Wolfe method, the convex simplex method and the piecewise linear approx-
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Intelior Methods for Network Flow Problems 175 

imation method (see, e.g., Kennington and Helgason [16]). Among others, recently developed 

Newton-type algorithms (Dembo [6], Dembo and Klincewicz [7], Klincewicz [17]) are considered 

the most efficient from the viewpoint of the speed of convergence. 

In this paper, we propose Newton·type algorithms for solving nonlinear network flow problems 

under a slightly different setting from the one of conventional formulation. Specifically, we assume 

that the flow conservation equations are the only constraints of the problem and that the domain of 

the cost function is open relative to the affine subspace corresponding to the equality constraints. 

Therefore, at any feasible point, we can choose a basis in a rather flexible manner, thereby the 

algorithms may be substantially simplified compa,red with those which have been developed as 

direct extent ions of the network simplex method [6,7,17]. Although the above assumptions are 

not standard, any capacitated problem can be put into the present framework by using an interior 

penalty function t.echnique (Gill et al. [12]). In particular, for problems with linear cost functions, 

such a transformation is closely related to Karmarkar's algorithm [15] in linear programming, as 

pointed out by Gill et al. [13]. 

The algorithms presented here are improvements of the one proposed in [10] and belong to 

the class of feasihle descent methods which use search directions approximating the solutions of 

Newton equations. In this paper, we present three practical strategies of determining approximate 

Newton directions; the first two of them replace coefficient matrices of the equations by diagonal 

approximations, while the third exploits the preconditioned conjugate gradient method (Gill et al. 

[12]) to solve the equations rather accurately. 

As is well known, every basis of the minimum cost network flow problem corresponds to a 

spanning tree of the graph. Although the proposed algorithms have flexibility in choosing a basis 

at each feasible point as mentioned ahove, it is also true that some bases are more desirable than 

others from numerical viewpoints. In fact, we may characterize a desirable basis as a spanning tree 

of small weight, where weights are assigned to arcs in relation to the second derivatives of the cost 

function evaluated at the point under consideration. Since the weights of arcs vary as the iteration 

proceeds, it is advisable to systematically maintain desirable bases in order for the algorithms to 

work efficiently. For this purpose, we present two basis updating procedures which construct a 

minimum spanning tree by partially modifying the spanning tree used on the previous iteration. 

This paper is organized as follows. In the next section, we state the problem formulation along 

with some assumptions. In Section 3, we describe the basic algorithm on which the proposed 

algorithms are based. In Section 4, we present strategies to determine search directions used in the 

algorithms. In Section 5, we discuss procedures of updating a desirahle basis. Finally in Section 

6, we report some computational results in order to demonstrate the efficiency of the proposed 
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algorithms. 

2. Problem 

In this section, we formally state the problem and make some assumptions which are the same 

as those in [10]. 

Consider a connected directed graph G = (V,E) consisting of a set of nodes V = {1,2, ... , m} 

and a set of arcs E = {I, 2, ... , n}. For each arc j E E, let t(j) and h(j) denote its "from" node 

(or tail) and its "to" node (0J' head), respectively. In the following, we consider the nonlinear 

minimum cost network flow problem 

(2.1) minimize 

subject to 

I(x!, X2,···, xn) = L h(Xj) 
jEE 

L x.i - LX; = b;, 
t(j)=; h(j)=i 

i = 1,2, ... ,m, 

where Xj is the flow on arc j E E, and b; is the requirement at node i E V. The equality 

constraints in (2.1) are called the flow conservation equations. Node i is a supply node if b; > 0, 

a transshipment node if b; = 0, and a demand node if b; < O. It is assumed that the total supply 

equals the total demand, i.e., ~=;EV b; = O. 

Let x and b denote the column vectors x = (Xl, X2, ... ,Xn)T and b = (bI,~, ... ,bm?, respec­

tively. Then problem (2.1) may be rewritten in matrix form as follows: 

(2.2) minimize 

subject to Ax = b. 

We shall make the following assumptions on the cost function h associated with each arc j E E: 

(a) The domain of h is an open interval (lj, Uj), and h(Xj) too if Xj llj or Xj i Uj. 

(b) h is twice continuously difl'erentiable and fj'( X j) > 0 on its domain. 

In (a), we allow Ij == -00 and/or Uj = +00. From (b), each h is strictly convex on its domain. 

Notice that these assumptions implicitly assume that the lower and upper bounds are not equal, 

Le., Ij < Uj. However, the subsequent discussions remain valid even if there exists an arc such 

that 1; = Uj, because the flow Xj on such an arc can be regarded as a constant. In what follows, a 

flow X will be called a feasible solution of problem (2.2) if it is included in the domain of the cost 

function I and satisfies the flow conservation equations. 
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The above assumption (a) is different from those which are assumed in the conventional formu­

lation of the nonlinear network flow problems (Kennington and Helgason (16), Meyer (18)). Usually, 

bound constraints on the variables are explicitly included as Ij :::; Xj :::; Uj and cost functions Ii 
are defined on the real line. If we extend the network simplex method to a method for solving 

such standard problems, the choice of the basis may be restricted by the status of the variables, 

which depends on whether they are at one of their bounds or not (Dembo and Klincewicz (7)). In 

our formulation, however, each variable is containeed in the interior of the bound constraint, so 

that such a combinatorial restriction is not imposed on the choice of the basis at least theoreti­

cally. Moreover, it is noted that the sta~dard nonlinear capacitated minimum cost network flow 

problem with separable costs may be treated within our framework by utilizing a penalty function 

technique. In fact, the problem 

(2.3) minimize 

subject to Ax = b, I:::; x:::; U 

can be transformed into a problem of the form (2.2) , in which Ii is a barrier function defined by 

where I-'j > 0 is a penalty parameter. Of course, if Ij = -00 (Uj = 00), then the second (third) 

term on the right-hand side of (2.4) is vacuous. If I j is convex (not necessarily strictly convex) and 

twice continuously differentiable, and if at least one of Ij and Uj is finite for each j, then the barrier 

function Ii defined by (2.4) obviously satisfies assumptions (a) and (b). When the parameters I-'j 

are small enough, the optimum of the transformed problem may be regarded as a good approxi­

mation to an optimal solution of problem (2.3). (Note that in the ordinary barrier methods, the 

parameters I-'j are decreased to zero using an appropriate controlling scheme [12,13). In this paper, 

however, the parameters will be fixed at a very small value throughout the computation.) 

3. Basic Algorithm 

In this section we describe a basic algorithm for minimizing a nonlinear function subject to 

linear equality constraints. This algorithm serves as a basis of the algorithms to be presented in 

the subsequent sections for the solution of the network flow problem (2.2). The algorithm belongs 

to a class of feasible descent methods and consists of the following steps: 

Step 1: Obtain an initial feasible solution x. 

Step 2: Compute a search direction p satisfying ALp = 0 and V' f{x)T p < o. 
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Step 3: Carry out line search to determine a steplength a > 0 such that f(x + ap) < f(x). 

Set x := x + ap. 

Step 4: If a convergence criterion is satisfied, terminate. Otherwise go to Step 2. 

Note that the sequence of points {xk} generated by this algorithm is always contained in the 

feasible region. Since the domain of the cost function f is an open set, there surely exists a 

steplength a > 0 such that f(3: + ap) < f(x) for any search direction p satisfying the condition 

in Step 2. Therefore the sequence of the cost function values {f(xk)} decreases monotonically. 

Strictly speaking, we cannot guarantee convergence to an optimal solution theoretically under 

only the conditions in Steps 2 and 3 of the above algorithm. But under assumption (a) on the 

cost function, problem (2.2) is essentially equivalent to an unconstrained minimization problem in 

a subs pace of smaller dimension. Thus we may extend a convergence theorem of unconstrained 

descent methods (Fletcher [9], Polak [20]) to the present algorithm for solving problem (2.2). 

However we will not pursue this theoretical issue any more, because the chief aim of this paper is 

to show how the above algorithm spcialized to the network problems performs practically. 

In Step 1 of the algorithm, we have to find an initial feasible solution. To get such a solution, 

we may apply a method analogous to the so-called Big M method in linear programming (Bazarra 

and Jarvis [3]). This method has been used in Fukushima et al.[lO] and is given in Appendix 1. 

(An alternative way of obtaining an initial feasible solution may be to find a basic feasible solution 

of the system Ax = b, lj + f ~ Xj ~ Uj - f, for sufficiently small f > 0, using a combinatorial 

strategy [16, pp.244-248].) 

There can be a number of ways of obtaining search directions satisfying the conditions of Step 

2. Here we adopt a Newton-like method which will be described in detail in the next section. As 

for the line search in Step 3, we use a practical algorithm of Armijo type (Polak [20]), which is 

also described in Appendix 2. 

4. Search Directions 

Let 9 = y( x) and H = H( x) represent the gradient vector and the Hessian matrix, respectively, 

of the cost function f evaluated at a feasible solution x, i.e., 

( 

f{'(XI) 

H(x) = 

o 
Notice that H is a diagonal matrix whose elements are all positive by assumption (b) in Section 

2, and hence H is positive definite. 
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For problem (2.2), the Newton direction at a feasible solution:/: is given as the optimal solution 

of the following quadratic programming problem. 

(4.1) minimize 

subject to Ap= O. 

We partition the matrix A into a basic matrix B and a nonbasic matrix N, i.e., 

(4.2) A=[B,N], rankB=m. 

(Note that, by introducing an artificial arc, we may assume the matrix A to have full rank. See, 

e.g., Bazarra and Jarvis [3, p.409J.) According to (4.2), the following partitions are obtained: 

(4.3) x = ( :/:11 ) , 9 = ( 9B ) , p = ( PB ) , H = (HB 0). 
XN 9N PN 0 HN 

From (4.1), (4.2) and (4.3), we get 

Le., 

(4.4) 
( 

-B-IN ) 
P = I PN· 

Substituting these expressions into (4.1), we obtain the equality 

where 

It then follows that problem (4.1) is equivalent to the following unconstrained optimization problem 

including only the non basic variables PN. 

( 4. 7) minimize 

Since the matrix H is positive definite, the matrix 7l is also positive definite. Therefore the solution 

PN of problem (4.7) is given by solving the linear equations 
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For the search direction P computed from (4.8) and (4.4), the following relation holds by the 

positive definiteness of H. 

(4.9) T -T T-
9 P = 9 PN = -PNHpN < o. 

Hence the search direction P thus obtained is a descent direction of the cost function f at x. Also 

it is obvious from (4.4) that P is a feasible direction. Therefore the search direction P satisfies the 

two conditions in Step 2 of the algorithm described in the previous section. 

Note that in (4.4) and (4.5) we must solve the equations having B or BT as the coefficient 

matrix. As in the network simplex method (Bazarra and Jarvis [3], Kennington and Helga.50n [16]), 

we can solve those equations efficiently by exploiting the special feature that basis B is associated 

with a spanning tree in graph G. In the actual computations, we can also use the data structures 

which are useful in the network simplex method (Ali et al.[l], Barr et al.[2]). 

Now we turn our attention to practical methods of computing search directions. Bearing in 

mind that for large-scale problems, it may be extremely expensive to solve the equation (4.8) 

exactly. We shall consider three ways of computing search directions. The first two use a diagonal 

approximation to the coefficient matrix H in (4.8), while the third attempts to find the solution 

of (4.8) using an iterative method. 

(i) Substituting H N for H: If the second term on the right hand side of (4.6) is sufficiently smaller 

than the first term, it would be valid to substitute H N for H (Dembo and Klincewicz [7], Fukushima 

et al.[lO]). Since HN is diagonal, we can solve the following equation in a trivial manner. 

(4.10) HNPN + g = O. 

It is ensured in a similar way to (4.9) that the search direction P obtained from (4.10) together 

with (4.4) satisfies the two conditions in Step 2 of the basic algorithm. 

(ii) Substituting diag H for H: The approximation used in (i) completely loses the HB part of the 

second order information on the cost function. Here, in order to take into account an effect of H B, 

we incorporate the diagonal elements of the second term on the right hand side of (4.6) (Dembo 

and Klincewicz [7]). Let D denote the diagonal part of H. Then the equation 

can also be solved trivially. Since D is also positive definite, the search direction P computed from 

(4.11) along with (4.4) satisfies the conditions in Step 2 of the basic algorithm. 

It may be worth mentioning; a procedure for computing the elements of D efficiently. Let 

Q = B-1 N 
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and let qj and nj denote the column vectors of Q and N, respectively. Then we have 

showing that qj is the vector whose ith element is 1 or -1 if basic arc i is used to represent nonbasic 

arc j, and zero otherwise (Bazarra and Jarvis [3]). Using Q, we rewrite (4.6) as 

from which the diagonal elements Djj of H are given by 

Thus, we obtain the formula 

Djj = Hjj + L H", 
ies(j) 

where S(j) is the set of the basic arcs which constitute the cycle connecting the "from" and "to" 

nodes of the nonbasic arc j (Dembo and Klincewkz [7)). 

(Hi) Solving (4.8) by the conjugate gradient (CG) method: We apply the preconditioned conjugate 

gradient (PCG) method to solve (4.8) (Dembo [6], Klincewicz [17)). When we use the CG method, 

the rate of convergence depends highly upon the distribution of eigenvalues of the coefficient matrix 

H. In this respect, it is practically useful to transform (4.8) by utilizing a preconditioning matrix so 

that the coefficient matrix of the preconditioned equation has as many unit eigenvalues as possible 

(Gill et al.[12]). Here we use the diagonal matrix D given in (ii) as a preconditioning matrix. 

In the CG method, the matrix H appears only in a matrix-vector product of the form 

where y is some vector. The first term on the right hand side is computed trivially. The complicated 

second term can be calculated efficiently without any additional storage by making use ofthe special 

structure of the basis B. 

When the CG method is incorporated in the basic algorithm, it may be useful to terminate 

the CG iterations by taking into account a discrepancy between the current solution x and the 

optimal solution of problem (2.2). This idea is based on the observation (Dembo and Steihaug 

[8]) that, when far from the solution, it is not justified to solve equation (4.8) exactly with much 

computational eftort. 
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5. Basis Update 

In the previous section, we discussed ways of determining a search direction p by solving 

the equation (4.8) with H being replaced by a diagonal matrix. The validity of this substitution 

depends upon whether the second term on the right hand side of (4.6) is sufficiently smaller than 

the first term. In other words, the strategies (i) and (ii) described in Section 4 are considered 

reasonable if the elements of HH are much smaller than those of HN. 

In network problems, a basis corresponds to a spanning tree of the graph (Bazarra and Jarvis 

[3], Kennington and Helgason [16]). Thus we may determine a "desirable" basis by constructing a 

minimum spanning tree of graph G in which the weight Wj of arc j is given by fj'(xj). 

In the context of solving problem (2.2) iteratively, we have to successively obtain such desirable 

trees in G where the weights of arcs vary as the iteration proceeds. Therefore, it seems practical 

to find a minimum spanning tree by partially modifying the tree that was used at the previous 

iteration. In fact, in the later stage of the iterations, it is expected that the number of basic 

arcs to be exchanged is relatively small, since the weights of arcs will be close to those at the 

previous iteration. So it may be advantageous to use such an updating procedure, instead of 

finding a minimum spanning tree from scratch at each iteration by using minimum spanning tree 

algorithms available in the literature (lri et a1.[14], Papadimitriou and Steiglitz [19]). 

Such a procedure of updating a minimum spanning tree may be constructed on the basis of 

cut sets or circuits of graph G. 

5.1. Procedure Based on Cutsets 

Given a tree T of graph G and arc k E T, we define a cutset C*(E - Tlk) by 

C*(E - Tlk) = {j E Elt(j) E VI. h(j) E V2 } U {j E Elt(j) E V2 , h(j) E Vd, 

where VI and V2 denote the sets of nodes in the connected components of T with arc k removed 

(lri et a1.[14]). 

We present a procedure based on the idea that basic arcs with larger weight should have 

higher priority of leaving the basis. This procedure, which is an improvement of the one given 

in Fukushima et 301.[10], scans a list of basic arcs by examining the property stated in the next 

proposition. 

Proposition 1. (Cheriton and Tarjan [4]): For any arc k E T, there exists a minimum spanning 

tree containing an arc s E C*(E - Tlk) such that Ws = min {wjlj E C*(E - Tlk)}. 
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Now we explicitly state the basis updating procedure based on the cutsets. 

Procedure CS 

Input: A connected directed graph G = (V, E), a spanning tree T of G, and arc weights Wj. 

Output: The minimum spanning tree T* of G. 

begin 'Ili :=: max {wjlj ET}, !Q.:= min {wjlj E E - T}, 

JB := {jlj E T,!Q. ~ Wj ~ 'Ili}, IN := {jlj E E - T,!Q. ~ Wj ~ 'Ili} j 

(comment: initializej JB and IN are the sets of possibly leaving and entering arcs, 

respectively. ) 

while JB t- 0 do 

begin 

let k be an arc of maximum weight ill JBj 

if JNnC*(E - Tlk) t- 0 then 

end 

begin 

let S be an arc of minimum weight in IN n C*(E - Tlk)j 

ifw. < Wk then T:= Tu {s} _0 {k},JN:= IN - {s}j 

end 

JB := JB - {k}j 

T* :=Tj 

end 

Note that this procedure checks only those arcs which are contained in the subset J B U J N of 

E specified in the initialization step. Because, by the difinition of'lli and !Q., it is ensured in the 

initialization step that each arc in T - J B belongs to the minimum spanning tree T* while any arc 

not in T U J N never belongs to T*. 

The validity of this procedure can be ascertajned as follows: At each iteration, either arc k 

is judged to remain in T because it has the minimum weight in the cutset C*(E - Tlk), or the 

arc of minimum weight other than arc k in C*(E - Tlk) enters T in place of arc k. In any case, 

Proposition 1 guarantees that the arc which is decided to be included in T constitutes an arc of 

the minimum spanning tree T*. 

In the computational experience to be reported in the next section, we try two ways of im­

plementing procedure CS as a subroutine of the basic algorithm. First one is to carry out the 

procedure completely at every iteration of the basic algorithm. The second is to truncate the 

procedure after examining a certain number of cutsets, except on some predetermined iterations 

where the procedure is executed completely. In the second method, we cannot necessarily get a 
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minimun spanning tree, but this modification may offer significant saving of computational effort. 

5.2. Procedure Based on Circuits 

When a nonbasic arc s is a.dded to a basis tree T of graph G, a cycle is determined uniquely. 

We define the circuit C(Tls) as the set of those arcs which are contained in this cycle (Iri et al.[14]). 

The procedure presented here is based on the idea that such nonbasic arcs with smaller weight 

should have higher priority of entering the basis. This procedure checks a list of nonba.~ic arcs by 

ascertaining the property stated in the next proposition. 

Proposition 2. (Tarjan [21]): T is a minimum spanning tree of G if and only if, for each nonbasic 

arc s, w. is at least as large as the weight of any arc in G(Tls). 

Now we present the basis updating ,procedure based on the circuits of the graph. 

Procedure CC 

Input: A connected directed graph G = (V, E), a spanning tree T of G, and arc weights Wj. 

Output: The minimum spanning tree T* of G. 

begin 

ID:= max {wjli ET}, 1Q:= min {wjli E E - T}, 

JB := Vii E T,1Q ~ Wj ~; ID}, IN := Vii E E - T,1Q ~ Wj ~ ID} ; 

(comment: initialize; J Band J N are the sets of possibly leaving and entering arcs, 

respectively. ) 

while IN f 0 do 

begin 

let s be an arc of minimum weight in J N; 

if JB nG(Tls) f 0 then 

end 

begin 

let k be an arc of maximum weight in JB n G(Tls); 

ifw. < Wk then T:= Tu {s} - {k},JB := JB - {k}; 

end 

IN := IN - {s}; 

T*:= T; 

end 

The validity of procedure CC can be ascertained as follows: At each iteration, either arc s is 

judged not to enter the basis because it has the largest weight in the circuit G(Tls), or the arc of 
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maximum weight in G(Tls) leaves T in place of arc s. In any case, Proposition 2 guarantees that 

the arc which is decided not to be included in T nE!ver constitutes an arc of the minimum spanning 

tree. 

In the previous section, we mentioned the possibility that the basic algorithm incorporates 

incomplete implE!mentation of procedure CS, which allows partial examination of the set of cut­

sets. By analogy, it may appear that such modification is also applicable to procedure CC. The 

computational experience has revealed, however, that it does not lead to any favorable result. This 

is because, unlik.~ the truncated versions of procedure CS, truncated versions of procedure CC are 

very likely to fail to let some arcs with extremely large weight leave the basis tree. In this case, 

the computed directions will completely differ from the Newton directions and the computational 

efficiency of the ,algorithm will be seriously affected. 

6. Computational Results 

We have conducted numerical experiments with the proposed algorithms for several test. prob­

lems derived from the capacitated problems of the form (2.3) through the transformation (2.4). 

A variety of algorithms have been proposed for the solving of problems (2.3). For the purpose of 

comparison, we have adopted the Frank-Wolfe (F-W) method which is one of the popular methods 

for nonlinear network flow problems (Kennington and Helgason [16)). The Frank-Wolfe method 

solves a linear minimum cost network flow problem as a subproblem at each iteration. We used the 

code written by Laszlo Hars as a subroutine for solving the subproblems, and the golden section 

algorithm for line search_ All programs were coded in FORTRAN 77 and the runs were made in 

double precision on a FACOM M-780/30 computer. 

6.1. Test Problems 

For the test. problems, we used lattice networks as shown in Fig. 1, where the nodes in the 

left-most column are supply nodes (bi > 0), the nodes in the right-most column are demand nodes 

(bi < 0), and the other nodes are transshipment nodes (bi = 0). All the arc cost functions are of 

the form 

where Jl = 10-9 . The constants bi, Cj, dj and Uj are random numbers uniformly generated in the 

intervals (1,10), (0,20), (10-3 ,10-2 ) and (5,10), respectively. 
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supply nodes 
(u; > 0) 

• • 
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transshipment nodes 
(b; = 0) 

-----... ~~ .... --~ r " 

• • 

••• 

• •• 

• •• 

• • 

Fig. 1 Lattice network 

The sizes of the test problems are as follows: 

(1) 56 nodes and 146 arcs, 

(2) 121 nodes and 330 arcs, 

(3) 256 nodes and 720 arcs, and 

(4) 529 nodes and 1518 arcs. 

6.2. Convergence Criterion 

demand nodes 
(b; < 0) 

• • 

The convergence criterion used for the proposed algorithms and the Frank-Wolfe method is 

defined on the basis of the relative error in the cost function, Le., 

where r is the optimal value of the test problem. Since the true value of r is unknown, we 

substitute for r an estimate of r obtained by the Frank-Wolfe method. More precisely, since the 

Frank-Wolfe method generates a sequence of lower bounds converging to the optimum value, r is 

replaced by its lower bound which is obtained by running the Frank-Wolfe method for sufficiently 

long time, Le., 5 minutes for problems (1) and (2), and 15 minutes for problems (3) and (4). 

6.3. Results 

The basic algorithm has been applied to each test problem using various direction finding 

strategies and basis updating procedures, that are described in Sections 4 and 5, respectively. The 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Interior Methods for Network Flow Problems 187 

results are summarized in Tables 1(i)-4(iii). For example, Table 1(i) shows the results for problem 

(1), obtained by the algorithm with direction finding strategy (i) and various basis updating 

procedures. For comparison purposes, the tables also contain the results of the F-W method. 

Each table consists of the following items: 

(a) the marginal/cumulative number of iterations required to achieve the levels of accuracy 10%, 

1% and O.l%j 

(b) the number of basis updates required to achieve the level of accuracy 0.1 %j 

(c) the details of CPU time required at each step of the basic algorithm (CPU time per iteration 

is shown in the parentheses). 

In order to help more intuitive understanding, the details of CPU time for problem (4) are also 

illustrated in Fig. 2. 

In what follows, we first appraise basis updating procedures CS and CC, and then compare 

direction finding strategies (i), (ii) and (Hi). 

CPU time 
(sec) 

30 

200 

100 

Strategy (i) 

i Basis Update' 
::::: Search Direction 

Line Search 
Others 

Strategy (ii) 

Fig. 2 Results for Problem (4) 

,., 
-:.;. 

CC 

Strategy (iii) 
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Table l(i). Results for Problem 1, with direction finding strategy (i) 

cs 
CC F·W 

TRUNC=l TRUNC=4 TRUNC=lO TRUNC=30 

(a) Iterations 

phase I 54 55 56 117' 54 

10% 42/ 96 53/ 108 49/ 105 42/ 96 2 

phase II 1% 28/ 124 18/ 126 15/ 120 28/ 124 12/ 14 

0.1% 22/ 146 42/ 168 14/ 134 22/ 146 74/88 

(b) Number of 

basis updates 406 366 250 406 

(c) CPU time (s) 

Basis update 0.488(0.0033) 0.424(0.0025) 0.318(0.0024) 0.312(0.0021) 

Search direction 0.187(0.0013) 0.222(0.0013) 0.177(0.0013) 0.193(0.0013) 

Line search 0.185(0.0013) 0.240(0.0014) 0.175(0.0013) 0.184(0.0013) 

Others 0.073(0.00050) 0.093(0.00055) 0.070(0.00052) 0.078(0.00053) 

Total 0.933(0.0064) 0.979(0.0058) 0.740(0.0055). 0.767(0.0053) 1.552(0.018) 

Table l(ii). Results for Problem 1, with direction finding strategy (ii) 

CS 
CC F-W 

TRUNC=l TRUNC=4 TRUNC=lO TRUNC=30 

(a) Iterations 

phase I 53 55 55 112' 53 

10% 45/ 98 40/ 95 42/ 97 45/ 98 2 

phase II 1% 23/ 121 24/ 119 19 / 116 23 / 121 12/ 14 

0.1% 12/ 133 16/ 135 11 / 127 12 / 133 74/88 

(b) Number of 

basis updates 363 332 235 363 

(c) CPU time (s) 

Basis update 0.457(0.0034) 0.372(0.0028) 0.309(0.0024) 0.300(0.0023) 

Search direction 0.237(0.0018) 0.239(0.0018) 0.228(0.0018) 0.245(0.0018) 

Line search 0.150(0.0011) 0.159(0.0012) 0.139(0.0011) 0.144(0.0011) 

Others 0.074(0.00056) 0.076(0.00056) 0.073(0.00057) 0.075(0.00056) 

Total 0.918(0.0069) 0.846(0.0063) 0.749(0.0059) 0.764(0.0057) 1.552(0.018) 
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T.able l(iii). Results for Problem 1, with direction finding strategy (iii) 

cs 
CC P-W 

TRUNC=1 TRUNC=4 TRUNC=10 TRUNC=30 

(a) Iterations 

phase I 65 91 61 78 65 

10% 52 / 117 52/ 143 53/ 114 38/ 116 52/ 117 2 

phase II 1% 20/ 137 20/ 163 20/ 134 20/ 136 20/ 137 12/ 14 

0.1% 16/ 153 16 / 179 18/ 151 5/141 16/ 153 H / 88 

(b) Number of 

basis updates 182 167 166 129 182 

(c) CPU time (5) 

Basis update 0.524(0.0034) 0.498(0.0028) 0.35.3(0.0024) 0.304(0.0022) 0.323(0.0021) 

Search direction 1.690(0.011 ) 2.024(0.011) 1.727(0.011) 13.555(0.096) 1.683(0.011 ) 

Line search 0.195(0.0013) 0.215(0.0012) 0.177(0.0012) 0.161(0.0011) 0.179(0.0012) 

Others 0.078(0.00051) 0.099(0.00055) 0.087(0.00058) 0.079(0.00056) 0.084(0.00055) 

Total 2.487(0.016) 2.836(0.016) 2.349(0.016) 14.099(0.10) 2.269(0.015) 1.552(0.018) 

Table 2(i). Results for Problem 2, with direction finding strategy (i) 

CS 
CC F-W 

TRUNC=1 TRUNC=4 TRUNC=10 TRUNC=30 

(a) Iterations 

phase I 123 121 127 254' 123 

10% 113 / 236 116 / 237 116. / 243 113/236 3 

phase II 1% 65/ 301 67/304 111 /354 65/301 28/ 31 

0.1% 121 /422 148/452 201 / 555 122/423 216 / 247 

(b) Number of 

basis updates 1050 912 811 1050 

(c) CPU time (5) 

Basis update 3.9(0.0092) 3.1(0.0069) 3.0(0.0054) 2.0(0.0047) 

Search direction 1.3(0.0031) 1.4(0.0031) 1.7(0.0031) 1.3(0.0031 ) 

Line search 1.5(0.0036) 1.8(0.0040) 2.5(0.0045) 1.5(0.0035) 

Others 0.4(0.00095) 0.4(0.00088) 0.6(0.0011) 0.4(0.00095) 

Total 7.1(0.0017) 6.7(0.015) 7.8(0.014) 5.2(0.012) 12.5(0.051) 
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Table 2(ii). Results for Problem 2, with direction finding strategy (ii) 

cs 
CC F-W 

TRUNC=l TRUNC=4 TRUNC=10 TRUNC=30 

(a) Iterations 

phase I 126 125 123 472" 126 

10% 109/235 111 / 236 111 / 234 109/235 3 

phase II 1% 38/273 50/286 55/289 38/273 28/ 31 

0.1% 31 / 304 30/3i6 12/301 31/304 216/247 

(b) Number of 

basis updates 943 880 678 943 

(c) CPU time (s) 

Basis update 3.2(0.011) 2.6(0.0082) 2.0(0.0066) 1.7(0.0056) 

Search direction 1.3(0.0043) 1.4( 0.0044) 1.3(0.0043) 1.3(0.0043) 

Line search 0.8(0.0026) 0.8(0.0025) 0.8(0.0027) 0.8(0.0026) 

Others 0.4(0.0013) 0.3(0.00095) 0.3(0.0010) 0.3(0.00099) 

Total 5.7(0.019) 5.1(0.016) 4.4(0.015) 4.1(0.013) 12.5(0.051) 

Table 2(iii). Results for Problem 2, with direction finding strategy (iii) 

CS 
F-W CC 

TRUNC=l TRUNC=4 TRUNC=10 TRUNC=30 

(a) Iterations 

phase I 113 113 113 113 113 

10% 99 / 212 99/212 101 / 214 101 / 214 99/212 3 

phase II 1% 42/254 42/254 39 / 253 39/253 42/254 28/ 31 

0.1% 23/277 26/280 25 / 278 26/279 23/277 216 / 247 

(b) Number of 

basis updates 392 388 359 339 392 

(c) CPU time (s) 

Basis update 3.2(0.012) 2.4(0.0086) 1.8(0.0065) 1.5(0.0054) 1.5( 0.0054) 

Search direction 10.4(0.038) 10.3(0.037) 10.3(0.037) 87.5(0.31) 10.4(0.038) 

Line search 0.7(0.0025) 0.7(0.0025) 0.7(0.0025) 0.7(0.0025) 0.7(0.0025) 

Others 0.3(0.0011 ) 0.3(0.0011) 0.3(0.0011) 0.3(0.0011) 0.3(0.0011) 

Total 14.6(0.053) 13.7(0.049) 13.1 (0.047) 90.0(0.32) 12.9(0.047) 12.5(0.051) 
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Table 3(i). Results for Problem 3, with direction finding strategy (i) 

cs 
CC F-W 

TRUNC==l TRUNC==4 TRUNC==lO TRUNC=30 

(a) Iterations 

phase I 264 269 267 268 264 

10% 236/500 229/498 234/ 501 242/ 510 236/500 4 

phase II 1% 175/675 207/705 207/ 708 241/ 751 175 / 675 28/ 32 

0.1% 111 / 786 234/939 314/1022 334/ 1085 131 /806 215 / 247 

(b) Number of 

basis updates 2905 2675 2254 1418 2914 

(c) CPU time (s) 

Basis update 27.7(0.035) 21.2(0.023) H;'8(0.016) 13.7(0.013) 9.6(0.012) 

Search direction 5.6(0.0071) 6.5(0.0069) 7.0(0.0068) 7.4( 0.0068) 5.7(0.0071) 

Line search 5.0(0.0064) 7.4(0.0079) 8.6(0.0084) 11.6(0.011) 5.3(0.0066) 

Others 1.8( 0.0023) 2.1(0.0022) 2.3(0.0023) 2.5(0.0023) 1.8(0.0022) 

Total 40.1(0.051 ) 37.3(0.040) 34.7(0.034) 35.2(0.032) 22.4(0.028) 38.6(0.16) 

Table 3(ii). Results for Problem 3, with direction finding strategy (ii) 

CS 
CC F-W 

TRUNC=l TRUNC=4 TRUNC==10 TRUNC=30 

( a) Iterations 

phase I 262 268 267 279 262 

10% 241 / 503 241 / 509 240/ 507 243 / 522 241 /503 4 

phase II 1% 112/ 615 120 / 629 118/ 625 111 / 633 112/615 28/ 32 

0.1% 37/652 25/ 654 18/ 643 35/ 668 37/ 652 215 / 247 

(b) Number of 

basis updates 2657 2483 1995 1442 2657 

(c) CPU time (s) 

Basis update 24.6(0.038) 17.7(0.027) 12.5(0.019) 9.6(0.014) 8.4(0.013) 

Search direction 6.8(0.010) 6.8(0.010) 6.7(0.010) 6.9(0.010) 6.7(0.010) 

Line search 3.6(0.0055) 3.6(0.0055) :1.5(0.0054) 3.7(0.0055) 3.6(0.0055) 

Others 1.5( 0.0023) 1.5 ( 0.0023) 1.5(0.0023) 1.6(0.0024) 1.5(0.0023) 

Total 36.5(0.056) 29.6(0.045) 24.2(0.038) 21. 7(0.032) 20.2(0.031) 38.6(0.16) 
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Table 3(iii). Results for Problem 3, with direction finding strategy (iii) 

cs 
CC F-W 

TRUNC=1 TRUNC=4 TRUNC=10 TRUNC=30 

(a) Iterations 

phase I 272 267 268 275 272 

10% 219 / 491 218/485 221 /489 221 /496 220/492 4 

phase II 1% 86/577 88/573 86 / 575 87/583 851 / 577 28/ 32 

0.1% 54 / 631 56/628 58/633 60/ 643 53/ 630 215/ 247 

(b) Number of 

basis updates 891 867 853 818 887 

(c) CPU time (s) 

Basis update 25.7(0.041 ) 17.3(0.028) 12.4(0.020) 9.3(0.014) 8.0(0.013) 

Search direction 68.5(0.11 ) 67.0(0.11) 68.1(0.11) 68.1(0.11) 69.7(0.11) 

Line search 3.5(0.0055) 3.5(0.0056) 3.6(0.0057) 3.6(0.0056) 3.5(0.0056) 

Others 1.5(0.0024 ) 1.5(0.0024) 1.5(0.0024) 1.5( 0.0023) 1.5( 0.0024) 

Total 99.2(0:16) 89.3(0.14) 85.6(0.14) 82.6(0.13) 82.7(0.13) 38.6(0.16} 

Table 4(i). Results for Problem 4, with direction finding strategy (i) 

CS 
CC F-W 

TRUNC=l TRUNC=4 TRUNC=10 TRUNC=30 

(a) Iterations 

phase I 556 558 559 564 556 

10% 553 / 1109 551 / 1109 550/ 1109 584/ 1148 551 / 1107 4 

phase II 1% 374 / 1483 365 / 1474 531 / 1640 805/ 1953 372 / 1479 36/ 40 

0.1% 438/ 1921 383 / 1857 539 / 2181 809/ 2762 580/2059 373 / 413 

(b) Number of 

basis updates 78713 7276 5932 4172 7872 

(c) CPU time (s) 

Basis update 119.3(0.062) 79.7(0.043) 63.3(0.029) 54.8(0.020) 33.7(0.016) 

Search direction 16.8(0.0087) 16.4(0.0088) 18.6(0.0085) 22.5(0.0081 ) 17.7(0.0086) 

Line search 17.3(0.0090) 16.8(0.0090) 22.4(0.010) 39.7(0.014) 19.4(0.0094) 

Others 4.9(0.0026) 4.8(0.0026) 5.6(0.0026) 7.1(0.0026) 5.2(0.0025) 

Total 158.3(0.082) 117.6(0.063) 110.0(0.050) 124.1(0.045) 76.0(0.037) 139.7(0.34) 
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Table 4(ii). Results for Problem 4, with direction finding strategy (ii) 

cs 
CC F-W 

TRUNC=l TRUNC=4 TRUNC=10 TRUNC=30 

(a) Iterations 

phase I 556 541 553 556 555 

10% 561 / 1116 564/ 1105 576/ 1129 559/ 1115 561 / 1116 4 

phase II 1% 208/ 1324 208 / 1313 208/ 1337 212 / 1327 204/ 1320 36/ 40 

0.1% 64/ 1388 70/ 1383 156/ 1393 72/ 1399 70/ 1390 373 / 413 

(b) Number of 

basis updates 7508 6484 5337 3845 7491 

(c) CPU time (s) 

Basis u pda te 97.8(0.070) 69.6(0.050) 48.0(0.034) 34.1(0.024) 28.6(0.021) 

Search direction 21.6(0.016) 21.6(0.016) 21.9(0.016) 21.7(0.016) 21.6(0.016) 

Line search 9.7(0.0070) 9.7(0.0070) 9.8(0.0070) 9.7(0.0069) 9.8(0.0071) 

Others 3.6(0.0026) 13.7(0.0099) 3.7(0.0027) 3.6(0.0026) 3.6(0.0026) 

Total 132.7(0.096) 104.6(0.076) 83.3(0.060) 69.3(0.050) 63.6(0.046) 139.7(0.34) 

Table 4(iii). Results for Problem 4, with direction finding strategy (iii) 

CS 
CC F-W 

TRUNC=l TRUNC=4 TRUNC=10 TRUNC=30 

(a) Iterations 

phase I 481 481 606 635 481 

10% 507/ 988 510/ 991 530/ 1136 522 / 1157 508/ 989 4 

phase II 1% 210 / 1198 205 / 1196 19;; / 1331 198/ 1355 209/ 1198 36/ 40 

0.1% 105 / 1303 107 / 1303 100 / 1431 103 / 1458 100/ 1298 373 / 413 

(b) Number of 

basis updates 1917 1888 1848 1771 1900 

(c) CPU time (s) 

Basis update 98.4(0.076) 67.4(0.052) 50.1(0.035) 35.6(0.024) 26.5(0.020) 

Search direction 213.2(0.16) 216.1(0.17) 219.2(0.15) 222.4(0.15) 209.0(0.16) 

Line search 9.2(0.0071) 9.3(0.0071) 10.0(0.0070) 10.2(0.0070) 9.2(0.0071) 

Others 3.5(0.0027) 3.5(0.0027) 3.7(0.0026) 3.9(0.0027) 3.4(0.0026) 

Total 324.2(0.25) 296.2(0.23) 283.1(0.20) 272.0(0.19) 248.2(0.19) 139.7(0.34) 
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6.3.1. Comparison of Basis Updating Procedures CS and CC 

We introduce parameter TRUNC which is a key to the implimentation of procedure CS. 

Namely, we execute procedure CS completely every TRUNC iterations, and at the other iter­

ations we truncate procedure CS when the number of examined cutsets exceeds IJBI/TRUNC. 

Particularly, TRUNC = 1 indicates that we do not truncate the procedure at all. 

Every table shows that CS with TRUNC = 1 always requires more CPU time than CC. This 

indicates that, when completely implemented, procedure CS is less effective than CC. This may 

be considered because, unlike fundamental cutsets, fundamental circuits can be found by utilizing 

a simple data structure [1,2,16]. 

As far as procedure CS is concerned, as TRUNC becomes large, the number of basis updates 

decreases and accordingly less CPU time is required for basis updates. Also, in many cases, the time 

saved in basis updates is almost equal to the reduction in the total running time. In particular, 

the running time of the algorithm using CS with large TRUNC is often comparable to that of 

the algorithm using CC. However, it can also happen that large TRUNC causes a considerable 

increase in the total number of iterations, because the search directions may significantly deviate 

from Newton directions during a fairly large number of iterations. In fact, Tables l(i), l(ii), 2(i) 

and 2(ii) show that for problems (1) and (2), the algorithm with CS(TRUNC = 30) could not get 

through with phase I, namely, could not obtain an initial feasible solution. 

Note that the lattice network of Fig. 1 is sparse because the number of arcs is of the same 

order as the number of nodes. For a sparse network, the set J N of non basic arcs that can be 

neglected in the search for an entering arc in general consists of a rather large portion of the 

entire set of nonbasic arcs, compared with dense networks such as the complete graphs. Therefore, 

the idea of updating the basis tree seems to work more effectively for dense networks. In fact, 

Fukushima et al.[ll] have recently proposed a modification of procedure CC and have shown by 

computational experiments that dense graphs are more amenable to updating minimum spanning 

trees than sparse graphs. 

6.3.2. Comparison of Direction Finding Strategies 

The algorithm with strategy (i) usually requires a fairly large number of iterations to reach the 

level of accuracy 0.1% from the level of 1%. In particular, the examples shown in Table 2(i) have 

difficulty in achieving the level of accuracy 0.1 %. This is considered because the directions obtained 

by strategy (i) do not approximate Newton directions satisfactorily. Moreover the algorithm with 

strategy (i) is somewhat sensitive to the value of TRUNC, in the sense that the total number of 

iterations gradually increases as TRUNC becomes larger. 
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The algorithm with strategy (ii) generally requires far less iterations to attain the level of 

accuracy 0.1% from the level of 1%, compared with the algorithm with strategy (i). Moerovl'r, the 

decrease in total number of iterations well compensates for the increase in CPU time to compute 

search directions. Also, the number of iterations is not affected by the change of TRUNC, and 

hence strategy (ii) is regarded as more stable than strategy (i). These advantages of strategy 

(ii) seem to result from the fact that it produces search directions which approximate Newton 

directions satisfactorily. 

The algorithm with strategy (iii) also does not require many iterations to attain the level of 

accuracy 0.1% from the level of 1%, and the number of iterations is not affected by the change 

of TRUNC as in the case of the algorithm with strategy (ii). However, the algorithm with (iii) 

needs much more computational effort in computing search directions than the one with (i) or 

(ii). In particular, if TRUNC is chosen large, strategy (Hi) sometimes finds serious difficulty in 

solving Newton equations, as shown in the column of CS(TRUNC = 30) in Tables l(iii) and 

2(iii). Moreover, since computation time of search directions forms a large part of the total CPU 

time, it has relatively small merit to reduce CPU time for basis updates by changing the value 

of TRUNC. Consequently, as long as the same convergence criterion is used, strategy (iii) does 

not seem effective. When we need a more accurate solution, however, this strategy may work 

efficiently, because of the quadratic convergence property of Newton method. 

7. Concluding Remarks 

We have presented interior methods for nonlinear minimum cost network flow problems. The 

problem treated here is defined on an open subset relative to the subspace associated with the flow 

conservation equations. Exploiting this feature, the proposed algorithms have great flexibility in 

the choice of a basis, and this point distinguishes the proposed algorithms from those which have 

ever been developed. Based on Newton's method, we have proposed some practical strategies of 

determining search directions. We have also presented procedures of maintaining a desirable basis, 

which constructs a minimum spanning tree from an arbitrary tree. Numerical results reported in 

Section 6 indicate that the proposed algorithms are practically effective. 

Although we have assumed the problem to have a separable cost function, it may be possible 

to modify the proposed algorithms so as to deal with problems with a nonseparable cost function. 

In fact, if the cost function has a positive definite Hessian matrix, we may directly apply the 

algorithms by using only the diagonal part of the Hessian matrix since it is also positive definite. 
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Appendix 1. Finding an Initial Feasible Solution 

In Step 1 of the basic algorithm described in Section 3, we must obtain a feasible solution 

as an initial point. We apply an algorithm similar to the Big M method in linear programming 

(Bazarra and Jarvis [3], Fukushima et al.[lO]). 

To begin with, we introduce an artificial node m+ 1 with zero requirement into graph C. Next, 

we determine an arbitrary initial flow Xj for each arc j E E such that Xj E (lj,Uj). For each node 

i E V, we compute Ti by 

Ti=hi+ L Xj- L Xj. 

h(j)=i t(j)= i 

Let us assume temporarily that Ti op 0 for each node i E V. Then we add an arc which originates 

at node i and terminates at node m + 1 if Ti > 0, and add an arc which originates at node m + 1 

and terminates at node i if Ti < O. The flows on these artificial arcs n + i, i = 1,2, ... , m, are given 

by 

Xn+i = Iril, i = 1,2, ... ,m. 

The flow vector (Xl,X2,'" 'x n+m ) thus obtained is a feasible solution of the problem 

(A.I) minimize 

subject to Ax=b, 

where V = V U {m + I},E = E u {n + I, ... ,n + m}, x and b are the column vectors whose 

elements are Xj, j E E, and hi, i E V, respectively. A is the node-arc incidence matrix of graph 

G = (V, E). The cost functions fj for the artificial variables are defined as 

j = n + 1, ... , n + m, 

where M and IJ.j are positive constants. If M is sufficiently large and IJ.j are sufficiently small, 

then the solution of problem (A.I) is supposed to solve the original problem (2.2) approximately. 

In the computational experiments in Section 6, we set M = 109 and IJ.j = 10-9 for all j. 

With respect to problem (A.I), we can determine an initial basis (an initial spanning tree of 

G) by selecting the newly introduced artificial arcs. Though we have assumed that ri op I) for each 

node i E V, this assumption can be easily relaxed. In fact, if Ti = 0 for some i, then we can pivot 

the artificial variable Xn+i out of the basis, thereby we can make the values of all basic variables 

lie in the domain of the corresponding cost functions. By using the solution thus obtained as an 

initial solution, we can start the basic algorithm of Section 3. 
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Note that, if the original problem (2.2) is feasible, the flow Xn+i on each artificial arc approaches 

zero as the iteration proceeds. So we remove from graph Cl those non basic artificial arcs of which 

flows are sufficiently close to zero. When the last artificial arc is removed, we also have to remove 

the artificial nod,~ m + 1 from graph Cl. 

Appendix 2. Line Search 

In Step 3 of the basic algorithm, given a search direction p at the current iterate x, we have to 

find a new iterate x + ap having a smaller function value. Since the domain of the cost function 

consists of the intervals (lj, Uj), j E E, the maximum steplength 0> 0 is given by 

0= sup{allj < Xj + apj < uj,j E E}. 

The following procedure determines a steplength using Armijo rule (Polak [19]). 

Step 1: Choose a sufficiently small £ > 0 and a constant -y E (0,1). Calculate the maximum 

steplength 0, and set 01 := (1 - £)0. 

Step 2: If f(x + ap) < f(x), then terminate with steplength 01. 

Step 3: Set 01 := -ya, and go to Step 2. 

Because p is a descent direction of the cost function f at x as shown in Section 4, we can 

determine in a finite number of iterations such a positive a that satisfies f(x + ap) < f(x). The 

above algorithm uses two parameters f and -y. In the computational experiments report.ed in 

Section 6, we set f = 10-10 and -y = 0.5. 
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