
Journal of the Operations Research
Society ofJapan

Vo!. 32, No. 2, June 1989

Abstract

INTERIOR METHODS FOR
NONLINEAR MINIMUM COST NETWORK

FLOW PROBLEMS

Ryuji Katsura
Japan Medical Supply Co., Ltd.

Masao Fukushima
Kyoto University

Toshihide lbaraki
Kyoto University

(Received March 24,1988; Revised August 5, 1988)

In this paper we propose practical algorithms for solving the nonlinear minimum cost network flow

problem which has many fields of application such as production-distribution systems, pipe network systems, and

communication systems. Here we assume that the problem is defmed on an open subset of the affine subspace

corresponding to the flow conservation equations. This assumption offers great flexibility in choosing a basis to

represent feasible solutions, and the conventional capacitated network flow problems can be put into this framework

by exploiting an interior penalty function technique. The algorithms proposed in this paper belong to the class of

feasible descent methods which successively generate search directions based on the idea of Newton method. We

give some practical strategies of determining search directions which approximate solutions of Newton equations.

We also discuss ways of maintaining a desirable basis which makes those strategies effective. We examined the

efficiency of the algorithms by means of some computational experiments. The proposed algorithms could practi­

cally solve a problem with more than 500 nodes and 1500 arcs, which is quite large as a nonlinear optimization

problem.

1. Introduction

Many important problems in engineering and economics are formulated as nonlinear minimum

cost network flow problems. In particular, typical applications of such problems may be found

in production-distribution systems, pipe network systems, resistive electrical network systems and

communication systems. For solving such problems, there have been proposed many algorithms

including the Frank-Wolfe method, the convex simplex method and the piecewise linear approx-

174

© 1989 The Operations Research Society of Japan

Intelior Methods for Network Flow Problems 175

imation method (see, e.g., Kennington and Helgason [16]). Among others, recently developed

Newton-type algorithms (Dembo [6], Dembo and Klincewicz [7], Klincewicz [17]) are considered

the most efficient from the viewpoint of the speed of convergence.

In this paper, we propose Newton·type algorithms for solving nonlinear network flow problems

under a slightly different setting from the one of conventional formulation. Specifically, we assume

that the flow conservation equations are the only constraints of the problem and that the domain of

the cost function is open relative to the affine subspace corresponding to the equality constraints.

Therefore, at any feasible point, we can choose a basis in a rather flexible manner, thereby the

algorithms may be substantially simplified compa,red with those which have been developed as

direct extent ions of the network simplex method [6,7,17]. Although the above assumptions are

not standard, any capacitated problem can be put into the present framework by using an interior

penalty function t.echnique (Gill et al. [12]). In particular, for problems with linear cost functions,

such a transformation is closely related to Karmarkar's algorithm [15] in linear programming, as

pointed out by Gill et al. [13].

The algorithms presented here are improvements of the one proposed in [10] and belong to

the class of feasihle descent methods which use search directions approximating the solutions of

Newton equations. In this paper, we present three practical strategies of determining approximate

Newton directions; the first two of them replace coefficient matrices of the equations by diagonal

approximations, while the third exploits the preconditioned conjugate gradient method (Gill et al.

[12]) to solve the equations rather accurately.

As is well known, every basis of the minimum cost network flow problem corresponds to a

spanning tree of the graph. Although the proposed algorithms have flexibility in choosing a basis

at each feasible point as mentioned ahove, it is also true that some bases are more desirable than

others from numerical viewpoints. In fact, we may characterize a desirable basis as a spanning tree

of small weight, where weights are assigned to arcs in relation to the second derivatives of the cost

function evaluated at the point under consideration. Since the weights of arcs vary as the iteration

proceeds, it is advisable to systematically maintain desirable bases in order for the algorithms to

work efficiently. For this purpose, we present two basis updating procedures which construct a

minimum spanning tree by partially modifying the spanning tree used on the previous iteration.

This paper is organized as follows. In the next section, we state the problem formulation along

with some assumptions. In Section 3, we describe the basic algorithm on which the proposed

algorithms are based. In Section 4, we present strategies to determine search directions used in the

algorithms. In Section 5, we discuss procedures of updating a desirahle basis. Finally in Section

6, we report some computational results in order to demonstrate the efficiency of the proposed

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

176 R. Katsura, M. Fukushima & T. /baraki

algorithms.

2. Problem

In this section, we formally state the problem and make some assumptions which are the same

as those in [10].

Consider a connected directed graph G = (V,E) consisting of a set of nodes V = {1,2, ... , m}

and a set of arcs E = {I, 2, ... , n}. For each arc j E E, let t(j) and h(j) denote its "from" node

(or tail) and its "to" node (0J' head), respectively. In the following, we consider the nonlinear

minimum cost network flow problem

(2.1) minimize

subject to

I(x!, X2,···, xn) = L h(Xj)
jEE

L x.i - LX; = b;,
t(j)=; h(j)=i

i = 1,2, ... ,m,

where Xj is the flow on arc j E E, and b; is the requirement at node i E V. The equality

constraints in (2.1) are called the flow conservation equations. Node i is a supply node if b; > 0,

a transshipment node if b; = 0, and a demand node if b; < O. It is assumed that the total supply

equals the total demand, i.e., ~=;EV b; = O.

Let x and b denote the column vectors x = (Xl, X2, ... ,Xn)T and b = (bI,~, ... ,bm?, respec­

tively. Then problem (2.1) may be rewritten in matrix form as follows:

(2.2) minimize

subject to Ax = b.

We shall make the following assumptions on the cost function h associated with each arc j E E:

(a) The domain of h is an open interval (lj, Uj), and h(Xj) too if Xj llj or Xj i Uj.

(b) h is twice continuously difl'erentiable and fj'(X j) > 0 on its domain.

In (a), we allow Ij == -00 and/or Uj = +00. From (b), each h is strictly convex on its domain.

Notice that these assumptions implicitly assume that the lower and upper bounds are not equal,

Le., Ij < Uj. However, the subsequent discussions remain valid even if there exists an arc such

that 1; = Uj, because the flow Xj on such an arc can be regarded as a constant. In what follows, a

flow X will be called a feasible solution of problem (2.2) if it is included in the domain of the cost

function I and satisfies the flow conservation equations.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Interior Methods for Network Flow Problems 177

The above assumption (a) is different from those which are assumed in the conventional formu­

lation of the nonlinear network flow problems (Kennington and Helgason (16), Meyer (18)). Usually,

bound constraints on the variables are explicitly included as Ij :::; Xj :::; Uj and cost functions Ii
are defined on the real line. If we extend the network simplex method to a method for solving

such standard problems, the choice of the basis may be restricted by the status of the variables,

which depends on whether they are at one of their bounds or not (Dembo and Klincewicz (7)). In

our formulation, however, each variable is containeed in the interior of the bound constraint, so

that such a combinatorial restriction is not imposed on the choice of the basis at least theoreti­

cally. Moreover, it is noted that the sta~dard nonlinear capacitated minimum cost network flow

problem with separable costs may be treated within our framework by utilizing a penalty function

technique. In fact, the problem

(2.3) minimize

subject to Ax = b, I:::; x:::; U

can be transformed into a problem of the form (2.2) , in which Ii is a barrier function defined by

where I-'j > 0 is a penalty parameter. Of course, if Ij = -00 (Uj = 00), then the second (third)

term on the right-hand side of (2.4) is vacuous. If I j is convex (not necessarily strictly convex) and

twice continuously differentiable, and if at least one of Ij and Uj is finite for each j, then the barrier

function Ii defined by (2.4) obviously satisfies assumptions (a) and (b). When the parameters I-'j

are small enough, the optimum of the transformed problem may be regarded as a good approxi­

mation to an optimal solution of problem (2.3). (Note that in the ordinary barrier methods, the

parameters I-'j are decreased to zero using an appropriate controlling scheme [12,13). In this paper,

however, the parameters will be fixed at a very small value throughout the computation.)

3. Basic Algorithm

In this section we describe a basic algorithm for minimizing a nonlinear function subject to

linear equality constraints. This algorithm serves as a basis of the algorithms to be presented in

the subsequent sections for the solution of the network flow problem (2.2). The algorithm belongs

to a class of feasible descent methods and consists of the following steps:

Step 1: Obtain an initial feasible solution x.

Step 2: Compute a search direction p satisfying ALp = 0 and V' f{x)T p < o.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

178 R. Katsura, M. Fukushima & T. Ibaraki

Step 3: Carry out line search to determine a steplength a > 0 such that f(x + ap) < f(x).

Set x := x + ap.

Step 4: If a convergence criterion is satisfied, terminate. Otherwise go to Step 2.

Note that the sequence of points {xk} generated by this algorithm is always contained in the

feasible region. Since the domain of the cost function f is an open set, there surely exists a

steplength a > 0 such that f(3: + ap) < f(x) for any search direction p satisfying the condition

in Step 2. Therefore the sequence of the cost function values {f(xk)} decreases monotonically.

Strictly speaking, we cannot guarantee convergence to an optimal solution theoretically under

only the conditions in Steps 2 and 3 of the above algorithm. But under assumption (a) on the

cost function, problem (2.2) is essentially equivalent to an unconstrained minimization problem in

a subs pace of smaller dimension. Thus we may extend a convergence theorem of unconstrained

descent methods (Fletcher [9], Polak [20]) to the present algorithm for solving problem (2.2).

However we will not pursue this theoretical issue any more, because the chief aim of this paper is

to show how the above algorithm spcialized to the network problems performs practically.

In Step 1 of the algorithm, we have to find an initial feasible solution. To get such a solution,

we may apply a method analogous to the so-called Big M method in linear programming (Bazarra

and Jarvis [3]). This method has been used in Fukushima et al.[lO] and is given in Appendix 1.

(An alternative way of obtaining an initial feasible solution may be to find a basic feasible solution

of the system Ax = b, lj + f ~ Xj ~ Uj - f, for sufficiently small f > 0, using a combinatorial

strategy [16, pp.244-248].)

There can be a number of ways of obtaining search directions satisfying the conditions of Step

2. Here we adopt a Newton-like method which will be described in detail in the next section. As

for the line search in Step 3, we use a practical algorithm of Armijo type (Polak [20]), which is

also described in Appendix 2.

4. Search Directions

Let 9 = y(x) and H = H(x) represent the gradient vector and the Hessian matrix, respectively,

of the cost function f evaluated at a feasible solution x, i.e.,

(

f{'(XI)

H(x) =

o
Notice that H is a diagonal matrix whose elements are all positive by assumption (b) in Section

2, and hence H is positive definite.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Interior Methods for Network Flow Problems 179

For problem (2.2), the Newton direction at a feasible solution:/: is given as the optimal solution

of the following quadratic programming problem.

(4.1) minimize

subject to Ap= O.

We partition the matrix A into a basic matrix B and a nonbasic matrix N, i.e.,

(4.2) A=[B,N], rankB=m.

(Note that, by introducing an artificial arc, we may assume the matrix A to have full rank. See,

e.g., Bazarra and Jarvis [3, p.409J.) According to (4.2), the following partitions are obtained:

(4.3) x = (:/:11) , 9 = (9B) , p = (PB) , H = (HB 0).
XN 9N PN 0 HN

From (4.1), (4.2) and (4.3), we get

Le.,

(4.4)
(

-B-IN)
P = I PN·

Substituting these expressions into (4.1), we obtain the equality

where

It then follows that problem (4.1) is equivalent to the following unconstrained optimization problem

including only the non basic variables PN.

(4. 7) minimize

Since the matrix H is positive definite, the matrix 7l is also positive definite. Therefore the solution

PN of problem (4.7) is given by solving the linear equations

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

180 R. Katsura, M. Fukushima & T. Ibaraki

For the search direction P computed from (4.8) and (4.4), the following relation holds by the

positive definiteness of H.

(4.9) T -T T-
9 P = 9 PN = -PNHpN < o.

Hence the search direction P thus obtained is a descent direction of the cost function f at x. Also

it is obvious from (4.4) that P is a feasible direction. Therefore the search direction P satisfies the

two conditions in Step 2 of the algorithm described in the previous section.

Note that in (4.4) and (4.5) we must solve the equations having B or BT as the coefficient

matrix. As in the network simplex method (Bazarra and Jarvis [3], Kennington and Helga.50n [16]),

we can solve those equations efficiently by exploiting the special feature that basis B is associated

with a spanning tree in graph G. In the actual computations, we can also use the data structures

which are useful in the network simplex method (Ali et al.[l], Barr et al.[2]).

Now we turn our attention to practical methods of computing search directions. Bearing in

mind that for large-scale problems, it may be extremely expensive to solve the equation (4.8)

exactly. We shall consider three ways of computing search directions. The first two use a diagonal

approximation to the coefficient matrix H in (4.8), while the third attempts to find the solution

of (4.8) using an iterative method.

(i) Substituting H N for H: If the second term on the right hand side of (4.6) is sufficiently smaller

than the first term, it would be valid to substitute H N for H (Dembo and Klincewicz [7], Fukushima

et al.[lO]). Since HN is diagonal, we can solve the following equation in a trivial manner.

(4.10) HNPN + g = O.

It is ensured in a similar way to (4.9) that the search direction P obtained from (4.10) together

with (4.4) satisfies the two conditions in Step 2 of the basic algorithm.

(ii) Substituting diag H for H: The approximation used in (i) completely loses the HB part of the

second order information on the cost function. Here, in order to take into account an effect of H B,

we incorporate the diagonal elements of the second term on the right hand side of (4.6) (Dembo

and Klincewicz [7]). Let D denote the diagonal part of H. Then the equation

can also be solved trivially. Since D is also positive definite, the search direction P computed from

(4.11) along with (4.4) satisfies the conditions in Step 2 of the basic algorithm.

It may be worth mentioning; a procedure for computing the elements of D efficiently. Let

Q = B-1 N

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Interior Methods for Network Flow Problems 181

and let qj and nj denote the column vectors of Q and N, respectively. Then we have

showing that qj is the vector whose ith element is 1 or -1 if basic arc i is used to represent nonbasic

arc j, and zero otherwise (Bazarra and Jarvis [3]). Using Q, we rewrite (4.6) as

from which the diagonal elements Djj of H are given by

Thus, we obtain the formula

Djj = Hjj + L H",
ies(j)

where S(j) is the set of the basic arcs which constitute the cycle connecting the "from" and "to"

nodes of the nonbasic arc j (Dembo and Klincewkz [7)).

(Hi) Solving (4.8) by the conjugate gradient (CG) method: We apply the preconditioned conjugate

gradient (PCG) method to solve (4.8) (Dembo [6], Klincewicz [17)). When we use the CG method,

the rate of convergence depends highly upon the distribution of eigenvalues of the coefficient matrix

H. In this respect, it is practically useful to transform (4.8) by utilizing a preconditioning matrix so

that the coefficient matrix of the preconditioned equation has as many unit eigenvalues as possible

(Gill et al.[12]). Here we use the diagonal matrix D given in (ii) as a preconditioning matrix.

In the CG method, the matrix H appears only in a matrix-vector product of the form

where y is some vector. The first term on the right hand side is computed trivially. The complicated

second term can be calculated efficiently without any additional storage by making use ofthe special

structure of the basis B.

When the CG method is incorporated in the basic algorithm, it may be useful to terminate

the CG iterations by taking into account a discrepancy between the current solution x and the

optimal solution of problem (2.2). This idea is based on the observation (Dembo and Steihaug

[8]) that, when far from the solution, it is not justified to solve equation (4.8) exactly with much

computational eftort.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

182 R. Katsura. M. Fukushima & T. Ibaraki

5. Basis Update

In the previous section, we discussed ways of determining a search direction p by solving

the equation (4.8) with H being replaced by a diagonal matrix. The validity of this substitution

depends upon whether the second term on the right hand side of (4.6) is sufficiently smaller than

the first term. In other words, the strategies (i) and (ii) described in Section 4 are considered

reasonable if the elements of HH are much smaller than those of HN.

In network problems, a basis corresponds to a spanning tree of the graph (Bazarra and Jarvis

[3], Kennington and Helgason [16]). Thus we may determine a "desirable" basis by constructing a

minimum spanning tree of graph G in which the weight Wj of arc j is given by fj'(xj).

In the context of solving problem (2.2) iteratively, we have to successively obtain such desirable

trees in G where the weights of arcs vary as the iteration proceeds. Therefore, it seems practical

to find a minimum spanning tree by partially modifying the tree that was used at the previous

iteration. In fact, in the later stage of the iterations, it is expected that the number of basic

arcs to be exchanged is relatively small, since the weights of arcs will be close to those at the

previous iteration. So it may be advantageous to use such an updating procedure, instead of

finding a minimum spanning tree from scratch at each iteration by using minimum spanning tree

algorithms available in the literature (lri et a1.[14], Papadimitriou and Steiglitz [19]).

Such a procedure of updating a minimum spanning tree may be constructed on the basis of

cut sets or circuits of graph G.

5.1. Procedure Based on Cutsets

Given a tree T of graph G and arc k E T, we define a cutset C*(E - Tlk) by

C*(E - Tlk) = {j E Elt(j) E VI. h(j) E V2 } U {j E Elt(j) E V2 , h(j) E Vd,

where VI and V2 denote the sets of nodes in the connected components of T with arc k removed

(lri et a1.[14]).

We present a procedure based on the idea that basic arcs with larger weight should have

higher priority of leaving the basis. This procedure, which is an improvement of the one given

in Fukushima et 301.[10], scans a list of basic arcs by examining the property stated in the next

proposition.

Proposition 1. (Cheriton and Tarjan [4]): For any arc k E T, there exists a minimum spanning

tree containing an arc s E C*(E - Tlk) such that Ws = min {wjlj E C*(E - Tlk)}.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Interior Methods for Network Flow Problems 183

Now we explicitly state the basis updating procedure based on the cutsets.

Procedure CS

Input: A connected directed graph G = (V, E), a spanning tree T of G, and arc weights Wj.

Output: The minimum spanning tree T* of G.

begin 'Ili :=: max {wjlj ET}, !Q.:= min {wjlj E E - T},

JB := {jlj E T,!Q. ~ Wj ~ 'Ili}, IN := {jlj E E - T,!Q. ~ Wj ~ 'Ili} j

(comment: initializej JB and IN are the sets of possibly leaving and entering arcs,

respectively.)

while JB t- 0 do

begin

let k be an arc of maximum weight ill JBj

if JNnC*(E - Tlk) t- 0 then

end

begin

let S be an arc of minimum weight in IN n C*(E - Tlk)j

ifw. < Wk then T:= Tu {s} _0 {k},JN:= IN - {s}j

end

JB := JB - {k}j

T* :=Tj

end

Note that this procedure checks only those arcs which are contained in the subset J B U J N of

E specified in the initialization step. Because, by the difinition of'lli and !Q., it is ensured in the

initialization step that each arc in T - J B belongs to the minimum spanning tree T* while any arc

not in T U J N never belongs to T*.

The validity of this procedure can be ascertajned as follows: At each iteration, either arc k

is judged to remain in T because it has the minimum weight in the cutset C*(E - Tlk), or the

arc of minimum weight other than arc k in C*(E - Tlk) enters T in place of arc k. In any case,

Proposition 1 guarantees that the arc which is decided to be included in T constitutes an arc of

the minimum spanning tree T*.

In the computational experience to be reported in the next section, we try two ways of im­

plementing procedure CS as a subroutine of the basic algorithm. First one is to carry out the

procedure completely at every iteration of the basic algorithm. The second is to truncate the

procedure after examining a certain number of cutsets, except on some predetermined iterations

where the procedure is executed completely. In the second method, we cannot necessarily get a

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

184 R. Katsura. M. Fukushima & T. Ibaraki

minimun spanning tree, but this modification may offer significant saving of computational effort.

5.2. Procedure Based on Circuits

When a nonbasic arc s is a.dded to a basis tree T of graph G, a cycle is determined uniquely.

We define the circuit C(Tls) as the set of those arcs which are contained in this cycle (Iri et al.[14]).

The procedure presented here is based on the idea that such nonbasic arcs with smaller weight

should have higher priority of entering the basis. This procedure checks a list of nonba.~ic arcs by

ascertaining the property stated in the next proposition.

Proposition 2. (Tarjan [21]): T is a minimum spanning tree of G if and only if, for each nonbasic

arc s, w. is at least as large as the weight of any arc in G(Tls).

Now we present the basis updating ,procedure based on the circuits of the graph.

Procedure CC

Input: A connected directed graph G = (V, E), a spanning tree T of G, and arc weights Wj.

Output: The minimum spanning tree T* of G.

begin

ID:= max {wjli ET}, 1Q:= min {wjli E E - T},

JB := Vii E T,1Q ~ Wj ~; ID}, IN := Vii E E - T,1Q ~ Wj ~ ID} ;

(comment: initialize; J Band J N are the sets of possibly leaving and entering arcs,

respectively.)

while IN f 0 do

begin

let s be an arc of minimum weight in J N;

if JB nG(Tls) f 0 then

end

begin

let k be an arc of maximum weight in JB n G(Tls);

ifw. < Wk then T:= Tu {s} - {k},JB := JB - {k};

end

IN := IN - {s};

T*:= T;

end

The validity of procedure CC can be ascertained as follows: At each iteration, either arc s is

judged not to enter the basis because it has the largest weight in the circuit G(Tls), or the arc of

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Interior Methods for Network Flow Problems 185

maximum weight in G(Tls) leaves T in place of arc s. In any case, Proposition 2 guarantees that

the arc which is decided not to be included in T nE!ver constitutes an arc of the minimum spanning

tree.

In the previous section, we mentioned the possibility that the basic algorithm incorporates

incomplete implE!mentation of procedure CS, which allows partial examination of the set of cut­

sets. By analogy, it may appear that such modification is also applicable to procedure CC. The

computational experience has revealed, however, that it does not lead to any favorable result. This

is because, unlik.~ the truncated versions of procedure CS, truncated versions of procedure CC are

very likely to fail to let some arcs with extremely large weight leave the basis tree. In this case,

the computed directions will completely differ from the Newton directions and the computational

efficiency of the ,algorithm will be seriously affected.

6. Computational Results

We have conducted numerical experiments with the proposed algorithms for several test. prob­

lems derived from the capacitated problems of the form (2.3) through the transformation (2.4).

A variety of algorithms have been proposed for the solving of problems (2.3). For the purpose of

comparison, we have adopted the Frank-Wolfe (F-W) method which is one of the popular methods

for nonlinear network flow problems (Kennington and Helgason [16)). The Frank-Wolfe method

solves a linear minimum cost network flow problem as a subproblem at each iteration. We used the

code written by Laszlo Hars as a subroutine for solving the subproblems, and the golden section

algorithm for line search_ All programs were coded in FORTRAN 77 and the runs were made in

double precision on a FACOM M-780/30 computer.

6.1. Test Problems

For the test. problems, we used lattice networks as shown in Fig. 1, where the nodes in the

left-most column are supply nodes (bi > 0), the nodes in the right-most column are demand nodes

(bi < 0), and the other nodes are transshipment nodes (bi = 0). All the arc cost functions are of

the form

where Jl = 10-9 . The constants bi, Cj, dj and Uj are random numbers uniformly generated in the

intervals (1,10), (0,20), (10-3 ,10-2) and (5,10), respectively.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

186

supply nodes
(u; > 0)

• •

R. Katsura. M. Fukushima & T. Ibaraki

transshipment nodes
(b; = 0)

-----... ~~ --~ r "

• •

•••

• ••

• ••

• •

Fig. 1 Lattice network

The sizes of the test problems are as follows:

(1) 56 nodes and 146 arcs,

(2) 121 nodes and 330 arcs,

(3) 256 nodes and 720 arcs, and

(4) 529 nodes and 1518 arcs.

6.2. Convergence Criterion

demand nodes
(b; < 0)

• •

The convergence criterion used for the proposed algorithms and the Frank-Wolfe method is

defined on the basis of the relative error in the cost function, Le.,

where r is the optimal value of the test problem. Since the true value of r is unknown, we

substitute for r an estimate of r obtained by the Frank-Wolfe method. More precisely, since the

Frank-Wolfe method generates a sequence of lower bounds converging to the optimum value, r is

replaced by its lower bound which is obtained by running the Frank-Wolfe method for sufficiently

long time, Le., 5 minutes for problems (1) and (2), and 15 minutes for problems (3) and (4).

6.3. Results

The basic algorithm has been applied to each test problem using various direction finding

strategies and basis updating procedures, that are described in Sections 4 and 5, respectively. The

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Interior Methods for Network Flow Problems 187

results are summarized in Tables 1(i)-4(iii). For example, Table 1(i) shows the results for problem

(1), obtained by the algorithm with direction finding strategy (i) and various basis updating

procedures. For comparison purposes, the tables also contain the results of the F-W method.

Each table consists of the following items:

(a) the marginal/cumulative number of iterations required to achieve the levels of accuracy 10%,

1% and O.l%j

(b) the number of basis updates required to achieve the level of accuracy 0.1 %j

(c) the details of CPU time required at each step of the basic algorithm (CPU time per iteration

is shown in the parentheses).

In order to help more intuitive understanding, the details of CPU time for problem (4) are also

illustrated in Fig. 2.

In what follows, we first appraise basis updating procedures CS and CC, and then compare

direction finding strategies (i), (ii) and (Hi).

CPU time
(sec)

30

200

100

Strategy (i)

i Basis Update'
::::: Search Direction

Line Search
Others

Strategy (ii)

Fig. 2 Results for Problem (4)

,.,
-:.;.

CC

Strategy (iii)

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

188 R. Katsura, M. Fukushima & T. Ibaraki

Table l(i). Results for Problem 1, with direction finding strategy (i)

cs
CC F·W

TRUNC=l TRUNC=4 TRUNC=lO TRUNC=30

(a) Iterations

phase I 54 55 56 117' 54

10% 42/ 96 53/ 108 49/ 105 42/ 96 2

phase II 1% 28/ 124 18/ 126 15/ 120 28/ 124 12/ 14

0.1% 22/ 146 42/ 168 14/ 134 22/ 146 74/88

(b) Number of

basis updates 406 366 250 406

(c) CPU time (s)

Basis update 0.488(0.0033) 0.424(0.0025) 0.318(0.0024) 0.312(0.0021)

Search direction 0.187(0.0013) 0.222(0.0013) 0.177(0.0013) 0.193(0.0013)

Line search 0.185(0.0013) 0.240(0.0014) 0.175(0.0013) 0.184(0.0013)

Others 0.073(0.00050) 0.093(0.00055) 0.070(0.00052) 0.078(0.00053)

Total 0.933(0.0064) 0.979(0.0058) 0.740(0.0055). 0.767(0.0053) 1.552(0.018)

Table l(ii). Results for Problem 1, with direction finding strategy (ii)

CS
CC F-W

TRUNC=l TRUNC=4 TRUNC=lO TRUNC=30

(a) Iterations

phase I 53 55 55 112' 53

10% 45/ 98 40/ 95 42/ 97 45/ 98 2

phase II 1% 23/ 121 24/ 119 19 / 116 23 / 121 12/ 14

0.1% 12/ 133 16/ 135 11 / 127 12 / 133 74/88

(b) Number of

basis updates 363 332 235 363

(c) CPU time (s)

Basis update 0.457(0.0034) 0.372(0.0028) 0.309(0.0024) 0.300(0.0023)

Search direction 0.237(0.0018) 0.239(0.0018) 0.228(0.0018) 0.245(0.0018)

Line search 0.150(0.0011) 0.159(0.0012) 0.139(0.0011) 0.144(0.0011)

Others 0.074(0.00056) 0.076(0.00056) 0.073(0.00057) 0.075(0.00056)

Total 0.918(0.0069) 0.846(0.0063) 0.749(0.0059) 0.764(0.0057) 1.552(0.018)

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Interior Methods for Network Flow Problems 189

T.able l(iii). Results for Problem 1, with direction finding strategy (iii)

cs
CC P-W

TRUNC=1 TRUNC=4 TRUNC=10 TRUNC=30

(a) Iterations

phase I 65 91 61 78 65

10% 52 / 117 52/ 143 53/ 114 38/ 116 52/ 117 2

phase II 1% 20/ 137 20/ 163 20/ 134 20/ 136 20/ 137 12/ 14

0.1% 16/ 153 16 / 179 18/ 151 5/141 16/ 153 H / 88

(b) Number of

basis updates 182 167 166 129 182

(c) CPU time (5)

Basis update 0.524(0.0034) 0.498(0.0028) 0.35.3(0.0024) 0.304(0.0022) 0.323(0.0021)

Search direction 1.690(0.011) 2.024(0.011) 1.727(0.011) 13.555(0.096) 1.683(0.011)

Line search 0.195(0.0013) 0.215(0.0012) 0.177(0.0012) 0.161(0.0011) 0.179(0.0012)

Others 0.078(0.00051) 0.099(0.00055) 0.087(0.00058) 0.079(0.00056) 0.084(0.00055)

Total 2.487(0.016) 2.836(0.016) 2.349(0.016) 14.099(0.10) 2.269(0.015) 1.552(0.018)

Table 2(i). Results for Problem 2, with direction finding strategy (i)

CS
CC F-W

TRUNC=1 TRUNC=4 TRUNC=10 TRUNC=30

(a) Iterations

phase I 123 121 127 254' 123

10% 113 / 236 116 / 237 116. / 243 113/236 3

phase II 1% 65/ 301 67/304 111 /354 65/301 28/ 31

0.1% 121 /422 148/452 201 / 555 122/423 216 / 247

(b) Number of

basis updates 1050 912 811 1050

(c) CPU time (5)

Basis update 3.9(0.0092) 3.1(0.0069) 3.0(0.0054) 2.0(0.0047)

Search direction 1.3(0.0031) 1.4(0.0031) 1.7(0.0031) 1.3(0.0031)

Line search 1.5(0.0036) 1.8(0.0040) 2.5(0.0045) 1.5(0.0035)

Others 0.4(0.00095) 0.4(0.00088) 0.6(0.0011) 0.4(0.00095)

Total 7.1(0.0017) 6.7(0.015) 7.8(0.014) 5.2(0.012) 12.5(0.051)

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

190 R. Katsura, M. Fukushima & T. Ibaraki

Table 2(ii). Results for Problem 2, with direction finding strategy (ii)

cs
CC F-W

TRUNC=l TRUNC=4 TRUNC=10 TRUNC=30

(a) Iterations

phase I 126 125 123 472" 126

10% 109/235 111 / 236 111 / 234 109/235 3

phase II 1% 38/273 50/286 55/289 38/273 28/ 31

0.1% 31 / 304 30/3i6 12/301 31/304 216/247

(b) Number of

basis updates 943 880 678 943

(c) CPU time (s)

Basis update 3.2(0.011) 2.6(0.0082) 2.0(0.0066) 1.7(0.0056)

Search direction 1.3(0.0043) 1.4(0.0044) 1.3(0.0043) 1.3(0.0043)

Line search 0.8(0.0026) 0.8(0.0025) 0.8(0.0027) 0.8(0.0026)

Others 0.4(0.0013) 0.3(0.00095) 0.3(0.0010) 0.3(0.00099)

Total 5.7(0.019) 5.1(0.016) 4.4(0.015) 4.1(0.013) 12.5(0.051)

Table 2(iii). Results for Problem 2, with direction finding strategy (iii)

CS
F-W CC

TRUNC=l TRUNC=4 TRUNC=10 TRUNC=30

(a) Iterations

phase I 113 113 113 113 113

10% 99 / 212 99/212 101 / 214 101 / 214 99/212 3

phase II 1% 42/254 42/254 39 / 253 39/253 42/254 28/ 31

0.1% 23/277 26/280 25 / 278 26/279 23/277 216 / 247

(b) Number of

basis updates 392 388 359 339 392

(c) CPU time (s)

Basis update 3.2(0.012) 2.4(0.0086) 1.8(0.0065) 1.5(0.0054) 1.5(0.0054)

Search direction 10.4(0.038) 10.3(0.037) 10.3(0.037) 87.5(0.31) 10.4(0.038)

Line search 0.7(0.0025) 0.7(0.0025) 0.7(0.0025) 0.7(0.0025) 0.7(0.0025)

Others 0.3(0.0011) 0.3(0.0011) 0.3(0.0011) 0.3(0.0011) 0.3(0.0011)

Total 14.6(0.053) 13.7(0.049) 13.1 (0.047) 90.0(0.32) 12.9(0.047) 12.5(0.051)

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Interior Methods for Network Flow Problems 191

Table 3(i). Results for Problem 3, with direction finding strategy (i)

cs
CC F-W

TRUNC==l TRUNC==4 TRUNC==lO TRUNC=30

(a) Iterations

phase I 264 269 267 268 264

10% 236/500 229/498 234/ 501 242/ 510 236/500 4

phase II 1% 175/675 207/705 207/ 708 241/ 751 175 / 675 28/ 32

0.1% 111 / 786 234/939 314/1022 334/ 1085 131 /806 215 / 247

(b) Number of

basis updates 2905 2675 2254 1418 2914

(c) CPU time (s)

Basis update 27.7(0.035) 21.2(0.023) H;'8(0.016) 13.7(0.013) 9.6(0.012)

Search direction 5.6(0.0071) 6.5(0.0069) 7.0(0.0068) 7.4(0.0068) 5.7(0.0071)

Line search 5.0(0.0064) 7.4(0.0079) 8.6(0.0084) 11.6(0.011) 5.3(0.0066)

Others 1.8(0.0023) 2.1(0.0022) 2.3(0.0023) 2.5(0.0023) 1.8(0.0022)

Total 40.1(0.051) 37.3(0.040) 34.7(0.034) 35.2(0.032) 22.4(0.028) 38.6(0.16)

Table 3(ii). Results for Problem 3, with direction finding strategy (ii)

CS
CC F-W

TRUNC=l TRUNC=4 TRUNC==10 TRUNC=30

(a) Iterations

phase I 262 268 267 279 262

10% 241 / 503 241 / 509 240/ 507 243 / 522 241 /503 4

phase II 1% 112/ 615 120 / 629 118/ 625 111 / 633 112/615 28/ 32

0.1% 37/652 25/ 654 18/ 643 35/ 668 37/ 652 215 / 247

(b) Number of

basis updates 2657 2483 1995 1442 2657

(c) CPU time (s)

Basis update 24.6(0.038) 17.7(0.027) 12.5(0.019) 9.6(0.014) 8.4(0.013)

Search direction 6.8(0.010) 6.8(0.010) 6.7(0.010) 6.9(0.010) 6.7(0.010)

Line search 3.6(0.0055) 3.6(0.0055) :1.5(0.0054) 3.7(0.0055) 3.6(0.0055)

Others 1.5(0.0023) 1.5 (0.0023) 1.5(0.0023) 1.6(0.0024) 1.5(0.0023)

Total 36.5(0.056) 29.6(0.045) 24.2(0.038) 21. 7(0.032) 20.2(0.031) 38.6(0.16)

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

192 R. Katsura, M. Fukushima & T. Ibaraki

Table 3(iii). Results for Problem 3, with direction finding strategy (iii)

cs
CC F-W

TRUNC=1 TRUNC=4 TRUNC=10 TRUNC=30

(a) Iterations

phase I 272 267 268 275 272

10% 219 / 491 218/485 221 /489 221 /496 220/492 4

phase II 1% 86/577 88/573 86 / 575 87/583 851 / 577 28/ 32

0.1% 54 / 631 56/628 58/633 60/ 643 53/ 630 215/ 247

(b) Number of

basis updates 891 867 853 818 887

(c) CPU time (s)

Basis update 25.7(0.041) 17.3(0.028) 12.4(0.020) 9.3(0.014) 8.0(0.013)

Search direction 68.5(0.11) 67.0(0.11) 68.1(0.11) 68.1(0.11) 69.7(0.11)

Line search 3.5(0.0055) 3.5(0.0056) 3.6(0.0057) 3.6(0.0056) 3.5(0.0056)

Others 1.5(0.0024) 1.5(0.0024) 1.5(0.0024) 1.5(0.0023) 1.5(0.0024)

Total 99.2(0:16) 89.3(0.14) 85.6(0.14) 82.6(0.13) 82.7(0.13) 38.6(0.16}

Table 4(i). Results for Problem 4, with direction finding strategy (i)

CS
CC F-W

TRUNC=l TRUNC=4 TRUNC=10 TRUNC=30

(a) Iterations

phase I 556 558 559 564 556

10% 553 / 1109 551 / 1109 550/ 1109 584/ 1148 551 / 1107 4

phase II 1% 374 / 1483 365 / 1474 531 / 1640 805/ 1953 372 / 1479 36/ 40

0.1% 438/ 1921 383 / 1857 539 / 2181 809/ 2762 580/2059 373 / 413

(b) Number of

basis updates 78713 7276 5932 4172 7872

(c) CPU time (s)

Basis update 119.3(0.062) 79.7(0.043) 63.3(0.029) 54.8(0.020) 33.7(0.016)

Search direction 16.8(0.0087) 16.4(0.0088) 18.6(0.0085) 22.5(0.0081) 17.7(0.0086)

Line search 17.3(0.0090) 16.8(0.0090) 22.4(0.010) 39.7(0.014) 19.4(0.0094)

Others 4.9(0.0026) 4.8(0.0026) 5.6(0.0026) 7.1(0.0026) 5.2(0.0025)

Total 158.3(0.082) 117.6(0.063) 110.0(0.050) 124.1(0.045) 76.0(0.037) 139.7(0.34)

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Interior Methods for Network Flow Problems 193

Table 4(ii). Results for Problem 4, with direction finding strategy (ii)

cs
CC F-W

TRUNC=l TRUNC=4 TRUNC=10 TRUNC=30

(a) Iterations

phase I 556 541 553 556 555

10% 561 / 1116 564/ 1105 576/ 1129 559/ 1115 561 / 1116 4

phase II 1% 208/ 1324 208 / 1313 208/ 1337 212 / 1327 204/ 1320 36/ 40

0.1% 64/ 1388 70/ 1383 156/ 1393 72/ 1399 70/ 1390 373 / 413

(b) Number of

basis updates 7508 6484 5337 3845 7491

(c) CPU time (s)

Basis u pda te 97.8(0.070) 69.6(0.050) 48.0(0.034) 34.1(0.024) 28.6(0.021)

Search direction 21.6(0.016) 21.6(0.016) 21.9(0.016) 21.7(0.016) 21.6(0.016)

Line search 9.7(0.0070) 9.7(0.0070) 9.8(0.0070) 9.7(0.0069) 9.8(0.0071)

Others 3.6(0.0026) 13.7(0.0099) 3.7(0.0027) 3.6(0.0026) 3.6(0.0026)

Total 132.7(0.096) 104.6(0.076) 83.3(0.060) 69.3(0.050) 63.6(0.046) 139.7(0.34)

Table 4(iii). Results for Problem 4, with direction finding strategy (iii)

CS
CC F-W

TRUNC=l TRUNC=4 TRUNC=10 TRUNC=30

(a) Iterations

phase I 481 481 606 635 481

10% 507/ 988 510/ 991 530/ 1136 522 / 1157 508/ 989 4

phase II 1% 210 / 1198 205 / 1196 19;; / 1331 198/ 1355 209/ 1198 36/ 40

0.1% 105 / 1303 107 / 1303 100 / 1431 103 / 1458 100/ 1298 373 / 413

(b) Number of

basis updates 1917 1888 1848 1771 1900

(c) CPU time (s)

Basis update 98.4(0.076) 67.4(0.052) 50.1(0.035) 35.6(0.024) 26.5(0.020)

Search direction 213.2(0.16) 216.1(0.17) 219.2(0.15) 222.4(0.15) 209.0(0.16)

Line search 9.2(0.0071) 9.3(0.0071) 10.0(0.0070) 10.2(0.0070) 9.2(0.0071)

Others 3.5(0.0027) 3.5(0.0027) 3.7(0.0026) 3.9(0.0027) 3.4(0.0026)

Total 324.2(0.25) 296.2(0.23) 283.1(0.20) 272.0(0.19) 248.2(0.19) 139.7(0.34)

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

194 R. Katsura, M. Fukushima & T.lbaraki

6.3.1. Comparison of Basis Updating Procedures CS and CC

We introduce parameter TRUNC which is a key to the implimentation of procedure CS.

Namely, we execute procedure CS completely every TRUNC iterations, and at the other iter­

ations we truncate procedure CS when the number of examined cutsets exceeds IJBI/TRUNC.

Particularly, TRUNC = 1 indicates that we do not truncate the procedure at all.

Every table shows that CS with TRUNC = 1 always requires more CPU time than CC. This

indicates that, when completely implemented, procedure CS is less effective than CC. This may

be considered because, unlike fundamental cutsets, fundamental circuits can be found by utilizing

a simple data structure [1,2,16].

As far as procedure CS is concerned, as TRUNC becomes large, the number of basis updates

decreases and accordingly less CPU time is required for basis updates. Also, in many cases, the time

saved in basis updates is almost equal to the reduction in the total running time. In particular,

the running time of the algorithm using CS with large TRUNC is often comparable to that of

the algorithm using CC. However, it can also happen that large TRUNC causes a considerable

increase in the total number of iterations, because the search directions may significantly deviate

from Newton directions during a fairly large number of iterations. In fact, Tables l(i), l(ii), 2(i)

and 2(ii) show that for problems (1) and (2), the algorithm with CS(TRUNC = 30) could not get

through with phase I, namely, could not obtain an initial feasible solution.

Note that the lattice network of Fig. 1 is sparse because the number of arcs is of the same

order as the number of nodes. For a sparse network, the set J N of non basic arcs that can be

neglected in the search for an entering arc in general consists of a rather large portion of the

entire set of nonbasic arcs, compared with dense networks such as the complete graphs. Therefore,

the idea of updating the basis tree seems to work more effectively for dense networks. In fact,

Fukushima et al.[ll] have recently proposed a modification of procedure CC and have shown by

computational experiments that dense graphs are more amenable to updating minimum spanning

trees than sparse graphs.

6.3.2. Comparison of Direction Finding Strategies

The algorithm with strategy (i) usually requires a fairly large number of iterations to reach the

level of accuracy 0.1% from the level of 1%. In particular, the examples shown in Table 2(i) have

difficulty in achieving the level of accuracy 0.1 %. This is considered because the directions obtained

by strategy (i) do not approximate Newton directions satisfactorily. Moreover the algorithm with

strategy (i) is somewhat sensitive to the value of TRUNC, in the sense that the total number of

iterations gradually increases as TRUNC becomes larger.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Interior Methods for Network Flow Problems 195

The algorithm with strategy (ii) generally requires far less iterations to attain the level of

accuracy 0.1% from the level of 1%, compared with the algorithm with strategy (i). Moerovl'r, the

decrease in total number of iterations well compensates for the increase in CPU time to compute

search directions. Also, the number of iterations is not affected by the change of TRUNC, and

hence strategy (ii) is regarded as more stable than strategy (i). These advantages of strategy

(ii) seem to result from the fact that it produces search directions which approximate Newton

directions satisfactorily.

The algorithm with strategy (iii) also does not require many iterations to attain the level of

accuracy 0.1% from the level of 1%, and the number of iterations is not affected by the change

of TRUNC as in the case of the algorithm with strategy (ii). However, the algorithm with (iii)

needs much more computational effort in computing search directions than the one with (i) or

(ii). In particular, if TRUNC is chosen large, strategy (Hi) sometimes finds serious difficulty in

solving Newton equations, as shown in the column of CS(TRUNC = 30) in Tables l(iii) and

2(iii). Moreover, since computation time of search directions forms a large part of the total CPU

time, it has relatively small merit to reduce CPU time for basis updates by changing the value

of TRUNC. Consequently, as long as the same convergence criterion is used, strategy (iii) does

not seem effective. When we need a more accurate solution, however, this strategy may work

efficiently, because of the quadratic convergence property of Newton method.

7. Concluding Remarks

We have presented interior methods for nonlinear minimum cost network flow problems. The

problem treated here is defined on an open subset relative to the subspace associated with the flow

conservation equations. Exploiting this feature, the proposed algorithms have great flexibility in

the choice of a basis, and this point distinguishes the proposed algorithms from those which have

ever been developed. Based on Newton's method, we have proposed some practical strategies of

determining search directions. We have also presented procedures of maintaining a desirable basis,

which constructs a minimum spanning tree from an arbitrary tree. Numerical results reported in

Section 6 indicate that the proposed algorithms are practically effective.

Although we have assumed the problem to have a separable cost function, it may be possible

to modify the proposed algorithms so as to deal with problems with a nonseparable cost function.

In fact, if the cost function has a positive definite Hessian matrix, we may directly apply the

algorithms by using only the diagonal part of the Hessian matrix since it is also positive definite.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

196 R. Katsura, M. Fukushima & T. Ibaraki

Appendix 1. Finding an Initial Feasible Solution

In Step 1 of the basic algorithm described in Section 3, we must obtain a feasible solution

as an initial point. We apply an algorithm similar to the Big M method in linear programming

(Bazarra and Jarvis [3], Fukushima et al.[lO]).

To begin with, we introduce an artificial node m+ 1 with zero requirement into graph C. Next,

we determine an arbitrary initial flow Xj for each arc j E E such that Xj E (lj,Uj). For each node

i E V, we compute Ti by

Ti=hi+ L Xj- L Xj.

h(j)=i t(j)= i

Let us assume temporarily that Ti op 0 for each node i E V. Then we add an arc which originates

at node i and terminates at node m + 1 if Ti > 0, and add an arc which originates at node m + 1

and terminates at node i if Ti < O. The flows on these artificial arcs n + i, i = 1,2, ... , m, are given

by

Xn+i = Iril, i = 1,2, ... ,m.

The flow vector (Xl,X2,'" 'x n+m) thus obtained is a feasible solution of the problem

(A.I) minimize

subject to Ax=b,

where V = V U {m + I},E = E u {n + I, ... ,n + m}, x and b are the column vectors whose

elements are Xj, j E E, and hi, i E V, respectively. A is the node-arc incidence matrix of graph

G = (V, E). The cost functions fj for the artificial variables are defined as

j = n + 1, ... , n + m,

where M and IJ.j are positive constants. If M is sufficiently large and IJ.j are sufficiently small,

then the solution of problem (A.I) is supposed to solve the original problem (2.2) approximately.

In the computational experiments in Section 6, we set M = 109 and IJ.j = 10-9 for all j.

With respect to problem (A.I), we can determine an initial basis (an initial spanning tree of

G) by selecting the newly introduced artificial arcs. Though we have assumed that ri op I) for each

node i E V, this assumption can be easily relaxed. In fact, if Ti = 0 for some i, then we can pivot

the artificial variable Xn+i out of the basis, thereby we can make the values of all basic variables

lie in the domain of the corresponding cost functions. By using the solution thus obtained as an

initial solution, we can start the basic algorithm of Section 3.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Interior Methods for Nf!twork Flow Problems 197

Note that, if the original problem (2.2) is feasible, the flow Xn+i on each artificial arc approaches

zero as the iteration proceeds. So we remove from graph Cl those non basic artificial arcs of which

flows are sufficiently close to zero. When the last artificial arc is removed, we also have to remove

the artificial nod,~ m + 1 from graph Cl.

Appendix 2. Line Search

In Step 3 of the basic algorithm, given a search direction p at the current iterate x, we have to

find a new iterate x + ap having a smaller function value. Since the domain of the cost function

consists of the intervals (lj, Uj), j E E, the maximum steplength 0> 0 is given by

0= sup{allj < Xj + apj < uj,j E E}.

The following procedure determines a steplength using Armijo rule (Polak [19]).

Step 1: Choose a sufficiently small £ > 0 and a constant -y E (0,1). Calculate the maximum

steplength 0, and set 01 := (1 - £)0.

Step 2: If f(x + ap) < f(x), then terminate with steplength 01.

Step 3: Set 01 := -ya, and go to Step 2.

Because p is a descent direction of the cost function f at x as shown in Section 4, we can

determine in a finite number of iterations such a positive a that satisfies f(x + ap) < f(x). The

above algorithm uses two parameters f and -y. In the computational experiments report.ed in

Section 6, we set f = 10-10 and -y = 0.5.

Acknowledgment. We wish to thank Satoru Ibaraki for assisting us in the computational exper­

iments and typing the manuscript so carefully.

References

[1] Ali, A.I., Helgason, R.V., Kennington, J.L. a.nd Lall, H.S.: Primal Simplex Network Codes;

State-of-the-Art Implementations Technology. Networks, Vo!. 8 (1978), 315-339.

[2] Barr, R., Glover, F. and Klingman, D.: Enhancements of Spanning Tree Labelling Procedures

for Network Optimization. INFOR, Vo!. 17 (1979), 16-34.

[3] Bazarra, M5. and Jarvis, J.J.: Linear Progmmming and Network Flows. John Wiley & Sons,

New York, 1977.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

198 R. Katsura, M. Fukushima & 1: Ibaraki

[4J Cheriton, D. and Tarjan, R.E.: Finding Minimum Spanning Trees. SIAM Journal on Com­

puting, Vol. 5 (1976), 724-742.

[5] Chin, F. and Houck, D.: Algorithms for Updating Minimal Spanning Trees. Journal of Com­

puter and System Sciences, Vol. 16 (1978), 333-344.

[6] Dembo, R.S.: A Primal Truncated Newton Algorithm with Application to Large-Scale Non­

linear Network Optimization. Mathematical Programming Study, No. 31 (1987),43-71.

[7] Dembo, R.S. and Klincewicz, J.G.: A Scaled Reduced Gradient Algorithm for Network Prob­

lems with Convex Separable Costs. Mathematical Programming Study, No. 15 (1981),125-147.

[8] Dembo, R.S. and Steihaug, T.: Truncated-Newton Algorithms for Large-Scale Unconstrained

Optimization. Mathematical Programming, Vol. 26 (1983), 190-212.

[9] Fletcher, R.: Practical Methods of Optimization, Volume 1: Unconstrained Optimization.

John Wiley & Sons, Chichester, 1981.

[10] Fukushima, M., Arai, N. and Ibaraki, T.: An Interior Method for Nonlinear Minimum Cost

Network Flow Problems (in Japanese). Systems and Control, Vol. 31 (1987),837-843.

[l1J Fukushima, M., Katsura, R. and Ibaraki, T.: On Updating Minimum Spanning Trees (in

Japanese). Transactions of the Institute of Electronics, Information and Communication En­

gineers of Japan, Section A, Vol. J71-A (1988), 1979-1982.

[12J Gill, P.E., Murray, W. and Wright, M.H.: Practical Optimization. Academic Press, London,

1981.

[13J Gill, P.E., Murray, W., Saunders, M.A., Tomlin, J.A. and Wright, M.H.: On Projected New­

ton Barrier Methods for Linear Programming and an Equivalence to Karmarkar's Projective

Method. Mathematical Programming, Vol. 36 (1986), 183-209.

[14] Iri, M., Fujishige, S. and Ohyama, T.: Graph, Network and Matroid (in Japanese). Sangyo­

Tosho, Tokyo, 1986.

[15] Karmarkar, N.: A New Polynomial-Time Algorithm for Linear Programming. Combinatorica,

Vol. 4 (1984), 373-395.

[16J Kennington, J.L. and Helgason, R.V.: Algorithms for Network Programming. John WHey &

Sons, New York, 1980.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Interior Methods for Network How Problems 199

[17] Klincewicz, J.G.: A Newton Method for Convex Separable Network Flow Problems. Networks,

Vol. 13 (1983), 427-442.

[18] Meyer, R.R.: Network Optimization. Computational Mathematical Programming (ed. K.

Schittkowski). Springer-Verlag, Berlin, 1985, 125-139.

[19] Papadimitriou, C.R. and Steiglitz, K.: Combinatorial Optimization; Algorithms and Com­

plexity. Prentice-Rall, Englewood Cliffs, New Jersey, 1982.

[20] Polak, E.: Computational Methods in Optimization. Academic Press, New York, 1971.

[21] Tarjan, R.E.: Sensitivity Analysis of Minimum Spanning Trees and Shortest Path Trees.

Information Processing Letters, Vol. 14 (1982), 30-33.

Masao FUKUSRIMA: Department of

Applied Mathematics and Physics,

Faculty of Engineering, Kyoto University,

Kyoto 606, Japan

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

