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The present paper considers multi-state systems which are regarded as a generalization of binary 

systems, and generalizes the concepts of BW systems proposed by R. E. Barlow and Alexander S. Wu. Since the 

structure function of a BW system is defmed by using tht: minimal path sets of a binary coherent system, the BW 

system has a strict restriction that the form of minimal p.ath sets should be identical for any states of the system. 

In this paper we relax the strict condition and propose a class of multi-state systems which we call Extended BW 

systems (EBW systems). We present some properties of EIIW systems and clarify the relationship among multi-state, 

EBW and binary coherent systems. As the main results of this paper, we show that any EBW systems are equivalent 

to a class of binary coherent systems satisfying some conditions. Furthermore, we provide the characterization that 

the class of EBW systems is the maximum class of the multi-state systems which can be transformed into binary 

coherent systems whose number is identical to the number of the states of the multi-state system. 

1. Introduction 

Multi-state systems have been studied by several authors, e.g., R.E. 

Barlow and Alexander S.Wu [2], E.Nl-Neweihi, F.Proschan and J.Sethuraman [3], 

W.S.Griffith [4], F.Ohi and T.Nishida [5,6,7] and J.I.Ansell and A.Bendell 

[8]. In considering multi-state systems, the state spaces of systems and 

their componets are assumed to have at least two states including both perfect 

functioning and complete failure. For this reason, multi-state systems are 

regarded as the generalization of binary systems. Binary coherent systems 

have naturally been extended to finitenulti-state systems by R.E.Barlow and 

A.S.Wu [2], which are called BW (Barlow-Wu) systems. On the other hand, F.Ohi 

and T.Nishida [5,6] have discussed thenulti-state systems on the basis of 
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more generalized conditions such that state spaces of systems and their compo­

nents are not necessarily the same. 

In the present paper we generalize the concepts of BW systems. Since the 

structure function of a BW system is defined by using minimal path sets of a 

binary coherent system, the BW system has a strict restriction that the form 

of minimal path sets should be identical for any states of the system. In 

this paper, we relax the strict condition and propose a class of multi-state 

systems which we call Extended BW systems (EBW systems). We present some 

properties of EBW systems and clarify the relationship among multi-state, EBW 

and binary coherent systems. 

As the main results of this paper, we show that any EBW systems are 

equivalent to a class of binary coherent systems satisfying some conditions. 

Furthermore, we provide the interesting characterization that the class of 

EBW systems is the maximum class of the multi-state systems which can be 

transformed into the class of binary coherent systems whose number is identi­

cal to the number of states of the multi-state system. In more recent work, 

J.I.Ansell and A.Bendell[8] have established a hierarchical definition of 

multi-state systems. Concerning this work, we see that the class of EBW sys­

tems includes the multi-state systems with 'well-defined binary image' pro­

posed in [8]. The results of this paper will be useful for the structural 

analysis of multi-state systems and the evaluation of system reliability. 

Moreover, since the class of EBW systems is the maximum class which can be 

transformed into binary systems, its concept may be applied to the study of 

the multiple-valued logic [9]. 

In Section 2 we present the definition of multi-state systems, BW sys­

tems and EBW systems, and several notations. Section 3 provides some proper­

ties of EBW systems. In Section 4 we discuss the transformation method of EBW 

systems into the binary coherent systems. In Section 5 we present a relation 

between EBW systems and binary systems satisfying some conditions. 

2. Multi-state systems 

We assume that a system is composed of n components, and the state 

spaces of the system and its components can be represented as {O,l, ... ,m}. 

Let C = {1,2, •.. ,n} be the set of the components and let n. (iEC) and S be 
1, 

finite totally ordered sets with m+l elements. The state spaces of the sys-

tem and the components are the same,i.e., n. = S = {O,l, ... ,m}. Physically, 
1, 

the elements of the state space '0' and 'm' correspond to the completely 
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failed state and the perfectly function:lng state respectively, and any other 

elements, i.e., 1,2, ... and m-I, mean illtermediate states between the state 0 

and m. For j and k of n. (or S), j<k implies that the state j is better than 
'l-

the state k. The combination of states of all the components is described by 

the state vector x = (x p x
2
, •• • ,xn), where xi' the state of the i-th component 

of the system, is an element of ni . It is assumed that the state of the sys­

tem is determined by the states of all the components, so that the state of 

the system is described by a structure function .(~) of the state vector x 

with range S = {O,l, ••• ,m}. 

In this paper, we use the following notations, where 8ES=n
i

, ~ElliECni and 

iLEl1iECni· 

(1) 8 = (8,S, ••• ,8)EIT. Cn., 0= (O,O, ... ,O)EIT. Cn. and m = (m,m, •.. ,m)EIT. Cn .. 
- 'l-E 'l- - 'l-E 'l- - 'l-E 'l-

(2) x > Y if and only if x. <: y. for every iEC, and x. > y. for some iEC. 
- - 'l- 'l- 'l- 'l-

(3) 

(4) 

(8.,X) = (x
1
,x

2
, ••• ,x. 1,8,x.+

1
, ••• ,x ). 

'l- - 'l-- 'l- n 
-1 • (8~) = {~;.(~)~8}. 

(6) M8~ is the set of all the 

(5) .-1(8) = {~;.(~)=s}. 
-1 

minimal elements of. (8~). 

(7) M 
8 

is the set of all the minimal el,~ments of .-l(s). 

(8) C8~(~) = {i;xi~8}. (9) C (x) = {i;X.=8}. 
8 - 'l-

(10) A8~ = {C8(~);~EMs~}· (11) A = {C (X);XEM }. 
8 8 - - s 

In (6) and (7) if ~ belongs to M8~(M8)' we have .(~) <: s ( .(~) 

x < y implies .<iL) < 8 for any iL. 
8 ), and 

We consider the definitions for several multi-state systems in the fol­

lowing. Suppose that all the components and the system have the same finite 

totally ordered set, i.e., {O,l, ... ,m}, then a multi-state system may be 

defined as follows: 

Definition 2.1. The triplet (IT. Cn.,S,.) is called a multi-state system 
'l-E 'l-

if and only if .(~) is a non-decreasing surjection from ITiECn
i 

to S. 

From a physical point of view, the above multi-state system. is consid­

ered as follows: To begin with, the non-decreasing property means that the 

state of a system does not deteriorate unless the state of a component comes 

down. ConSidering surjection of ., if all the components are perfectly 

functioning, then the system will be so, too, i.e., ~ = m implies .(~) = m. 

Similarly, if all the components are completely failed, then the system will 

be so, too, i.e., x Q implies • (~) O. Furthermore, suppose that more 

than one components do not deteriorate simultaneously, and that the state of 

each component does not come down by more than one at a time, then the state 

of the system will take all the value from m to O. Consequently, we may 
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consider a multi-state system as a non-decreasing surjection. 

Next we define a multi-state system which are proposed in [2]. 

Definition 2.2. A multi-state system (rri£Cni'S,~) is called a BW system 

if and only if 

~(~) = maxl~j~p mini£P. xi holds for every ~ of rri£Cni' 
J 

where {P.}~ 1 is the set of all the minimal path sets of a binary coherent 
J J= 

system ( see [1) on the definitions of minimal path sets and coherent systems). 

Finally, the multi-state system which we propose are defined as follows: 

Definition 2.3. A multi-state system (rri£Cni'S,~) is called an EBW sys­

tem if and only if Ms~ C {O,s}n holds for every s of S. 

Since we assume that a structure function ~ is non-decreasing, giving a 

function ~ (Le., determi.ning the correspondence relation of ~) will be iden­

tical with obtaining all the sets of the minimal elements {M1,M2 , .•• ,Mm}. 

To illustrate the distinction among those multi-state systems, we provide 

simple examples of multi-state systems which are represented by the sets of 

minimal elements. 

Example 2.1. Let C 

(1) Multi-state system: 

{I , 2 , 3} and S 

{(2,O,O),(O,2,1),(I,I,2)}, Ml 

MO {(O,O.O)}. 

(2) BW system: 

n. 
1-

{O,I,2}, (i£C). 

{(I,O,O),(O,I,I),(O,O,2)}, and 

M2 = {(2.0.2).(0.2.2)}. Ml = {(I,O,I),(O.I.I)} and MO = {(O.O,O)}. 

(3) EBW system: 

{(2.2.0). (2.0.2). (0.2.2)}, Ml {(1.0.0).(0.1.1)} and 

MO {(O.O.O)}. 

3. Characterizations of EBW systems 

In this section we investigate some basic properties of EBW systems. 

Theorem 3.1. A BW system is an EBW system. 

Proof: Let (rri£Cni's,~) be a BW system and let {Pj }2=1 be the set of 

all the minimal path sets. For an arbitrarily fixed s of S. we define ~k 

(l~k~p) as follows: Cs (~k) = Pk • CO(~k) = C\P k • Since ~(~k) s. it follows 

that ~k is a minimal element of ~-l(s~) from Definition 2.2. Therefore for 

every s of S. we have {x
1 
••••• x } C M <' - -p s= 
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Suppose that for some 8 of S, there is 11 minimal element !L of ~-1(8~) such 

that !L ~ {~1'~2""'~p} holds. Since min. p y. ~ 8 for some Pt and !L <& '.!!.t' 
1-e: t 1-

we have !L > :::t' This contradicts the assumption that !L is a minimal element 

of ~-1(8~). Then for every 8 of S, M8~ = {~1'~2""'~p} c {0,8}n holds. 

Q.E.D. 

In the following, we show some results on EBW systems. Since the struc­

ture function ep of an EBW system is a surjection. It is immediate that for 

each 8(8<&0) of S, ~e:M8~ implies ~ <& 0. 

Property 3.1. If (IT. Cn.,S,ep) is an EBW system, then ep(!) 1-e: 1-
8 for each 8 

of S. 

Proof: Let ~ be an element of Ma~" Since ~ ~ ! and ~ is non-decreasing, 

it follows that H!) <: H~) ~ a. If ep (~~) = t > a, then there exists !L of Mt~ 

such that !L;~!' which contradicts !Le:iO, t}n and !L ;t 0. Consequently, for 

each 8 of s, cp(!) = 8 holds. Q.E.D. 

Theorem 3.2. If (ITie:Cni'S,~) is an EBW system, then M8~ Ma for each 8 

of S. 

Proof: (1) (Proof of M < :J M ) Let: x be an element of M and consider y_ 
8= a - 8 

of ~-1(8~) sueh that y ~ x. From the non-decreasing property of ~, 

a ~ ~(!L) ~ ~(~) a, 

so that ~(!L) = 8, i.e., !Le:ep-1(8). Then ~ = !L holds because ~ is a minimal 

element of ~-1(8). Hence x is the minimal element of ~-l(a~). 

(2) (Proof of M8~C M8) Since Ma~ C {0,8}n, it follows that x ~ 8 for each x 

of each ~ of Ma~' By Property 3.1, ~(~) = 8 holds for each x of M8~' so that 

there exists 1~e:M8 such that !L ~ ~. Then x = !L holds because !L belongs to 

ep-1(s~) and x is the minimal element of ep-l(8~). Hence x is a minimal ele-

ment of ~-l(s). Q.E.D. 

With regard to the notations Aa~ and A8 , the following corollary holds 

from Theorem 3.2. 

Corollary 3.1. For each 8 of S, As~ = As holds. 

Theorem 3.3. Let (IT. Cn.,S,ep) be an EBW system. For each sand t (s<t, 1-e: 1-
s,te:S), and for each ~ of Mt~' there exists !L of M8~ such that ~ > !L' 

Proof: From Mt~ C ~-l (t~) c ~-1 (8~;), for eac.h ~e:Mt~' there exists !LsMa~ 

such that x ~ y. Since from Theorem 3. <~ H~) t for each x of Mt~ and 

ep (!L) = a for each !L of M8~' then we have, ~ '" !L' 

Corollary 3.2. For each 8 and t (<:<t, 8,te:S) and for each A of At' 

there exists B of A such that A :J B. 
8 

Q.E.D. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



164 S. Shinmori, H. Hagihara, F. Ohi & T. Nishida 

Proof: From Theorem 3.3, this corollary is easily proved by using the 

relation in Corollary 3.1, i.e., 

A = {C (x);xEM } = {C (x);xEM <} s s - - s s - - s= A <' s_ Q.E.D. 

Theorem 3.3 tells us a relationship between the minimal elements of 

~-l(s~) and those of ~-l(s+l~) for s=Q,1, .•• ,m-1. We define functions fs 

from ITiECQi to S for every S of S as follows: 

fs(~) = maxAEA mini EA xi for every ~ of ITiECQi' 
s 

In Definition 2.2, the structure function of a BW system is formulated by a 

given family of sets {P.} .P1 having no connection with any states. On the 
J ,1= 

other hand, the structure function of an EBW system is defined by giving fami-

lies of sets A
1

,A
2

, .•. ,A
m

• Therefore, the above function fs is identical to 

the structure function of a BW system if {P.} .P1 is regarded as A , in other J J= s 
words, if for every s, As {Pj}j~l holds. The following Theorems hold for 

the functions ~ and fs' 

Theorem 3.4. Let (ITiEQi'S,~) be an EBW system. For each x of ITiECQi' 

~(~) ~ sand f (x) ~ s are equivalent. s -
Proof: ~(~) ~ s implies that there exists ~ of Ms~ such that x ~ ~. 

n 
Since ~EMs~ C {Q,s} , it follows that 

miniEC (y) xi ~ min. C ( ) y. = s, 
s _ ~E S ~ ~ 

and that C (Y)EA , so that f (x) = maxA A min. A x. ~ s holds. s - s s - E ~E ~ 
S 

On the other hand, f (x) ~ s implies that there exists A of A such that s - s 
mini EA xi ~ s holds. Here we fix x and A satisfying the above relation. 

From the definiton of As' it follows that there exists Y of Ms~ such that 

A = Cs(~). Since ~E{Q,S}n, we have ~ ~ ~. Therefore ~(~) ~ s holds because 

of ~(~) = s and the non-decreasing property of ~. Q.E.D. 

Theorem 3.5. Let (ITiECQi'S,~) be an EBW system. For every x of ITiECQi' 

the following relations holds. 

(i) ~(~) = s if and only if fr(~) ~ r for every r(~s), and 

ft(~) < t for every t(>s). 

(ii) ~(x) = max S {s;f (x)~s}. 
- SE S -

Proof: Since the necessity ('only if' part) of (i) is evident from 

Theorem 3.4, we show the sufficiency('if' part) of (i) as follows: 

If fs(~) ~ s, then ~(~) ~ s holds from Theorem 3.4. Suppose that 

~(~) ~ t > s, then ft(~) ~ t, which contradicts the condition. Thus we have 

~(~) s. 

The proof of (ii) is easily shown from (i). Q.E.D. 
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In the above discussion, we have considered multi-state systems apart from 

the concept of coherency which presents whether each state of all the compo­

nents contirbutes to the state of the system or not. In the following of this 

section we discuss the relations between an EBW system and the coherent prop­

erty of multi'-state systems proposed by F.Ohi and T.Nishida [6). 

Definition 3.1. A multi-state system is said to be coherent if each i of 

C and for each sand t of ni (s~t), there exists x such that ~(si,~)~~(ti'~). 

The coherent property of this definition is identical with 'FHN-regular­

ity' in F.Ohi and T.Nishida [6]. On a c:oherent EBW system, the following 

theorem holds. 

Theorem 3.6. Let ~ be a structure function of EBW systems. Then ~ is 

coherent if and only if U AEAS A = C holds for every s of S. 

Proof: (1) (Necessity) Since AO ., {cl, the condition clearly holds for 

s=O. Suppose that for some s (~O) of S and for some i of C, 

i 1 UAEA/. 

Let s' be a predecessor element of s, i.e., 8'< S and for any r of S, r < s 

implies r :;; s'. If ~(si'~) = s, we haVE! HSi'~) = ~(s' i'~) since i1UAEAs A 

and Ms C {O,s}n. If ~(si'~) = u (s~u), there exists ~ of Mu such that 

(s".,~) ii: y_. Since sii:y. and ydO,u}n, y.<s holds. so that we have 
~ 1- - L 

(s .. ~) > (s'. x) ii: y from s>s 'ii:y.. This implies that 
~ 1- - - 1-

u=~(s.,x)ii: ~(s'.,x)ii: Hy):.u. 
t.- t.- -

Thus we have .p (s . ,x) = ~ (s ' . ,x) • Therefore for any x ~ (s . ,x) .. ~ (s ' . ,x) , 
t.- t.- t.- t.-

which contradicts the condition of coherency. 

(2) (Sufficiency) From the condition, for every i of C and every t of ni' 

there exists x of Mt such that iECt(~) holds. if t=O, we have MO={Q} from the 

non-decreasing property of~. Now, we c:onsider two states sand t such that 

s<t(~O), since in Definition 3.1 the coherent property is treated as a rela­

tion of arbitrary two states of each cODlponent. For an arbitrarily fixed x 

of Mt(t~O) and every s«t) of ni' (si'~) < (ti'~) = x holds. Then ~(si':~) < 

~(ti'~) since ~ is a non-decreasing func:tion and x is a minimal element of 

~-l(t). Q.E.D. 

4. Transformation of EBW systems 

This section provides a transformation method of the EBW system into 

binary systems and some relations between those systems. In the following, 

we assume that (n. Cn.,s,~) is an EBW system. Let n. = n.\{o}' S = S\{O} and 
t.E t. t. 1-
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n = {0,1}, where n is the totally ordered set having two elements ° and 1 such 

that 0<1 holds. 

Definition 4.1. We define functions ~i' ~, ns and ~s as follows, 

where a notation BA is the set of all the_mapping from a set A to a set B. 
n· 

(1) ~. (i£C) is the mapping from n. to n'1.- such that for every s of n;: '1.- '1.- ~ 

(~.(s» = 1 if p~s, and (~.(s»t = ° if t>s, 
'1.- P '1.-

where (')k is the k-th element of (.). 

(2) ~ is the mapping from S to nS such that for every s of S: 

(~(s»p = 1 if r~8, and (~(8»t = ° if t>s. 
S'j. C 

(3) n (s£S) is the mapping from IT. Cn '1.- to n such that for every (f
1
,f

2
, ••• 

s Q. '1.-£ 
.. ,f) of IT. Cn '1.-: n '1.-£ 

ns (f1,f2 ,···,fn ) = (f1 (s),f2 (s), ... ,fn (s». 

(4) ~s(s£S) is the mapping from nC to n such that for every ~ of nC: 

~s(~) = (~o~(~»s using ~£~-lons-l(~), 
Q. 

where ~ = (~1'~2""'~n) i.s the mapping from ITi£Cfli to ITi£C n '1.-. 

Thus we write 

lows: for every ~ 

(~I(X1)'~2(X2)""'~n(xn» for the sake of brevity as fol­

of IT. (.fl. : ~(x) (~1'~2""'~ lex) '1.-£ ,'1.- - - n -
(~1(x1)'~2(x2)""'~n(xn»' 

Example 4.1. We give a simple example to demonstrate the functions ~i' 

~, ns and ~s. Consider an EBW system composed of three components with four 

states, i.e., C = {l,2,3} and n.(iEC) = S = {0,1,2,3}. We assume that at a '1.-
given moment ~(~) = ~(3,2,1) = 2 holds. Then ~(3,2,1) 

using the functions in Definition 4.1 as follows: 

2 is transformed by 

~1(xl) = ~1(3) = «~1(3»1'(~1(3»2'(~1(3»3) = (1,1,1), similarly, 

~2(x2) = ~2(2) • (1,1,0) and ~3(x3) = ~3(1) = (1,0,0). 

~(~) = (~1(x1)'~2(x2)'~3(x3» = «1,1,1),(1,1,0),(1,0,0». 

~o~(~) = ~(2) = «~(2»1,(~(2»2,(~(2»3) = (1,1,0). 

n3°~(~) = «~1(3»3'(';2(2»3'(';3(l»3) = (1,0,0), similarly, 

n2°~(~) = (1,1,0) and n1°~(~) = (1,1,1). 

~3on3°~(~) ~3(1,0,0) (~o~(~»3 0, 

~2on2°~(~) ~2(1,1,0) (~o~(~»2 1 and 

~lon1°~(~) ~1(1,1,1) (~o~(~»l 1. 

In this section, we investigate the property of functions ~i' ~, TIS and 

~s (SES) for an EBW system (ITiECni's,~). 

Theorem 4.1. The mapping ~ in Definition 4.1. (4) is well-defined. 
s 

Proof: In order to prove that ~ is well-defined, it is sufficient to 
8 
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show that the following two conditions hold for every s of S. 
C (i) For every ~ of n , ~-lon -1 (Y) ;t 4' holds, where ~ is 

- s -
(ii) nsof(~) = nsof(~) implies (~o~(~»s = (~o~(~»s' 

(i) For any ,_ll_ of nC we determine x of n:. Cn. as follows: 
- 1-e: 1-

xi = 8 if Yi = 1, and xi = 0 if Yi = O. 

the empty set. 

167 

Then nsof(~) = «~I(xl»s'(~2(x2»s""'(~n(xn»s) using Definition 4.1 

(1), Le., 

(~ . (x .) ) 1 if X. 
1- 1- S 1-

s, and (~ . (x.» = 0 if x. = O. 
1- 1- S 1-

(ii) Let n o[,(z) n o~(w) s--- s-- ~. From d.efinitions of ns and f, 

Yi = 1 implies Zi"i:. s and w.::: s, 
1-

Yi = 0 implies zi< s and W.< 8. 
1-

If (~oH~» s = 1, then there exists x of Ms:> such that ~ ~ ~ since H~) ;;: s 

holds. Owing to Ms:> C {O,s}n and the relations between zi and Wi shown above, 

Z ;;: x implies further W ~ ~, ~(~) ;;: 8' and (~oHw» = 1. By the same argu-- s 
ment, it is easily obtained that (~o~(~) s = 0 if and only if (~oH~» s ,= O. 

Q.E.D. 

We assume that the ordinary product ordered relations are given on 

n~ and nS. S u u Hence for f and g of n , f S g if and only if f(8) S g(8) holds 

for any 8 of S. Since ni and S are totally ordered sets, ~i and ~ are non­

decreasing functions from their definitions. Moreover, the composite function 

~o~ is non-decreasing by the properties of~. Thus W ~ ~ implies 

(~o~(~»8 :> (~o~(~»8' 

Next we define binary monotonic systems which are particular multi-state 

systems whose largest element m is 1, and consider the relationship between 

EBW systems and the corresponding binary systems constructured by transforma­

tions in Definition 4.1. 

Definition 4.2. The triplet (IT. C. Q.,Q,1/I) is a binary mono tonic system 
1- e: • 1-

if and only if 1/1 is a non-decreasing surjection from ITie:CQi to Q, where 

Q. Q = {O,l}. 
1-

Th 4 2 F h f S- (nC,n'·8) i b' i t eorem .. or eac 8 0 , .. u ~ s a ~nary monoton c sys em. 

Proof: We prove that the function ~8 is a non-decreasing surjectiol1. 

(1) (Proof of surjection): From definitions of n8 and f, n8of(!) - !. 
Since (~o~(8» = (~(8» = 1, we have ~ (1) = 1. Similarly, since n o~(O)=O - 8 8 8- 8--
(~o~(O» = (~(O» = 0, we have ~ (0) = o. - 8 8 8 -
(2) (Proof of non-decreasing property): 

C We assume that u ~ V holds for u and!:!. of n , and determine W and ~ of ITie:Cni 

for ~ and!:!. respectively as follows: 
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W. = s if u. 1. w. 0 if u. O. 1.- 1.- 1.- 1.-
and z. = s if v. 1. z. 0 if v. = O. 1.- 1.- 1.- 1.-

Then we have n oE;(w) = u and n oE;(z) = v. Since ~ ~ ~. W ~ z holds. From the 
s -- s--

non-decreasing property of the composite function E;o~. we have 

~s(~) = (E;o~(~»s ~ (E;o~(~»s = ~s(~)· Q.E.D. 

Theorem 4.3. For each s of S. ~ (y) = max min y .• where _YEnC• 
s - A' 1.-AE s 1.-EA 

Proof: In order to prove that ~s(~) = 1 if and only if 

i 1 f h f S- d f nC. d fi f i max m n y. = or eac s 0 an any ~ 0.. we e ne a unct on ~s as 
AEAS iEA 1.-

~s(~) = max
A 

~in Yi for any ~ of nC. 
AE s 1.-EA C 

Then we show that ~s(Y~ = 1 if and only if ~s(~) = 1 for any ~ of n . 
(1) (Necessity): ~ (y) = 1 implies that there exists an element A of As and 

s -
for all i of A. Yi = 1 holds. For this set A. ~ is given by 

x. = s if iEA. x. = 0 if i~A. 1.- 1.-
Since nso~(~) = ~ and ~(~) = s hold. we have 

~s(~) = (E;o~(~»s = (E;(S»s = 1. 

(2) (Sufficiency) : If ~ (Y) = 1. then we have (E;o~(x» = 1 using X such that 
s - - s -

nso~(~) = ~ holds. (E;o~(~»s = 1 implies that there exists A of As and for 

all i of A. xi i1: s holds since H~) i1: s. From n oE;(x) = ~. y. = (E; .(x.» = 1 
s -- 1.- 1.- 1.- s 

holds for all i of A. Therefore we have ~s(~) = 1. Q.E.D. 

Theorems 4.2 and 4.3 indicate that the EBW system can be transformed into 

the class composed of m binary monotonic systems using functions E; .• E;. nand 1.- s 
~s (iEC. SES) in Definition 4.1. In other words. we may regard an EBW system 

as a class composed of some binary monotonic systems. Specifically. we illus­

trate the transformation method of an EBW system using Example 2.1 (3) in sec­

tion 2. In this example. we have 

A2 {(1.2).(1.3).(2.3)} and A1 = {(1).(2.3)} 
from 

M2 {(2.2.0).(2.0.2).(0.2.2)} and M1 = {(1.0.0).(0.1.1)}. 

By A2 and Al' two binary mono tonic systems ~2 and ~1 are constructed as fol­
C 

lows: ~2(Y) = max min y. for any y of n • 
- AEA2 iEA 1.- -

~1(~) = max min z. for any ~ of nC. 
AEA1 iEA 1.-

Furthermore. we have 

~ = (1.0.0) ~ ~2(1.0.0) = 0 and ~ = (1.1.0) =:> ~1 (1.1.0) = 1 

from the above construction of ~2 and ~1' 

Considering the coherent property of Definition 3.1. the following Cor­

ollary holds. 
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Corollary 4.1. If an EBW system satisfies the coherent condition, binary 

mono tonic systems transformed by ~i' ~, ns and ~s are coherent for each s of S. 
Since the proof is easy, it is omitted. 

5. Relationship between EBW systems and binary systems 

In this section we consider a relationship between EBW systems and the 

classes of binary mono tonic systems satisfying the following condition. 

Condition 5.1. C 
(1) (fI ,n,1/Is)' s=1,,2, ••• ,m, is a binary mono tonic system. 

(2) For each sand t of S, s:ii t implies 1/I t ~ 1/Is ' Le., 
C 

1/It(~) ~ 1/Is(~) holds for any ~ of n • 

If we denote the set of all the non-decreasing functions from n. to fI 

by n~i, function ~. is the order isomorphism from fI. to n~i. Then ~ ~s the 
~ - ~ - C 

order isomorphism from IIie:Cfli to IIie:CfI~~~, and ~ is so from S to fI;::. Now we 

define a function 1/1 as follows, where 

Cl {(1/1 s ons°s. (~» sd) = Cl (1/11 onl"s. (~), ••• , 1/Im onm os. (~» . 
Definition 5.1. 1/1 is the mapping from IIie:Cni to S such that 1/1(~) = 

~-l«1/I on o~(x» ~) holds for any x of II. Cn., where the function 1/1 sat is-s s - - se:~ - ~e: ~ s 
fies Condition 5.1 and functions ns' S. and ~ are defined in Definition 4.1. 

Theorem 5.1. The triplet (II. CfI.,:),1/I) is an EBW system. 
~e: ~ 

Proof: We prove that function 1/1 is a non-decreasing surjection, and that 

the condition of Definition 2.3 is satisfied. 

(1) (Non-decreasing): S. and ns are non·-decreasing functions and 1/Is ' s=1,2, •• 

•• ,m, is also a non-decreasing function from Condition 5.1. Since ~ is the 

order isomorphism, ~-1 becomes non-decrl~asing. Thus 1/1 is non-decreasing from 

Definition 5.1. 

For an element B of B s 
define ~ of IIie:cni by xi = s if ie:B, x'i = 0 if i~B. Then we have 

s.sons°s.(~) = 1. Since s.(~) (~l(x1)'~:2(x2)'···'~n(xn»' we determine s.(~) 

as follows: 

For r ~ s, (~.(x.» = 1 if ie:B, (~.(x.» = 0 if i~B, 
~ ~ r ~ ~ r 

and for t > s and for all i of C, (~.(x.»t = o . . ~ ~ 

Then since 1/1 satisfies Condition 5.1, 'V on o~(x),s =l, ••• ,m, s s s - -
by 1/Ironrof(~) = 1 if r ~ s, and 1/ItO~t0s.(~) = 0 if t > s. 

Therefore we have 1/1(~) = ~-l«1/Ikonk0s.(~»ke:S) = s. 

is represented 

(3) Finally, we prove that all the minimal elements of 1/I-1(s~) belong to 

{O,s}n. From the definition of ~ and Condition 5.1, 
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.(~) = ~-l«.konk~~(~»kES) ~ a if and only if .aonao!(~) - 1. 

Then for some B of Ba and for each element i of B, (~i(Yi»a = 1 and equiva­

B, define ~ of ITiECni by !ently Y'~ a. Using this set 1.. 
if i~B. x. = a if iEB, x. .- a 1.. 1.. 

Then from the proof of above (2), we have .(~) = a. 

it follows that x is a minimal element of .-1(8~). 
ments of .-l(a~) belong to {a,s}n. 

Since clearly ~ ~ ~ holds, 

Thus all the minimal ele-

Q.E.D. 

Definition 5.2. The function 1/is is called 's-monotonic' if and only if 

·s satisfies Condition 5.1 for each s of S. 

Definition 5.3. The function .s is called 'well-defined' if and only if 

for each s of S and for any ~ and ~ of ITiECQi' 

nso!(~) = nao!(~) implies (~o.(~» a = (~o.(~» a' 

where .s(nso!(~» = (~o.(:£»s for any ~ of ITiECni , and 1/i is a multi-state sys­

tem. 

Theorem 5.2. The function. is well-defined for each a of S if and only s 
if .s is s-monotonic. 

Proof: Suppose that 1/i is not s-monotonic, i.e., for some sand t(s<t) 
_ CS 

of S, there exists ~a of i~ such that .s(~a) < .t(~a). Since for every ~ of 

nC and for each s of S, the value of .s(~) is either a or 1, we have 

.s(~a) = a < 1/it(~a) = 1. 

Furthermore, we define ~ and ~ of ITiECni for ~a as follows: 

zi = s, ~i = t if (~a)i = 1 and zi = 0, ~i = 0 if (~a)i O. 

Since ~O = nso!(~) = nto!(~), we have nso!(~) = nso!(~). 
However, (~o.(~»s = a and (~o.(~»s = 1 hold, which contradicts that .s is 

well-defined. Therefore, if the function .s is well-defined for each 8 of S, 

then 1/ia is s-monotonic. 

On the other hand, it follows from Theorem 5.1 that the triplet (ITiECQi' 

S,.), which generated by lV (SES) using functions n , ~ and ~, is an EBW sys-s s -
tem if .s is s-monotonic. Further, by Theorem 4.1 the function .8 is well-

defined for each s of S if • is an EBW system, hence the proof is complete. 

Q.E.D. 

Corollary 5.1. If a multi-state system (IT. Cn.,S,.) does not belong to 1..E 1.. 
the class of EBW systems, then the function .s is not s-monotonic. 

It is obvious by Theorem 5.2. 

As for the coherent property, the following two Corollaries hold. 

Corollary 5.2. If 1/is is coherent for each 8 of S, then. is coherent. 
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Corollary 5.3. A multi-state system (IT. CQ.,S,1/I) satisfying the following 
'!-£ '!-

two conditions each s of S is a coherent EBW system. 
C (i) A binary monotonic system (Q ,Q,1/I ) is coherent. 

s 
(ii) 1/Is is well-defined. 

Since the proofs of Corellaries 5.2 and 5.3 are easy, they are omitted. 

As shown in Section 4, an EBW system (IT. CQ·,S,<p) generates a class {<P 1 , 
'!-£ '!-

<P 2, ... ,<Pm} of binary monotonic systems using functions ns (s£S), ~ and~. On 

the other hand, from Theorems 5.1 and 5.2, if the structure function 1/Is is 

well-defined for each s of S, then 1/Is becomes s-monotonic, so that the multi­

state system (IT. CO.,S,1/I) obtained by the class of those binary monotonic sys-
C '!-£ '!-

tems (0 ,0,1/Is)' s=1,2, ••• ,m, is always an EBW system. Conversely, if a multi-

state system does not satisfy the condition of EBW systems, the class of binary 

mono tonic systems generated by the system is not s-monotonic. Hence such a 

multi-state system can not define the class of those binary monotonic systems. 

Thus EBW systems are the maximum class of the multi-state systems which can be 

transformed into the class of binary monotonic systems whose number is identi­

cal to the number of states of multi-state system. Moreover, it is immediate 

that the class of EBW systems includes m.ulti-state systems with 'well-defined 

binary image' proposed by [8]. 

The following Theorems show the relationship of the two distinct EBW sys-
C C tems 1/1 and <P composed of the classes of binary systems (0 ,Q,1/I ) and (0 ,n,<p ), s s 

s=1,2, .•. ,m, respectively. 

Theorem 5.3. Let (IT. Cn.,S,1/I) and (IT. Cn.,S,<p) be EBW systems and let 
'!-£ '!- '!-£ '!-

1/Is and <Ps be binary monotonic systems for every s of S. We assume that the 

two EBW systeDls 1/1 and <p are composed of the classes of binary mono tonic sys­

tems 1/Is and <PB (s£S), respectively. If 1/Is = <Ps for every s of S, then 1/1 = <p. 

Proof: Suppose that 1/1 ~ <p, i.e., there exists ~ of ITi£Cni such that 

1/1(~) > <P<~) holds. Then there exists an element k of S satisfying both 

1/1(~) ~ k and <P(~) < k. Since for this fixed ~, 

1/I(x) = ~-1«1/I on o~(x» S-) ~ k, - s s - - s£ 
we have 1/Ikonko~(~) = 1 by Definition 4.1. On the other hand, since <P(~) < k, 
we have (~o<P<~»k = O. Then <Pk(nko~(~» (~o<P<~»k = O. Therefore we have 

1/I k ~ <Pk , which contradicts the assumption that 1/Is = <Ps for every s. Also the 

case such that 1/1{~) < <P(~) holds can be similarly negated. Q.E.D. 

Theorem 5.4. Under the same assumption of Theorem 5.3, if 1/Is ~ <Ps for 

some s of S, then 1/1 ~ <p. 

Proof: Since 1/Is ~ <Ps holds for some s of S, there exist ¥. of nC and s 

of S such that 1/Is (¥') = 1 and <Ps (¥.) = O. For this fixed ¥., x of ITi£Cni is 
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given by xi Z s if i£C1(~)' xi = 0 if i~C1(~)' 

Since W on o~(x) s s - - ws(~) = 1, we have w(~) ~ s by Definition 5.1. 

From ~s(~) = 0, we have (r;o~(~»s = O. Thus there exists x of ITi£CQi such that 

w(~) > ~(~) holds. 

Similarly, if 

exists x such that 

Therefore we have W ;< ~. 

ws(~) = 0 and ~s(~) = 1, then 

w(~) < H~). 

we have W ;< ~ since there 

Q.E.D. 

6. Conclusion 
We have propesed an EBW system as an extension of Barlow-Wu (BW) systems. 

The extension method has been accomplished by relaxing the strict condition 

that the form of minimal path sets of BW systems should be identical for any 

states. We have discussed some properties of EBW systems and relationship 

between EBW systems and the class of binary systems. As the main results, we 

have shown that an EBW system is equivalent to a class of binary systems sat­

isfying some conditions. Furthermore, we clarified that the class of EBW sys­

tems is the maximum class of multi-state systems which can be transformed into 

binary systems whose number is identical to the number of states of the multi­

state systems. 

Concerning EBW systems, there remain some problems such as modules, anal­

ysis of system reliabilities and applications of the concepts of EBW systems 

to multiple-valued logic systems and so on. 
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