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A variety of bond portfolio optimization problems of institutional investors are formulated as linear 

and/or bilinear fractional programming problems and algorithms to solve this class of problems are discussed. Our 

objective is to optimize certain index of returns subject to constraints on such factors as the amount of cash flow, 

average maturity and average risk, etc. The resulting objective functions and constraints are either linear, bilinear 

or bilinear fractional functions. The authors devised a special purpose algorithm for obtaining a local optimal 

solution of this nonconvex optimization problem containing more than 200 variables. Though it need not generate 

a global optimum, it is efficient enough to meet users' requirement. 

1 Introduction 

The bond market of Japan has been rapidly expanding since 1975, when a large amount 

of national bonds were issued and tight government regulations were substantially relaxed to 

enable a smooth circulation of national bonds. Numerous brands of bonds are now being 

circulated and several new types of transactions emerged in accordance with the growth of the 

market. 

Thus, there is a strong demand for information service systems which would facilitate a 

quick and easy decision making of investors. Several bond operation analyzers have been de­

veloped in recent years by leading security companies to meet this demand. Unfortunately, 

however, none of these systems are accessible through open literature and they are not satis­

factory enough regarding its range of applicability and reliability as well as processing speed. 

They either oversimplify the model to the extent that it is no longer valid in a very complex 

real transaction environment or can at best simulate small scale transactions. In addition, 

hours of computation is required to generate a solution which need not even be close to a 

local optimum. This is primarily because they still depend upon outdated general purpose 

mathematical tools to compu te a solu tion of typically non convex optimization problems. In 
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144 H. Konno & M. [nori 

fact, they sometimes generate a very awkward solution against which an experienced trader 

can point out a better solution upon casual inspection. 

In the meantime, full bank dealing started in 1980 and major banks joined the bond dealing 

business. Also, future bond market is expanding rapidly since its birth in 1985. In short, we 

are on the brink of the revolution in the bond dealing business. 

Under such circumstances, we propose a new bond portfolio optimization model which 

covers a variety of transaction environment of the institutional investors. Also we will develop 

an efficient algorithm for solving a resulting nonconvex optimization problem by exploiting its 

special structure. This algorithm can generate a very good, if not a globally optimal solution 

on a real time basis, namely within one minute on a mainframe computer. 

A commercial purpose decision support system based upon our model and algorithm is now 

under development, which we hope will help bond traders make quick and quality decisions. 

We will, however restrict onrselves here on the exposition of the model and algorithm. The 

details of decision support system will be discussed in the forthcoming paper. 

2 Indices Associated with Bond Portfolio 

Let us assume that an investor holds Uj units of bonds Bj, j = 1, ... , N. Associated with 

Bj are four basic indices: 

Cj : coupon to be paid at a fixed rate (yen/bond/year) 

/j : principal value to be refunded at maturity (yen/bond) 

pj : present price in the market (yen/bond) 

tj : maturity (number of years until its principal value is refunded) 

Returns from bonds consist of two components. One is the income from coupon and the 

other is the capital gain due to price increase. Bond portfolio is determined by choosing 

the expected level of returns and risk from among numerous possible combinations on such 

factors as the size of transaction, magnitude of profit and/or loss, amount of money needed 

for additional investment and so on. 

2.1 Indices to Represent Returns 

There are three commonly used indices to represent returns, namely, average direct yield, 

average yield to maturity and average effective yield. (See e.g. [3], [5] for details about these 

indices) 

Direct yield, 'Yj of Bi is defined by 

(2.1) 
C· 

'Yj = ..l. 
Pi 

which represents a very shoIt term index of return. 

Yield to maturity Pi is lL constant satisfying the following equation: 
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Bond Portfolio Optimization 145 

The right hand side of (2.2) represents the total amount of cash out of one unit of Bj, while 

the left hand side stands for the amount of money we get by saving Pj units of cash for tj years 

at simple interest rate I-'j. Thus I-'j is given by: 

(2.3) 
C· + (t. - p·)/t· I-'j == 3 3 3 3 

Pj 

Effective yield Vj is a constant satisfying 

where a is the estimated reinvestment rate. Interpretation of Vj is analogous to that of I-'j 

except that the former refers to compound interest rate instead of simple interest rate. Solving 

(2.4) in terms of Vj gives 

(2.5) Vj =: { cj{(1 + aY~; 1}/a + /j } tftj _ 1 

A verage direct yield 'Y, average yield to maturity I-' and average effective yield v can now 

be defined 3.'1 follows: 

(2.6) 

(2.7) 

(2.8) 

2.2 

L:f=t 'Yj pj 'Uj 
'Y= N 

L:j=t pj 'Uj 

Index to Represent the Risk of Investment 

Associated with the investment is the risk due to variation in the price of bonds (The income 

from coupon is free from variation). We thus need to have an index to measure the magnitude 

of this risk. We will adopt here the average price variation index, the most commonly used 

one among the people in this business. 

To explain this, let us first rewrite the equation (2.2) as follows 

c·t·+f" 
pj == 3 3 3, 

1 + tj I-'j 
(2.9) j = 1, ... ,N 

Differentiating Pj with respect to I-'j, we obtain 

j = 1, ... ,N (2.10) 
dp' _to 
_3. = 3 dl-", 
pj 1 + I-'j tj 3 

Price variation index (by way of simple interest) 1rj of Bj is defined by the coefficient of dl-'j, 

i.e., 

(2.11) 
t· 

1r' -- 3 
3 -- 1 + I-'j tj , j = 1, ... ,N 
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146 H. Konno & M. Inori 

This is an increasing function of tj, so that larger risk is associated with a bond with longer 

maturity. 

A verage price variation index 1r is defined as follows : 

(2.12) 
Ef=1 1rj 'Uj 

1r= N 
Ej=1 'Uj 

If we use the expression (2.4) instead of (2.2), we get an alternative price variation index (by 

way of compound interest) 

t· 
(T' = _3_ 

J 1 + Vj' 
(2.13) j:= 1, ... ,N 

and its average: 

(2.14) 

3 Objectives and Constraints 

A bond trader sells and/or buys bonds to improve portfolio. Objectives of these transac­

tions can be very diverse, i.e., some investor wants to maximize average direct yield by buying 

available bonds in the market and the other wants to minimize average maturity by selling his 

bonds in stock. Also another investor may want to improve some other index by selling and 

buying simultaneously. The model we are going to develop is the one which meets all these 

diverse requirements of the traders. 

There are two schemes called "total optimization" and "partial optimization" to evaluate 

a transaction. Figure 1 shows the difference of these two shemes. 

Total optimization refers to the optimization of certain objective function relative to the 

resulting portfolio after the transaction (Figure l(c)). Partial optimization, on the other hand 

refers to the difference of buying portion and selling portion (Figure l(d)). Though it seems 

natural to adopt the former from the systems analyst's point of view, the latter is sometimes 

preferred by bond traders to check the local goodness of each transaction, particularly when 

the amount sold or bought are relatively small compared to those which remain untouched. 

Some of the possible candidates for the objectives and constraints are: 

(a) average direct yield r defined by (2.6) 

(b) average yield to maturity JL defined by (2.7) 

(c) average effective yield v defined by (2.8) 

(d) average maturity 

(3.1) 
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(a) 

Before the transaction 

(c) 

Total Optimization 

(e) average unit price 

(3.2) 
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(f) average risk 7r (or u) defined by (2.12) or (2.14) 
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(b) 

After the transaction 

,.--
,/ 

bought 

" 
(d) 

Partial Optimization 

Also a trader has to take into account the profit or loss of a transaction in terms of (:ash. 

In this regard, there are two possible ways to Itreat the profit resulting from the transaction. 

We can either pay tax for the calculated profit or leave it as latent assets, depending upon the 

state of liquidation. Therefore, the prospect of liquidation affects the choice of portfolio. 

An important factor related to this is the so-· called unit price adjustment procedure. When 

a bond trader simultaneously buys and sells bonds through the same agent, he is entitled to 

choose the actual price of each bond within certain interval provided the agent agrees upon 

this transaction. The reason why a bond trader agrees to sell certain brands of bonds for the 
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price lower than the market price is that he wants to reduce the nominal profit out of this 

transaction, thereby reduce the amount of tax. He may, instead agree to buy certain brands of 

bonds for the price higher than the market price to compensate the loss of the agent incurred 

by this transaction. 

The actual price of Bj cannot, however deviate more than a few percent from the market 

price Pj due to the transaction regulation. Whereas this option gives more flexibility to a 

trader, the resulting mathematical model becomes significantly more complicated compared to 

the one without this procedure. 

4 Mathematical Description of the Optimization Model 

Let us assume again that an investor holds 'Uj units of Bj, j = 1, ... , N out of which nl 

brands are selected as candidates for sale. In a typical situation, N is over 500 and nl is less 

than, say 200. This selection process called "filtering" is carried out prior to the optimization 

process by considering a number of managerial, institutional and market constraints. 

Also, let us assume that U/c units of bond B~, k = 1, ... , n2 are available in the market 

through an agent where n2 ean be as large as 200. 

Let 

(4.1) Xj = amount of Bj to be sold 

(4.2) X/c = amount of B~ to be purchased 

Lower and upper bound constraints are associated with these variables: 

(4.3) Ij ~ Xj ~ 'Uj, j = 1, ... ,nl 

where most of Ijs and L~s are zero. 

Special case in which Ij ::: 'Uj = 0, for all j = 1, ... , nl is called "buying only" transaction. 

Alternatively, the case in which L/c = U/c = 0, k = 1, ... , n2 is called "selling only" transaction. 

U nit selling price Yj of Bj and unit purchasing price Y/c of B~ must satisfy 

(4.5) {1 - >'j)pj ~ Yj ~ {I + >'j)pj, j = 1, ... , nl 

(4.6) {1 - >.'/c)P" ~ Y/c ~ (1 + >':)P/c, k = 1, ... , n2 

where pj and Plc are the reference market price of Bj and B~, respectively and >'j is the unit 

price adjustment coefficient, a positive constant usually less than 0.02. 
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4.1 Total Optimization Model 

Let us introduce twelve indices to be included in our model. For this purpose, let 

N RI R2 

(4.7) So = L: Uj - L: Xj + L: XIc 
j=l j=l 1c=1 

N n) m 

(4.8) Sl = L:Pj Uj - L:Pj Xj + L: Plc XIc 
i=l j=l 1c=1 

So and Sl stands for the total quantity of bonds and the total value of bonds after the trans­

action. Also, let us define 

N RI n2 

(4.9) S2 = L:Pi tj Uj - L:Pj tj Xj + L: Plc Tic XIc 
j=l j=l 1c=1 

(i) magnitude of sale 

n) 

(4.10) zl = L: Xj 
1c=1 

(ii) magnitude of purchase 

n2 

(4.11) z2 = L: XIc 
1c=1 

(iii) average coupon 

1.:1"=1 Cj Uj - EJ;l Cj Xj + E~;l CIc XIc Za = _-"-_-..C.-__ --"---=-::-'-:-'-_--'-'-__=__ 

So 
( 4.12) 

(iv) average maturity 

1.:;"=1 tj Uj - Ej';l tj Xi + Ei;;l Tk XIc 
Z4 = _~_~~_-"-__=='--'----C;.....--=--

So 
(4.13) 

(v) average unit price 

",~N "n) + "n2 F' X L~j=l Pj Uj - L.Jj=l Pi Xj L.J1c=1 le Ic 
ZI) = 

So 
(4.14) 

(vi) average direct yield 

~=1"=1 '"fj Pi Uj - EJ;l '"fj Pj xi + E~;l rle Plc XIc 
Z6 = 

Sl 
(4.15) 

(vii) average yield to maturity 

Ef=llLi Pj tj Uj - Ej';'llLj Pi tj Xj + Ei;;llL~ Plc Tic XIe 
Z7 = 

S2 
( 4.16) 

(viii) average effective yield 

2::1"=1 Vj pj tj Uj - EJ;l Vj Pi tj Xj + E h;l v~ Plc Tic XIc 
Z8 = 

S2 
(4.17) 
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(ix) average price variation index 

"N "n, + "n, ' X 
(4.18) Zg = L.j=1 1I"j Uj - L.j=1 1I"j Xj L."=111"" " 

So 

(x) total profit 
n, 

(4.19) Z10 = L(Yj - pjo)Xj 
j=1 

where Pjo is the book value of Bj 

(xi) sum of liquidation 
nl n2 

(4.20) zll = LYj Xj - L Y/c X" 
j=1 "=.1 

(xii) profit/loss adjustment 
nl n1 

(4.21) Z12 = L(Yj - pj)Xj - L(YIe - PIe)XIe 
j=1 "=1 

Of these indices, ZI, Z2 are linear functions, Z3 through Zg are linear fractional functions, 

and the others are bilinear runctions. 

A bond trader wants to optimize (either maximize or minimize) one of the indices Z3 

through Z10 subject to constraints on others. Popular candidates for the objective functions 

are average direct yield Z6 and average maturity Z4. Constraints on ZlO, Zll and Z12 can be 

bounded from above and below and constraints on ZI through Zg are either bounded from 

above or below, so that the most general mathematical form of our total optimization model 

can be written as follows: 

( 4.22) 

0"0 - E'];I(qj + qj Yj)Xj + E~;I(Q/c + Q~ YIe)XIe 
maximize 

11"0 - E7;1 Tj Xj + E~;1 RIe X" 

subject to 
4>0 - E'];1 hj Xj + E~;1 File X" 
c "n, d "n, D X ?: C1'i, uo - L.j=1 ij Xj + L.1e=1 ile /c 
nl nl 

L(lllj + h;j Yj)Xj - I)HI" + H;" Y,,)XIe ?: (jl 
j=1 1e=1 
lj $ Xj $ Uj, yJ $ Yj $ y}, 
L" :s X/c $ [fie, Y~ $lJ. $ Y"I, 

i=1, ... ,ml 

1 = 1, ... , m2 

j = 1, ... ,nl 

k = 1, ... ,n2 

It should be noted that dividends of the expressions in (4.22) are positive for whatever value 

of the variables provided they satisfy the constraints, so that the first ml inequalities can be 

reduced to linear inequalities. Also, standard normalization technique can be applied to all 

variables and we get the following normalized form of the total optimization model: 

( 4.23) 

E'J=I(Qj + qj Yj)Xj + qo 
maximize 

E'J=1 Pj Xj + Po 
n 

subject to LQijXj?: C1'io , 
j=1 

n 

i=1, ... ,ml; 

L(hlj + h;j Yj)Xj ?: (jl, 1 = 1, ... , m2 

j=1 

O$xj$l, O$Yj$l, j=l, ... ,n 
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where n = n1 + n2,xn t+j and Ynl+j corresponds to XIc and YIc(k = 1, ... ,n2) respectively. 

This problem will be called a "bilinear fractional programming problem". In this problem, n 

is usually 100-300 while m1 ~ 9 and m2 ~ 6. 

Remark. In this normalized formulation, Yj = 1/2 corresponds to the reference market 

price Pj. Also, Ih;jl is much smaller than Ih'jl. In a typical situation, Ih;jl ~ Ih
'
jl/20 for all I 

and j. In particular, if all unit price adjustment coefficients >'j are zero, then all coefficients 

of Yis are zero and the problem reduces to a linear fractional program which can be solved by 

the standard technique ([1, 6]). 

4.2 Mathematical Analysis of the Total Optimization Model 

Let us prove a basic property of the optimaJ solution of the bilinear fractional programming 

problem (4.23). 

Let us denote 

(4.24) f(x, y) = EJ=1(!j + gj Yj)Xj + go 
Ej=1 pj Xj + Po 

n 

(4.25) 9i(x)=L:a,jXj, i=I, ... ,m1 
j=1 

n 

(4.26) h,(X, y) = L:(h'j + h;j Yj)Xj, 1= 1, ... , m2 
j=1 

and rewrite the problem (4.23) in a compact form as follows: 

(4.27) 

maximize f( X, y) 

subject to 9,( x) 2: Cl',o, 

h,(x, y) 2: P" 
o ~ x ~ e, 0 ~ Y ~ e 

where e = (1.,1, ... , l)t. 

i = 1, ... ,m1; 

1= 1, ... ,m2; 

Theorem 4.1 If the problem (.~.27) has a feasible solution, then it has an optimal solution 

(x·,y·), where at least n - (m1 + m2) components of x· are 0 or 1. Also, at least n - m2 

components 01 Y· are 0 or 1. 

Proof. f( X, y) is continuous on the bounded feasible region, whence there exists an optimal 

solution (x, y) if (4.27) is feasible. Consider the linear fractional program: 

maximize {f(x, y) I 9i(X) 2: Cl'io, i = 1, ... , m1; 

which has an optimal basic solution x·. Since x is a feasible solution of this problem, we have 

f(x·, y) 2: f(x, V). Also, at least n - (m1 + m2) components of x· are at their lower or upper 

bonds. 

Let us consider a linear program: 
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maximize {f(x*,y) Ih,(x*,y) ~ /3" 1= 1, ... ,m2;0 ~ y ~ e} 

which has an optimal solution y* satisfying I(x*, y*) ~ I(x*, y). Also, at least n - m2 compo­

nents of y* are 0 or 1. It follows immediately from the above inequalities that I(x*, y*) ~ I(x, y) 
which means that (x*,y*) is another optimal solution of(4.27). 0 

Note that a great majorities of the components of x* and y* are either 0 or 1 when n is over 

100. This implies that almost all brands are either sold (purchased) to the limit or not sold 

(purchased) at all. This is very desirable from the practical point of view since there usually 

exists a minimal transaction unit associated with each bond and it has to be purchased or sold 

at an integral multiple of this minimal unit. 

5 A Practical Algorithm for Solving the Total Optimization Problem 

This section is devoted to the algorithm to obtain a good local optimal solution of (4.27). 

5.1 Ascent Procedure by Solving a Sequence of Linear and Linear Fractional 

Programs 

Given a feasible solution (x le , yle) of (4.27), let us solve a linear fractional program: 

(5.1 ) 

maximize I(x, yle) 

subject to gi(X) ~ O'io, 

h,(x,yle) ~ /3" 
O~x~e 

i=q, ... ,m1; 

1= 1, ... ,m2; 

and let xlc+1 be the resulting optimal basic solution. Obviously l(xIc+1, yle) ~ I(x le , ,le) since 

xle is a feasible solution of (5.1). Also, let ylc+1 be an optimal basic solution of a linear 

programming problem ; 

maximize l(xl<+l, y) 

(5.2) subject to h,(xk+1, y) ~ /3" 1= 1, ... , m2 

O~y~e 

Again it is easy to see that l(xIc+1, y1c+1) ~ l(xk+1, yle). We thus obtain a sequence of feasible 

solutions (x le , yle) of (4.27) satisfying 

l(xIc+1, y1c+1) ~ I(xle, yle) 

We continue this process until the condition 

is satisfied. Since I is continuous on the bounded feasible region of (4.27), I( xle , yle) converges 

to the limit, which we denote by r. Also let (x*, y*) be an accumulation point of (x le , yh). 

Remark. Both (5.1) and (5.2) can be solved very cheaply. Also our computational experi­

ence shows that the sequenee (x le , yh) converges very quickly, typically within 3 or 4 iterations. 
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5.2 Further Improvement by Simultaneous Change of Quantity and Price 

Once (x*, y*) is reached, we can no longer improve! by fixing either x or y. We thus search 

for a feasible ascent direction of! by allowing simultaneous change of x and y. 

Let 

(5.3) Io(x*) = {j I xi = O}, I1(X*) = {j I xi = I} 

(5.4) Io(Y*) = {j I yi = O}, h(y*) = {j I yi = I} 

Also let 

(5.5) 

n 

L aij xi = aio, i E I 
j=l 

n 

L(h/j + h;j yj)xi = fJ/, lE L 
j=l 

A feasible direction vector 

must satisfy 

n 

L aij q,j ~ 0, i E I 
j=l 

n n 

(5.7) L h;j Xi,pj + L(h/j + h;j vi) q,j 2 0, 
j=l ;=1 

q,j ~ 0, j E Io(X*); q,j $ 0, 

,pj ~ 0, j E Io(y*); ,pj $ 0, 

In addition, q,j's and ,pj's have to satisfy 

lE L 

j E I1(X*) 

jEh(Y*) 

(5.8) t a !(x*, y*) q,j + t a !(x*,V*),pi ~ ° 
j=l OXj j=l oYj 

The existence of the vector dE R2n satisfying (5.7) and (5.8) can be checked by solving a 

linear program 

(5.9) 
maximize z = t 0 !(x*,y*) q,j + t 0 !(x*,Y*),pj 

j=l OXj j=l aVj 
subject (5.7) 

Case 1. (5.~}) generates an unbounded ray with direction (q,r, ... ,q,~,,p;, ... ,,p~) 

Let 0'* be the largest a for which (x* + aq,*,y* + a,p*) is feasible for all a E [0,0'*], This 

can be obtained by solving a set of linear and quadratic equations. 

Case 1.1 0'* > ° 
We execute a line search on the interval [(:~*, V*), (x* + 0'* q,*, V* + 0'* ,p*)] and obtain a new 

feasible solution (x,y) such that 

f(x, iI) > f(x*, y*) 
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In this case we will return to the procedure explained in Section 5.1 by taking (x,y) as the 

starting feasible solution. 

Case 1.2 0'. = ° 
In this case, we failed to identify a feasible ascent direction. Thus we will either try to 

generate another unbounded ray by further pivoting or stop computation. 

Case 2. (5.9) generates an optimal solution for which the objective function z is nonpositive. 

Theorem 5.1 If (5.9) generates an optimal solution for which z $ 0, then (x·,,·) is a 

Karush-Kuhn-Tucker point of (4-27). 

Proof. Since (5.9) has all optimal solution, its dual has a feasible solution. Hence there exists 

eo,; E I, (,,1 E L shch that 

(5.10) 

(5.11) 

(5.12) 

""' ""' I. a /( x·, Y·) 
L...J a;j e; + L...J h'j X j (, + a. 

$ 0, j E Io(x·) 

~o, jEh(x·) 
;EI IEL x) 

""'(h I.) a/(x·,y·) 
L...J Ij + h'j Yj (, + a. 
IEL ~ 

i E I, 

$ 0, j E Io(Y·) 

~ 0, j E 11(Y·) 

(, ~ 0, lE L 

which is exactly the Karush-Kuhn-Tucker condition for (4.27) at (x·,y·). 0 

5.3 Procedure to Obtain a Starting Feasible Solution 

Let us define the Phase-I problem : 

(5.13) 

ml ml 

minimize z = LV; + L(wl + W;) 

subject to 

;=1 1=1 
n 

L a;j Xj - Xn +; + v; = 0';0' 

j=l 
n 

L(h,j + h;j Yj) Xj - X~+I + w, = P" 
j=l 

° $ Xj $ 1, 

Xn +; ? 0, v; ~ 0, 

X~+I ? 0, WI ~ 0, W; ~ 0, 

i = 1, ... ,m1 

1= 1, ... , m1 

j = I, ... ,n 

i = 1, ... , m1 

1= 1, ... ,m2 

for fixed Yj with ° $ Yj $ 1, we will apply algorithm explained in Section 5.1 and 5.2 by 

choosing 

yJ=I/2, j=I, ... ,n 
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as the starting value of Yj, j = 1, ... ,n. Note that this choice is equivalent to setting the price 

of each bond equal to its market price. We solve a sequence of linear programs until the sum 

of infeasibility z reduces to zero. 

In case z cannot be reduced to zero, we will choose a randomly generated vector 11 and 

try the same procedure again. If several trials turn out to be failures, we stop calculation and 

suggest bond traders to modify parameters to make the problem more loosely constrainted. 

(The detail of this will be discussed in the forthcoming paper). 

Figure 2 shows the flowchart of our procedure to solve the total optimization problem. 

6 Partial Optimization Model 

Partial optimization refers to the difference of buying portion and selling portion (See 

Figure 1( d». Thus all the indices ZI through Z12 are redefined as the difference of each index 

associated with buying portion and selling portion, so that our model can be rewritten (after 

suitable normalization) as follows: 

maximize _ E'J~I(qj + qj Yj)Xj + qo + E:~I(Q" + Q~ Y")X,, + Qo 
E'J~1 Tj Xj + TO E:~1 R" X" + Ro 

E'J~1 lij Xj + liO E~~1 Fi" X" + FiO > . 1 
-"nl + "n·, X _ ai, 1= , ... ,ml; 

£...j=1 dij Xj + diO £..."'=1 Di" ,,+ DiO 
subject to 

(6.1 ) 
RI n1 

- L)h,j + h;j Yj)Xj + L)H,,, + H;" Y,,)Xk 2: P" 1 = 1, ... , ml; 
j=1 "=1 

O~Xj~l, O~Yj~l, j=l, ... ,nl 

o ~ X" ~ 1, 0 ~ Y" ~ 1, k = 1, ... , n2 

This problem is much more difficult than its counterpart (4.27). In particular, even when 

qj's, Q" '8, h,j's and H,,, 's are all zero, it is not. solvable by standard linear fractional program­

ming algorithm since the objective function ill no longer quasi-convex and the feasible region 

may not even be a connected region. We thus employ a heuristic algorithm based upon the 

algorithm developed in Section 5. 

Given a feasible solution (xP, yP, XP, YP) of (6.1), we fix the pair of variable (x, y) at their 

current level (xP , yP ) and solve the resulting bilinear fractional programming problem: 

maximize 

(6.2) 
subject to i = 1, ... ,ml; 

n, 
'2)H,,, + H;" YIe)X" 2: p'f, 1 = 1, ... , ml; 
1e=1 

o ~ X le ~ 1, 0 ~ Y" S 1, k = 1, ... , n2 

by the algorithm of the preceding section by using (XP, YP) as the starting solution. Let 

(XP+1, yP+1) be the resulting local optimal solution of (6.1). 
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Choose y~ E [0,1) 

(j = 1, ... , n) randomly 

Solve Phase I 

problem (5.13) 

yl := value of y 

at the end of Phase I 

No 

Successively solve (5.1) and (5.2) 

until convergence condition: 

If( xlc+l, y,"+l) - (f( x'", y'")1 < e 

is satisfied 

Find a feasible ascent 

direction vector (I/>, t/J) 
by solving (5.9) 

Yes 

Figure 2: Flow Chart of Total Optimization Algorithm 
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We next fix the value of (X, Y) at (XP+l, yP+1) and solve another bilinear fractional 

programming problem: 

maximize 

(6.3) 
subject to 

E'J~l(qj + qj Yj)Xj + q() 

Ej~lrjxj+ro -

Ej~l !,j Xj + !,o _P - > (X. 

Ej~l d'j Xj + d,o - I 

ft. 
i=l, ... ,ml; 

- ~)h/j + h;j Yj)Xj ~ iJr 1= 1, ... , m2; 
j=l 

O$Xj$l, O$Yj$l, j=l, ... ,nl 

Denote the optimal solution of this problem by (xP+1, yP+1). 
We will continue this process until appropriate convergence condition is satisfied. This is 

admittedly only a heuristic algorithm but it turned out to generate solutions much better than 

the ones predicted by professional bond traders prior to our calculation. 

7 Computational Results and Conclusions 

We have implemented the algorithm for total optimization as well as partial optimization 

in Fortran IV and tested them on Burroughs7900 computer. 

The essential part of the routine is the procedure to solve upper bounded linear fractional 

program: 

(7.1) 

qt X + qo 
maximize 

pt x + po 
subject to A x ~ b 

O$x$e 

where A is almost dense. 

Table 1 and 2 show the statistics for a few dozens of test problems for the total and partial 

optimization model. Objective functions were chosen among average direct yield (2.6), average 

maturity (3.1) and average risk (2.14). These test problems very well simulate the practical 

transaction. All the problems successfully generated a good locally optimal solution against 

Problem No. m n A verage CPU sec 

1 - 30 9 10 2.0 (O.B - 3.1) 

31 6 30 2.B 

32 6 50 3.0 

33 - 35 11 165 10.0 (B.9 - 10.9) 

Table 1: Total Optimization Model 
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em No. m nl n2 A verage CPU sec 

.36 9 10 10 15.8 

37 6 10 10 14.5 

Table 2: Partial Optimization Model 

which no better alternative solution could be identified by professional bond traders. Some 

of the solutions were much better than those expected prior to the computation. Also, Table 

1 indicates that the amount of computation for total optimization model depends at most 

lineally on the number of variables. Thus we believe that oUI algorithm will work for the 

problems of the size refer-red to in Section 4. 

The software package based upon the algorithm we developed here will be used as the 

core of the decision support system currently under development at the Nihon Keizai Data 

Development Center. It will provide the bond trader with the information regarding the 

optimal investment strategy within one minute after he identifies objectives and constraints. 

Thus it will enable him to figure out his optimal investment on a real time basis. 
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