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Abstract In this paper, we consider a measure of dependence between X t and Xo where X t is an irreducible 

Markov chain on a finite state space. Namely, we define dt(X) = supf,gCor [f(XO),g(Xt)l . Here Xt is the station­

ary process associated with X t and the supreme is taken over all real functions. An upper bound of dt(X), which 

is easy to calculate numerically, is derived. By showing a simple relation between.dt(X) and the relaxation time 

TREL(X) of Xt , we also provide an upper bound of TREL(X). The bounds are shown to be tight when the Markov 

chain is reversible in time. 
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1 Introduction 

It is well known that, under many circumstances, a Markov process X t which con­

verges to a stationary distribution 11' does so asymptotically at an exponential rate. That 

IS, 

Pr[Xt E A]-1I'(A) '" O(exp{-rt}) as t --+ 00. (1.1) 

Here the rate r has an eigenvalue interpretation and its reciprocal TREL(X) = r-1 is often 

called the relaxation time of the process. The relaxation time is useful in many applications 

since it indicates the order of magnitude of quantities such as the time for the effects of an 

external shock to a system to wear off (see e.g. Aldous [1] and references therein). However, 

the difficulty of finding the rate r has limited the use of the information in practice. In 

a recent paper by Aldous [1], it is pointed out that some measure of dependence between 

X t and Xo may be more informative for the finite time behavior of the process than the 

relaxation time. One possible variant provided there is 

dt(X) = sup Corlf(Xo), g(Xt)J, (1.2) 
J,g 
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94 M Kijiml1 

where Xt is the stationary process associated with X t and the supreme is taken over all 

measurable functions. As for the relaxation time, the quantity dt(X) is hard to evaluate 

for general cases due to the complex form of its own. Only when the Markov process 

is finite and reversible in time, it is known that TREL(X) = r-1 and dt(X) = exp{ -rt} 
where r = min{/Aj/i Aj =1= o} and Aj are eigenvalues, which are all real, of the governing 

infinitesimal generator (see e.g. Keilson [2]). Other than these, no theoretical results have 

been found. The relation between TREL(X) and dt(X) is not clear. The purpose of this 

paper is to relate TREL(X) and dt(X) and to give upper bounds of them, which are easy 

to evaluate numerically, thereby providing useful information about the relaxation time as 

well as the finite time behavior of the Markov process under consideration. 

In this paper, we shall study only finite state space Markov processes. Note that, in 

order to understand finite time properties, there is no loss of generality in restricting our 

attention to finite state spaces, see [1]. In the next section, we first consider a discrete 

time Markov chain. A measure of dependence similar to (1.2) for the discrete time case 

is defined and an upper bound of the measure is obtained for an ergodic Markov chain. 

The bound is related to the maximum eigenvalue of a symmetric matrix constructed from 

the governing transition probability matrix. The method employed is fully algebraic and 

seems to have no probabilistic interpretation. In Section 3, these results are applied for a 

continuous time irreducible Markov chain via a uniformization to obtain an upper bound of 

the measure dt(X). Remarks regarding the relation between the rate r in (1.1) and dt(X) 

are also stated. In particular, it will be shown that dt(X) converges to zero asymptotically 

at the rate r. Since the upper bound obtained is an exponential function, the exponential 

rate also provides an upper bound of the relaxation time. 

2 Discrete Time Markov Chains and a Measure of Dependence 

Let N = {I, 2,···, N} (N < 00) be the state space and let Xn be a discrete 

time Markov chain on N governed by the transition probability matrix A. It is assumed 

throughout this section that the Markov chain is ergodic or, equivalently, the matrix is 

primitive (see Seneta [5] for the definition). Then there exists a set of positive probabilities 

elc = limn _ oo Pr[Xn = k] satisfying the equations eT A = eT and eT 1 = 1 where e = 
(el,···, eN? and 1 = (1,···, 1)T. Here T denotes the transpose. It should be noted 

that the corresponding stationary chain Xn is statistically determined only through the 

transition matrix A. Hence it mar be helpful to identify the matrix A rather than the 

stationary chain Xn in our notation. Accordingly, we define 

dn(A) = sup Cor[J(Xo) , g(Xn)], n ~ 1, (2.1) 
/,g 

with do( A) = 1. 
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Measure of Dependence for Finite Markov Chains 95 

Write the diagonal matrix having the diagonal elements ek by E D, i.e., ED = diag(ek)' 

It is not hard to see that 

(2.2) 

and 

Var[f(Xo)] = ITEDI - (ITe)2; Var[g(Xn)] = gTEDg - (gTe)2, (2.3) 

where I = (/(1)"", f(N»T and 9 = (g(l),"', g(N)f (cf. Keilson [2]). It follows from 

(2.1) through (2.3) that 

d (A) 
_ IT ED[An 

- 1eT]g 
n - sup -r=;;;====='==:;f=~;=::======= 

f,g VITEDI-(fTe)2vgTEDg-(gTe)2 
(2.4) 

Let R = A - 1eT. Then 1eT R = R1eT = 0, where 0 denotes the zero matrix, so 

that An = 1eT + Rn, n ~ 1. Write C = EY/CEiJl
/

2 for any square matrix C. It is then 
T ~ ~ T 

readily seen that ..;e..;e R = R..;e..;e = 0 and 

~n r;: r;:T ~n 

A = y ey e + R, n ~ 1, (2.5) 

where Ve = (Ft,· .. , ve-Nf· Let W be a subspace of RN orthogonal to Ve, i.e. W = 

{y : yT..;e = o}. Then any z E RN can be decomposed as z = Xo..;e + ~ with some 

Xo E R and ~ E W. We note that the transformation Rn maps RN into W. By letting 

z = E;J2 I = xoVe + ~ and y = E;J2 9 = YoVe + y, one has after a calculus that 

which is independent of Xo and Yo. Here the vector norm 11 . 11 is defined as the Euclidian 

norm. Thus, one finally arrives at the expression 

ZT Rny zT Any 
dn(A) = sup --- = sup . 

z,yew IIzllllYII z,yew IIzllllYII 
(2.6) 

In what follows, we denote by AA C), j = 1, ... ,N, the eigenvalues of square matrix C. 

They are ordered so that IAl(C)1 ~ IA2(C)1 ~ ... ~ IAN(C)I unless specified otherwise. 

If C is a stochastic matrix, then Al (C) = 1. Also, since C = E;J2 C EiJI/2 is a similarity 

transform, one has Aj(C) = AAC). It should be noted from (2.5) that Aj(R) = Aj+l(A), 

j = 1"", N -1, and AN(R) = o. If stochastic matrix A is primitive, then IAj(R)1 < 1 for 

all j. Also, the complex conjugate of complex number A is denoted by X. For a complex 

vector z = (Xl"'" XN)T, its complex conjugate ~ is defined by ~ = (Xl,"', XN)T. 

Some direct implications of (2.6) are given in the next theorem. 
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Theorem 1. 

(1) dn(A) = 0 for some n ~ 1 if and only if A = 1eT. If this is the case, dn(A) = 0 for 

all n ~ 1. 

(2) If Xn is reversible in time (see below for the definition), i.e. A is symmetric, then 

dn(A) = IA1(.R)ln. Here Aj(R) are all real and strictly less than 1 in the magnitude. 

(3) There exists a constant 0 < C:5 1 such that dn(A) ~ Cmax{IRe(Aj(R)n)I}. As a 

consequence, if R has a real eigenvalue A, then dn(A) ~ ClAln. 
Proof. We prove (3) only. Part (1) is trivial and (2) follows from a standard matrix 

diagonalization. To prove (3), let A be such that IRe(An)1 = max{IRe(Aj(R)n)l}. Suppose 

first that A is complex. Then the complex conjugate ). is also an eigenvalue of Rand 

Re(An) = Re().n). For the A, let Ru = AU and vT R = AVT where 11. and v are normalized 

so that vT 11. = 1. Then Ru = ).u and fJT R = )'fJT with fJT u = 1. Note that vT u = 0 since 

vT ilu = AvT U = ).vT U, but A is complex. Define ~ = il- AUVT - XufJT. Then it is easy 

to see that ~uvT = ~ufJT = uvT ~ = UfJT ~ = O. Hence, Rn = AnuvT + ).nuvT + ~n. 
Choose:l! = ~(v + v) and y = ±~(u + u) where the sign is taken appropriately. If A is 
real then Rn is decomposed as Rn = AnuvT + ~n. For this case, we choose :I! = v and 

y = ±u appropriately. In the both cases, it follows that :l!T iln y = I Re( An) I. This proves 

Part (3). 0 

Remark 1. When R is symmetric, IA1(R)1 is readily calculated by a standard method 

without solving algebraic equations. Note that il
2 

is positive semi-definite so that Aj(il
2

) ~ 
o. The largest eigenvalue Al(il

2
) can be efficiently found via e.g. the power method. 

Having Al(R\ one then gets IA1(R)1 = VA1(il\ 

To establish a desired bound of dn(A), we need two preliminaries. For any matrix C, 

define a matrix norm by 

IIClb = sup IIC:I!II = 
1\:I!1\=l 

sup :l!TCTC:I!. 
1\:Il1\=l 

(2.7) 

The matrix norm is deeply related to the singular value of the matrix. Since C C T is sym­

metric (in fact, positive semi-definite), the eigenvalues Aj( CCT) are all real (non-negative). 

The singular values of C, Pj(C), are defined by Pj(C) = VAj(CCT) = VAACTC). It is 

known that IIClb = max{pj{C)}, see e.g. [4]. 

We next define the reversed process X;; of Xn. Let AB = Er} AT En. It is easy to see 

that AB is a stochastic matrix. The reversed process X:! is ergodic if and only if so is X n . 

Also X:! has the same stationary distribution (eh) as X n • Let RB = AB - 1eT. One then 

has 1eT RB = RB1eT = 0 so that AB = 1eT + R B, n ~ 1. It is easily seen that 

R- - E 1/ 2R E-1/ 2 _ R-T 
B- n B n - . (2.8) 
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As a consequence, dn(A) = dn(AB) for all n ~ O. In particular, if AB = A or, equivalently, 

A. is symmetric, then the stationary processes .in and .if! are statistically undistinguish­

able and .in (or Xn) is called reversible in time. The relation in (2.8) plays a key role in 

our analysis. 

Theorem 2. Let Xn be an ergodic Markov chain governed by A. Let R be as in (2.5) 

with n = 1. Then IIRI12 < 1 and 

Proof. To prove the first part of the theorem, consider the Markov process X: gov-

erned by Ap = AAB. Note that the process is ergodic and has the same stationary 

distribution as X n . Moreover, the associated stationary process is reversible in time since 

- -- T --T 
Ap = AAB = v'ev'e + RR (2.9) 

is symmetric. Hence, from Theorem 1(2) and (2.7), one has 

(2.10) 

Since the primitive matrix Ap has 1 as the Perron-Frobenius eigenvalue, d1(Ap) < 1 from 

(2.9) (see e.g. Seneta [5]). Thus IIRII2 < 1. To derive the upper bound, let ~o and Yo be 
T- n 

such that dn(A) = ~o R Yo' Then 

dn(A) = J~t;(RnYo)(RnyoV~o 
~ lIilnYol1 (by Schwart inequality) 

~ sup lIiln 
~II = lIilnll2. 

1I~1I=1 

Since 
- - n-l -

IIRnl1 = su IIR~II IIR _ R~II < IIRIIIIRn-111 2 ~p II~II IIR~II - 2 2, 
one has the theorem. 0 

The usefullness of the upper bound in Theorem 2 is due to the geometric convergence of it 

to zero, by which one concludes that dn(A) converges to zero asymptotically at least at a 

geometric rate. As we shall see later, the matrix norm IIRlb also provides an upper bound 

of the relaxation time of X n • 

We next show that the upper bound in Theorem 2 is indeed attained. For this purpose, 

we will consider a particular case that includes the time reversible case. Suppose that il 
- -T -T-

is normal, i.e. RR = R R. Then, standard spectral theory shows that 

n ~ 0, (2.11) 
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where Aj = A;(A) which may be complex valued and Uj are the associated eigenvectors 

with lIujll = 1. Since d,,(A) ;?: sUPIl:eIl=l :eT il":e, one has 

N 1 
dn(A) ~ sup L -(Ai + Ai)I:eT Ujl2 = max{IRe(Ai)l)· 

1I:eIl=lj=2 2 

From (2.11), it is also easy to see that 

n ;?: o. 

It then follows that 

N 

dn(A) ::; Jd,,(Ap ) = sup L IAjl"I:eT Ujl2 = max{IAjl"}· 
1I:eIl=lj=2 

(2.12) 

(2.13) 

However, when A2(A) is real (recall that A2(A) is maximum in the absolute value except 

Al(A) = 1), max{IRe(Aj)l} = max{IAjl"} so that d,,(A) = Jdn(Ap ). Note that the 

condition that il is normal has the following probabilistic interpretation. It is not hard to 

see that il is normal if and only if AAB = ABA. That is, 

_1_ t Am AB-m = _1_ t ABAn- m. 
1 + n m=O 1 + n m=O 

(2.14) 

for all n ;?: 1. Equation (2.14) states that the process that proceeds ml steps by the original 

process and then n - ml steps by the reversed process is statistically undistinguishable 

from the process that proceeds m2 steps first by the reversed process and then n - m2 steps 

by the original process, where ml and m2 are independently determined from a uniform 

distribution on {O, 1, ... , n}. The conditions are of course satisfied if il is symmetric, i.e., 

Xn is reversible in time. 

Remark 2. The measure dn(A) in (2.1) can be defined for any positive and primitive 

matrix A in the following manner. Let A be such a matrix. Then there exists a unique 

positive eigenvalue which is larger in the absolute value than any other eigenvalues. Denote 

it by A and let A:e = A:e with 1I:e1l = 1. Define A* = },E;1/2 AE~2 where ye = :e so that 

eT 1 = 1. It is then evident that A * is a stochastic matrix and the Markov process governed 

by A* is ergodic. For this A*, one can define the measure d,,(A*) in an obvious manner 

via (2.1). Thus the measure dn(A) = A"dn(A*) is endowed to any primitive matrix. An 

extension of this to an ML-matrix (see Seneta (5]) is also straightforward. 

Before closing this section, we see a relation between the relaxation time TREL(X) 

and the measure d,,(A) of a discrete time Markov chain. Suppose that Xn is ergodic. 

Then the transition probabilities Pr[X" = jlXo = i) converge to stationary probabilities 

ej asymptotically at geometric rates Tij. That is, 

Pr(Xn = jlXo = i] - ej ,...., O(rij) as n --+ 00. 
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It is well known that ro = rij for any i and j and ro = IA2(A)I. The relaxation time of 

Xn is defined as TREL(X) = (1 - ro)-l. Consider in turn the speed of the convergence of 

dn(A) to zero. Since dn(A) converges to zero asymptotically at least at a geometric rate, 

we may let d be the convergence rate of dl}(A). Of interest is the relation between ro and 

d. From (2.4), one easily sees that d ::; ro since the state space.N is finite. On the other 

hand, taking f = Ui and 9 = ±Uj appropriately where u" is the kth unit vector, it follows 

that 

dn(A) ~ C sup I Pr[Xn = ilXo = i] - ejl 
i,j,eN" 

(2.15) 

for some C. Thus, d ~ ro, from which one concludes that d = ro. Therefore d = ro ::; IIRI12 
and TREL(X) ::; (1 - IIRI12)-1, providing an upper bound of the relaxation time of X n • 

Our emphasis is placed on the fact that it is in general extremely difficult to find IA2(A)1 
numerically, while the matrix norm of a symmetric matrix is efficiently found by a standard 

method. 

3 From Discrete to Continuous Time Chains 

In this section, the results obtained so far are used to establish bounds of dt(X) 
in (1.2) via a uniformization (see e.g. Keilson [2], Kijima [3]). We note that the procedure 

below can be applied for a uniformizable semi-Markov process of Kijima [3]. But, to avoid 

inessential technicalities, we focus on a continuous time Markov chain. 

Let X t be a continuous time irreducible Markov chain on .N governed by the infinites­

imal generator Q = (qij). Let 11 be such that 11 ~ max{lqid} and define A ... = I + ~Q, 
where I is the identity matrix. It is easy to see that A ... is stochastic. Moreover, by 

choosing 11 sufficiently large, one can make A ... primitive. Fix 11 so that A ... is so. Let 

pjj(t) = Pr[Xt = ilXo = i] and let pet) = (Pij(t)), t ~ o. It is known [2], [3] that 

P(t) = f: e-... t (lItr A~, t ~ o. 
n=O 11.. 

(3.1) 

Let elc = limt-+ooPi,,(t) and e = (et,"" eNf. Then, as in (2.4), 

d (X) 
_ fT ED[P(t) - uT]g 

t - sup -----r===~=~;§;==t========= 
/,g VfTEDf - (fTepJgTEDg - (gTe)2 

(3.2) 

Note that eTQ = (0"", O)T so that eT A ... = eT. Thus, writing A ... = 1eT + R ... , one has 

from (3.1) that 

pet) - ..;e..;eT = f: e--... t (lItr R:, t ~ O. 
n=O 11.. 

By mimicking the arguments in Section 2, it then follows that 

00 (lIt)n ;eT Rn y 
dt(X) = sup L e-... 

t 
, 11 1111'" 11' ;e,yew n=O 11..;e y 

(3.3) 
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Obvious implications of (3.3) are the following. 

Theorem 3. 

(1) dt(X) = 0 for some t > 0 if and only if Q = v(1eT - I) for some v > o. If this is the 

case, dt(X} = 0 for all t > o. 
(2) If X t is reversible in time, then dt(X) = exp{ -rt} where r = min{I).AQ)li ).AQ) =I­

O}. 
(3) If Q has a real eigenvalue). apart from 0, then dt(X) ~ 1I:1~ltll exp{-I).lt}, where z 
and y are right and left eigenvectors associated with), respectively. 

Proof. Statements (2) and (3) can be proved by noting the facts that ).AQ) = -v(l­

).AAv)), j = 1,···, N, and Q and Av share the same eigenvectors excep~ the multiplicative 

factors. Part (1) is trivial. 0 

Let QB = Ei}QT E D. Then QB is an infinitesimal generator governing the reversed 

process Xf of Xt. It is easy to see that Xf has the same stationary distribution as Xt. 

Recall that, for the discrete time case, the time reversible Markov chain governed by a 

transition probablity matrix of the form AAB provides an upper bound of the measure 

dn(A). For the continuous time case, this role is taken by the time reversible Markov chain 

governed by infinitesimal generator HQ + QB), as we shall see in the next theorem. 

Theorem 4. Let. X t be an ergodic Markov chain governed by infinitesimal generator 

Q and let Yt be a Markov chain governed by Q* = HQ + QB), where QB is defined as 

above. Then 

and 
1 

TREL(X) ~ TREL(Y) = 1).2(Q*)I' 

where ).2( Q*) denotes the second largest negative eigenvalue of Q*. 
Proof. From (3.3), one easily sees that 

(3.4) 

(3.5) 

00 (vt)n _ 
dt(X) ~ ~ e-vt _, dn(Av) ~ inf exp{ -v(l -I/RvI/2)t}, (3.6) 

n=O n. "~rruJ.X{lqiilJ 

where the second inequality follows from Theorem 2. Consider now the symmetric matrix 

-T- 2-* 1 -T-
Al' Av = 1+ -Q + 2Q Q. 

v v 

The definition of Rv yields that 

( I ( 2-* 1-T-)) -v 1 - V).2 1+ -;;Q + v2 Q Q 

= 
).2(2Cl + ~QT Q) 

1 + J ).2(1 + ~i.i' + ~QT Q) 
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Here A2 ( C) is the second largest negative eigenvalue of symmetric ML-matrix C. Write 

A2(V) = A2(2(j* + ~i.{ Q) to derive its mono tonicity property in terms of v. Let z(v) be 

the right eigenvector associated with A2(V) and suppose Ilz(v)11 = 1. Then 

(3.7) 

Note that 2'(v) is also the left eigenvector. By taking the derivative with respect to v 
componentwise in (3.7) and then pre-multiplying ZT(V) in the both sides, it follows that 

-* -T- -. 
Thus, inf ... ~m .. x{lq;;1} A2(Q + fvQ Q) = A2(Q ). This means that 

Thus, (3.4) follows from (3.6) and Theorem 3(2). To prove (3.5), we note that ddX) f"V 

O(exp{ -dt}) as t --> 00. The existence of such d is guaranteed by (3.4). As for the discrete 

time case, it is not hard to see that d = r where r is in turn the rate in (1.1). Therefore, 

(3.5) follows. 0 

If Q = QB, X t is called reversible in time [2]. The extended notion of time reversibility 

described in Section 2 is also defined for the continuous time setting. Suppose Q is normal, 

l.e. QQB = QBQ. Equivalently, 

11t 11t - P(t')PB(t - t')dt' = - PB(t')P(t - t')dt', 
tot 0 

t > 0 (3.8) 

where PB(t) = (p~(t)) with p~(t) = Pr[XB(t) = iIXB(O) = i]. The probabilistic meaning 

of (3.8) is clear. Fix v ~ max{lqiil}. If Q is normal, so is A ... = I + ~Q. Then, A ... has the 

spectral representation as in (2.11). It follows that 

N 

dt(X) ~ sup L exp{ -v(l - Aj{A ... )t}lzT 'ujI2 = max{ exp{ejt}1 cos 17jtl; ej i= O} (3.9) 
IIz ll=lj=2 

where Aj(Q) = ej + i17j with ej ~ O. Note that the last term of (3.9) no longer depends 

on the choice of v. On the other hand, when Q is normal, it is not hard to show that 

Aj(Q*) = {j, j = 1,oo·,N. It follows that dt(X) ~ max{exp{ejt};ej i= O}. Hence, if 

QQB = QBQ and A2(Q) i= ° is real where Re{A2(Q)) ~ Re(Aj{Q)), dt(X) = exp{A2( Q)t}, 
showing that the upper bound in (3.4) is in fact attained. When Xn is reversible in time, 

the conditions are trivially satisfied. 
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