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Abstract This paper gives a natural definition of the relaxation time for general single server queues. First, we 

describe a GI/GI/I queue as a limit of GI/GPH/I queues. Each GI/GPH/I queue is transferred to some equivalent 

bulk arrival GIx/M/I queue, which is formulated by a spatially homogeneous Markov chain with reflecting barrior 

at zero. An upper bound, which is easy to calculate, of the relaxation time of the Markov chain is derived. It will 

be shown that the relaxation time of the GI/GI/ I queue, defined as a limit of the relaxation times of GI/GPH/ I 

queues, has a particularly simple upper bound. Some particular cases are frnally treated, where the upper bound 

obtained is shown to be tight for M/M/I and M/D/! queues. 
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1 Introduction 

A number of papers have devoted to obtaining stationary distributions of the 

number of customers, the waiting time, etc. in queuing systems, or approximations of them. 

These results are, however, meaningful only after the queueing process under consideration 

reaches to a statistical equilibrium. The transient analysis of the queueing process is in 

general desperate. Hence, from engineering points of view, the desire of having some 

measures indicating the time needed to wait for the use of stationary results arises. The 

term "relaxation time" is often used to represent such measures. In the preceding paper 

[6], we studied a measure of dependence and the relaxation time of finite state Markov 

chains. This paper discusses the relaxation time of general single server queues based on 

the convergence rate of spatially homogeneous Markov chains with reflecting ba.rrior at 

zero. 

Not many papers have treated the relaxa.tion time of queueing systems, despite of the 

importance of the study in practice. Also, the existing literature seems restricted, to the 

author's best knowledge, to Poisson arrival queues. See, e.g. Keilson, Machihara and 
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Sumita [4] for M/G/l queues, Keilson and Servi [5] for M/G/l vacation queues, and Blanc 

[1] for Markovian Queues in tandem. The purpose of this paper is to define the relaxation 

time for general single server queues and to derive an upper bound of it, which is easy to 

calculate. 

The main idea of how to define the relaxation time for a GI/GI/l queue (denoted by 

TREdGI/GI/l» is as follows. First we describe a GI/GI/l queue as a limit ofGI/GPH/l 

queues (GPH indicates the service time distributions to be a generalized phase type, see 

Shanthikumar [10]). Each GI/GPH/l queue is transferred to a bulk arrival GIx /M/l queue 

that behaves, in some sense, statistically as the GI/GPH/l queue. The bulk arrival queue is 

represented as a spatially homogeneous discrete time Markov chain with reflecting barrior 

at zero. The relaxation time of the Markov chain is defined, in a natural manner, through 

the convergence rate of the transition probabilities. The relaxation time can be considered 

as TREL(GI/GPH/l). Then TREL(GI/GI/l) is defined as a limit of TREL(GI/GPH/l). 

Note that our relaxation time is the number of arrivals for which one should wait to use 

stationary results. When the expected interarrival time is r (note that the arrival process 

is ofrenewal type), one may consider that, in average, the time of length rTREd GI /GI /1) 

is needed for the queueing process to reach an equilibrium. 

In the next section, we give a definition of TREd GI /GI /1) along the line described 

above. An upper bound of TREL(GI/GI/l) is derived in Section 3. Section 4 treats some 

particular cases. Some remarks regarding the tightness of the upper bound and the relation 

to an existing result are also stated. 

2 The Relaxation Time of GI/GI/l Queues 

Consider a GI/GI/l queue having the interarrival time distribution function (DF) 

A(z) and the service time DF B(z). The Laplace-Stieltjes transform (LST) of a DF is 

denoted by the corresponding Greek letter of lower case (e.g. a(s) = 1000 e-·tdA(t». It 

is assumed throughout the paper that both a(s) and ,8(s) have over-convergence beyond 

the imaginary axis and the queue is stable, i.e. a( s) and ,8( s) exist in Re( s) > b1 and 

Re(s) > b2 , respectively, for some b1 , b2 < 0 and 1000 tdA(t) > 1000 tdB(t). 

Suppose first that B(z) is GPH, i.e. ,8(s) = E::,=ogn(,~I')n where I' > 0, gn ~ 0 and 

E::'=o gn = 1. Let X be a random variable distributed by (gn). Consider then a bulk arrival 

queue GIx /M/l, where the interarrival time DF is A(z) and the service rate is 1'. Let 

NIc be the number of customers just before the arrival of the kth bulk in the GIx /M/l 

queue. It is well known that NIc forms a Markov chain in discrete time on the state space 

N = {O, 1, 2, ... }. The Markov chain converges to a stationary distribution asymptotically 
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at a geometric rate if the bulk queue is stable. That is, for some 0 < r < 1, 

(2.1) 

for any subset A of N. The relaxation time is usually defined, by using the convergence 

rate, as 

TREdGIX /M/l) = _1_. 
l-r 

(2.2) 

Note that, since the states of the GIx /M/l queue are more refined than those of the 

GI/GPH/l, it should hold that TREL(Glx IM/l) ~ TREdGI/GPH/l). On the other 

hand, by a particular choice of A = {O} in (2.1), Pr[NIc = O]-7r({O}) '" O(rk) as k -+ 00. 

But, Pr[Nk = 0] is equal to the probability that the kth arriving customer finds the 

GI/GPH/l system empty. Thus, a natural definition of TREdGI/GPH/l) may be to use 

TREdGlx /M/l) in (2.2). 

The convergence rate r in (2.1) coincides with the convergence norm of a substochastic 

matrix obtained from the transition probability matrix governing NIc • To see this, let 

(2.3) 

and let 
00 

Pn = L 9n+1calc, -00 < n < 00. (2.4) 
Ic=O 

Thus, an is the probability that the potential number of departures from the GIx /M/l 

queue during an interarrival time is n, and Pn is the probability that the difference of 

the potential numbers of customers in the system at two successive arrivals of bulks is n. 

Denote Fn = E~=-oo Plc and define 

[ P, 
PI P2 

""l 
F-I Po PI ... 

po= - (2.5) 
P-2 P-I Po 

It is easy to see that Po is the transition probability matrix governing N Ic • 

Let P be the submatrix of Po obtained by deleting the first row and the first column, 

I.e. 

[ ~ PI P2 

1 
P-I Po PI ... 

P= (2.6) 
P-2 P-I Po 

Define the matrix T = (tij) as tij = 1 for i ~ j and tij = 0 otherwise. The inverse matrix 

T-1 = (8ij) is given by 8,j = 1 for i = j, 8,j = -1 for i = j + 1 and 8ij = 0 otherwise. It is 
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T- 1 P~T = (T-1 PoT)" = (1 pr) 
o plc 

for some vector Plc. Here 0 = (0,0,·· .)T and T denotes the transpose. If Noo = lim" .... oo NIc 

exists, one sees that 

(T- 1 POT)1c -+ as k -+ 00, 
( 0

1 Po Too) (2.7) 

where 0 is the zero matrix. This means that the convergence rate r in (2.1) equals the 

rate of plc converging to o. This rate is given by the reciprocal of the convergence radius 

R = sup{ z : E::'=o zn pn < oo}. Thus, 

00 

R = sup{z: L znpn < oo}, (2.8) 
n=O 

as claimed. Note that, for a countable substochastic matrix, clearly R ~ 1. Further, if 

p is finite then r in (2.8) is the Perron-Frobenius eigenvalue of P. For this reason, the 

quantity 1/ R is usually called the convergence norm of P (see e.g. Seneta [9], Chapter 6). 
Let NB be the number of arriving bulks in a busy period of the Glx /M/1 and let N 

be the number of customers served during a busy period of the GI/GPH/1. It is readily 

seen that N = NB in law. Let In = Pr[N = n], n ~ 1, and define 4>(z) = E::'=1/nzn-1. 

Starting with U1 = (P1, P2, .. . )T, we generate Un successively by 

(2.9) 

- T ( - - T ()T Then, 11 = Po and In+1 = Un r, n ~ 1, where r = P-l> P-2 , ••• ) • Denote 1 = 1,1,··· 

and let en = U~ 1. It is easily seen from (2.5), (2.6) and (2.9) that 

(2.10) 

Thus, In+1 = en - en+1, n ~ 1. It then follows that, after a little algebra, 

(2.11) 

Therefore, 
1 

r = R; R = sup{z : 4>(z) < oo}. (2.12) 

This is another interpretation of the convergence rate r in (2.1). 

Any distribution can be arbitrarily approximated by a GPH, in the sense that 

_ 00 _ (f.'tt 
H(t) = lim L H(n/J1.)e-pt

--
p .... oo n=O n! 
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at continuity points of H(t) = 1 - H(t) (see e.g. Esary, Marshall and Proschan [3]). This 

means that 

(3(8) = lim fgn(JI.) (_Jl._)n 
1'-00 n=O 8 + JI. 

(2.13) 

for each Re(8) ~ 0, where gn(JI.) = H(n;l) - if(;!), n ~ 1, see Shanthikumar [10]. It should 

be noted that the regularity structure of (3(8) obtained in (2.13) can be extended by the 

principle of analytical continuation [8]. Hence, in fact, (3(8) in (2.13) exists in Re(8) > 62, 
62 < o. 

For each JI. > 0, the convergence rate r(tt) is obtained through either (2.8) or (2.12). 

Thus, by letting r* = lim supl'_OO r(JI.), one may define the relaxation time of the GI/GI/1 

queue as 
1 

TREdGI/GI/1) = --. 
1 - r* 

(2.14) 

From mathematical points of view, it may be of interest to study the behavior of r(JI.) 

as JI. varies. However, as is easily realized, the convergence norm r(JI.) of P(JI.) is hard 

to calculate. Hence, of desire from practice is to obtain upper bounds of r(JI.) and r*, 
which are easy to calculate. In the next section, we skip mathematical investigations of 

the behavior of r(JI.) and focus on deriving such an upper bound. 

3 An Upper Bound of the Relaxation Time 

For a non-negative matix Q, al ~ 0 Cl 0) is called a I'-subinvariant measure of Q 

for l' > 0 if 

(3.1) 

(note the difference of the definition from the one in Seneta [9]). It is known that no 

I'-subinvariant measure can exist for l' < r(Q) where r(Q) is the convergence norm of Q 
(see Theorem 6.3 in p.205 of Seneta [9]). Thus, if one finds a I'-subinvariant measure of 

P in (2.6), the l' must satisfy the relation I ~ r, where r is given in (2.8). l' must be 

less than 1, otherwise the relaxation time in (2.2) becomes meaningless (note that 1 is an 

obvious upper bound of r). 
For the GI/GPH/l queue considered in Section 2, define the generating functions 

P(z) = ~:'=_ooPnzn, A(z) = ~:'=oanzn and G(z) = ~:'=ognzn. It is easy to see that 

P(z) = A(Z-l)G(z). If the queue is stable, then P(z) exists at least in Iz - 11 < 6 for 

some 6 > 0 and P'(l) < 0 (the prime denotes the derivative). This together with the 

continuity of P( z) implies that there exists u such that 0 < u < 1 and P( u-1
) < 1. Let 

al = (1, u, u2," .)T. For this al, the (n + l)th element of al
T Pis 

(3.2) 
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for any n ~ o. Thus, by choosing 'Y = P(u-1 ) < 1, one concludes that (1 - u)a: is a 

'Y-subinvariant measure of P. Hence, letting 

'Y. = sup{'Y < 1 : P(u-1
) ~ "I, b < u < 1 for some b > O}, (3.3) 

one has TREL (GI/GPH/1):::; (1- 'Y.)-l, see Figure 1. 

To obtain an upper bound ofTREL(GI/GI/1), we employ the limiting argument used 

in Section 2. Suppose B(x) is approximated by a GPH. To identify the value of f-l, we 

write AAz), GJ.'(z), etc. Notice that AJ.'(z) = a(f-l - f-lz). Consider then the transform 

S = f-lZ - f-l. Then, Z-l = '~IJ' from which 

Hence, one has from (2.13) and the remark below the equation that, for each 62 < S < 0, 

lim AIJ(z)GIJ(Z-l) = a(-s)~(s). 
IJ"~OO 

(3.4) 

Therefore, combining (3.3) and (3.4), the next theorem follows. 

Theorem 1. Let a( s) and ~(s) be the LSTs of the interarrival and the service time 

DFs, respectively, in a GI/GI/1 queue. Let (see Figure 2) 

'Y. = supb < 1 : a( -s)~(s) ~ 'Y, 6 < 8 < 0 for some 6 < O}. (3.5) 

Then, the relaxation time of the GI/GI/1 queue defined by (2.14) is bounded from above 

by 

P(Z) 

1 

"1* 

1 

Figure 1 

1 
TREL(GI/GI/1) :::; -1 - •• 

-"I 

Figure 2 

(3.6) 

a( -S)~(8) 
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Remark 1. A lower bound of the convergence rate r is easily obtained as follows (see 

Seneta [9] for details). Let p(n) be the n x n north-west corner submatrix of P. Since p(n) 

is non-negative, it has the Perron-Frobenius eigenvalue. Denote it by r(n). It is known 

that r(n) is non-decreasing in n and converges to r from below. Thus, by choosing n 

sufficiently large, one can approximate r from below. However, the approximation error as 

well as the convergence speed is not clear. This together with the difficulty of finding the 

Perron-Frobenius eigrnvalue for large n sometimes makes the approximation impradical. 

4 Particular Cases 

In this section, we consider some particular cases. The main result here is to show 

that the upper bound obtained in Theorem 1 is tight for M/M/1 and M/D/1 queues. 

4.1. M/M/1 Queues. Let A and p, be the arrival and the service rates of an M/M/1 

queue, respectively. Let p = A/p, and define g(s) = a(-s),8(s). Solving g'(s) = 0, one 

easily finds s = (A - p,)/2 < 0 and 

TREL(M/M/1) ~ --p (
1 + )2 
1-p 

( 4.1) 

To see that the upper bound in (4.1) is tight, we consider the distribution of the number 

served during a busy period. It is known (see e.g. [7]) that 

In = - pn--l(l + p)1-2n, 1 ( 2n - 2 ) 
n n-1 

( 4.2) 

By using Stirling's formula appropriately, one sees that 

Thus, ,* = r, see (2.12) for the definition of r. This means that our upper bound is tight 

for M/M/1 queues. 

Remark 2. Let N(t) denote the number of customers in the system at time t. Then 

N(t) is a Markov chain on .N governed by an infinitesimal generator of tri-diagonal form. 

It is known (see, e.g. [2], [11]) that the probability Pr[N(t) = jIN(O) = i] converges to 

(1 - p)pi at an exponential rate ro for any i and j. Moreover, ro = p,(1 - Jp)2. In the 

literature, the relaxation time of M/M/1 queues is usually given as the reciprocal of the 

rate ro. Recall at this point that our relaxation time is given in terms of the number of 

arriving customers. Thus, to compare our relaxation time with the ordinary one, it is 

plausible to consider TREdM/M/1)/A. To be interesting, 

TREL(M/M/1) 1 
A > p,( 1---Jp-p'-)2 , 0< p < 1, ( 4.3) 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



110 M. KijinuJ 

i.e. our relaxation time always exceeds. Note that the disagreement of the two rela.xation 

times are due to the different definitions. Our definition for the M/M/l case includes more 

steps, through which more uncertainty may come in. 

4.2. M/D/l Queues. Let .A be the arrival rate and 1'-1 be the service time of an M/D/l 

queue, respectively. For this case, the same analysis as for the M/M/l case leads to the 

conclusions 
1 

TREL(M/ D/l) ~ 1 1- pe -p 
( 4.4) 

The upper bound is tight, since appropriately using Stirling's formula bears 

4.3. GI/M/l Queues. For this case, gl = 1 so that (3.5) becomes 

1'* = supb < 1 : a(J.t - J.tz) 2:: 'j'z, 6 < z < 1 for some 6 > O}, ( 4.5) 

where I' is the service rate. The 1'* can be easily obtained by drawing the line tangent 

to the curve A(z) = a({t - J.tz), 0 < z < 1. Note that A(z) is increasing and convex in 

o ~ z < c for some c > 1 and A'(I) > 1 if the queue is stable. Hence, the tangent line is 

unique (see Figure 3) as far as the queue is stable. 

A(z) 

1 

Figure 3 
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