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Abstract This paper surveys recent works on queuing approaches to a number of optimization problems in 

production systems, especially modem jobbing production systems (or multi-item small lot production systems) 

represented by flexible manufacturing systems (FMS). This paper outlines optimization problems concerning with 

such aspects of the system design and control as workioading, job selection, production rate control, production/ 

inventory control and system configuration. 

1. Introduction 

As a result of increased variety of demands in marketplace, the role of 

jobbing production Cor multi-item small lot production) has become important. 

In fact, at least 75% of the metal products in industrialized countries have 

been manufactured in lot size of less than 50 [58]. This trend has induced 

requirement for the jobbing production system to be efficient. In response to 

the requirement, the concept of modern jobbing production system represented 

by flexible manufacturing systems CFMS) (7], [22], [38], [39] has been developed 

with the aid of computer and numerical control techniques. Implementing the 

concept has given rise to a number of problems relating to the system design, 

control and so on. These problems seem highly challenging to OR/MS research­

ers. The application of queuing theory LS now widely recognized as one of the 

most useful approaches to these problems. 

The purpose of this paper is to classify the recent queuing theoretic 

studies by type of optimization problem in the modern production system and to 

outline how the properties of optimal solutions are derived for each type of 

problem. The following types of optimization problems are discussed here: 

(1) workloading, i.e., workload assignment among work stations; 
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(2) job selection; 

(3) production rate control; 

(4) production/inventory control; and 

(5) system configuration, Le., allocation of resources such as machines and 

storages, and location of a movable server (transporter). 

If we restrict our attention to FMS's, there are some surveys [7], [25]. 
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Buzacott and Yao [7] review works on the recent development of analytical 

queuing models of an FMS. Kalkunte, Sarin and Wilhelm [25] present a compre­

hensive rev~ew of modeling approaches related to the design and operation of 

an FMS. 

2. Loading Problem 

The loading problem is to optimally allocate the required workload among 

work stations. We consider the case in equilibrium [5], [50] and subsequently 

deal with the nonstationary case [11]. 

Using a closed queuing network model [14], [23], Stecke and Solberg [50] 

have solved the loading problem of maximizing the expected production rate of 

the system. In the closed queuing network model, a finished job is removed 

from the system and a new job is instantaneously put in the system. Therefore, 

the number of jobs in the system is fixed, corresponding to the fixed number 

of pallets on which jobs are mounted. 

In their model, the production system consists of m machines partitioned 

into g work stations. For each work station i, i-l, ... ,g, let si be the 

number of machines, ti the average processing time, and qi the arrival rates. 

q. satisfies the following traffic equations 
~ 

qi - ! p .. q., i-l, ... ,g, 
j-l P ] 

where p .. denotes the routing probability from station j to station i. The 
J~ 

workload w. of work station i is given by 
~ 

Define the workload measure X. as 
~ 

X. :: q. t . / [ r. q . t . /m] . 
~ ~ ~ j~l ] ] 

g 
Then, I X.-m holds and x./s. is the workload per machine at work station i. 

i-l ~ ~ ~ 

By balancing the work load per machine, i.t holds that X. /s .-1, i=l, ... , g. 
~ ~ 
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Denote by n=(n
1
,n2 , ... ,n

g
) the state of the system where n

i 
represents the 

number of jobs waiting or in process at work station i. The steady state 

probability pen) is assumed to be given by the product form solution [1].[14], 

[23]: 

p (n) 
g 
n f .(n.)/G(g,njS,X). 

i=1 ~ ~ 

where S=(s1,s2, ... ,Sg) and X=(X1,X2 , ... ,Xg). G(g,n;S,X) ~s the normalizing 

constant: 

G(g, n;S,X) 

n. 
f . (n .) 
~ ~ 

X. ~ In . !, n <s 
~ ~ i- i' 

n. n.-s. 
X. ~/(s.!s. ~ ~), n;>s;, i=1, ... ,g. 
~ ~ ~ ~ ~ 

and n is the total number of jobs present ~n the system. The production rate 

PR(g,n;S,X) is given [42] as 

PR(g,n;S,X) = G(g,n-1;S,X)/G(g,n;S,X). 

The problem is to maximize PR(g,n;S,X) over X with given g, m, S, n, qi and 

g 

I 
j=1 

q .t .' 
J J 

The conclusions drawn from this study are summarized as follows: 

(1) for a system consisting of work stations with unequal number of machines, 

unbalanced workloads are better than balanced ones for purpose of in­

creasing the expected production rate; 

(2) balancing the workload per machine is optimal only if all work stations 

consist of equal number of machines. 

For a system consisting of work stations with unequal number of machines, it 

is conjectured that the production rate is maximized by a unique unbalanced 

allocation of the workload per machine. In particular, more (less) than the 

balanced amount of workload per machine is assigned to the work station with 

the larger (smaller) number of machines. 

The similar results to the above are obtained by several previous studies 

on other types of stochastic production lines. They have pointed out that 

balancing the workload per machine is nonoptimal in serial systems of single­

machine stations with finite storages [20], [29],[41]. This phenomenon is 
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related to the finite storage condition, whereas the result of Stecke and 

Solberg [SO] is related to the multiple-server efficiency issue. 
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The case of parallel machines has been sutidied by Bell and Stidham [5]. 

Introducing waiting cost, they have dealt with optimization in the allocation 

of jobs to single machine work stations. Any station can process any of the 

jobs. In their model, it is assumed tha.t the overall arrival rate A is fixed. 

Upon arrival. job must choose one of the M work stations. Jobs cannot observe 

the current storage at each work station. But they are aware of the service 

time distribution with mean 1/~ .• waiting cost h. per job at the i-th work 
l l 

station. Although service time distributions may differ from station to 

station and need not be exponential. they have the same coefficient of varia­

tion (b_l)1/2. Bell and Stidham [5] have derived the following optimal arrival 

rate pattern (A
1
*, ... ,A

M
*) which minimizes the long-run average cost per unit 

time for tbe entire system: 

where r ~s uniquely determined with 

M 
L Ak *(r) 11. 

k=l 

Note that Ak* is decreasing in b, where b is the ratio of the second moment of 

the service time to the squared mean service time, and hence it is also de­

creasing in the coefficient of variation (b-l) 1/2. 

The preceding works are related to the workload assignment ~n equilibrium, 

whereas Fi lipiak [11] has dealt with the nonstationary workload assignment to 

mUltiple work stations. In his model, it is assumed that the system consists 

of the M single machine work stations with different service rates subject to 

a load of jobs that varies from time to time. Any station is capable of 

processing any of tbe jobs. Let f(t) be total arrival rates into the system 

and fm(t) the flow intensity to station .m at time t. Define the flow pattern 

as f(t)=(f 1 (t), ...• fM(t». Denote by Am(t) the cumulative number of arrivals 

until time t at station m, by D (t) the cumulative number of jobs that have 
m 

left the server ~n time interval (O,t) and by Q (t) the number of jobs in the 
m 

station at t. The following conservation principle holds 

Assume that the time pattern of Am(t), Dm(t) and Qm(t) have been measured 

during successive days of normal use of the system. and then the averages 

A (t). D (t) and Q (t) have been calculated. Using the averages A (t) and m m m m 
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Qm(t), fm(t) and xm(t) are represented by 

f (t) = dA (t)/dt and x (t) = Q (t). m m m m 

By approximating the intensity of an outgoing flow by cm~m(xm(t)), we have 

(2.1) dx (t)/dt = -c ~ (x (t))+f (t), O~~(x (t))~l, m=l, ... ,M, m mm m m m 

where cm is the processor capacity. For a given f(t), it hold that 

M 
(2.2) L fm(t) = f(t), OSfm(t)$f(t). 

m=l 

The total waiting time W of all jobs in the system during (O,T) is given by 

T M 
(2.3) W S L x (t)dt. 

o m=l m 

The optimization problem ~s to determine flow pattern f(t) to the system 

described by (2.1) so as to minimize the total waiting time W under constraint 

(2.2). From Pontryagin minimum principle, necessary conditions for optimality 

are derived. Using these necessary conditions and equations (2.1) and (2.2), 

an algorithm for obtaining fm(t), m=l, ... ,M has been developed [11]. The 

performance obtained by the algorithm is compared with that of the policy of 

joining the shorter queue (JSQ). 

It should be noted that JSQ is known to minimize each customer's indivi­

dual expected delay and the long-run average delay per customer [59], [67] 

when the service time distribution has non-decreasing hazard rate [59] and 

identical customers arrive according to a stochastic process. However, Whitt 

[66] has shown that there are service time distributions for which it is not 

optimal for a customer to always join the shortest queue. 

Shanthikumar [47], [48] has considered a loading problem on a production 

system modelled as M/G/1 queue. External arrival jobs are received in a 

storage in front 'of the system called dispatch area from which their releases 

to the system are controlled. 

3. Job Selection 

When the production system consists of ~ single work station with m 

machines, the system is represented by a queuing model A/B/m where A and B 

describe the interarrival time distribution and service time distribution, 

respectively. For simplicity, we use this notation A/B/m in the sequel of 

this paper. 
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When the capacity of the production system is limited, it may not be 

feasible to accept all jobs that demand service Ln the system. Then, it may 

be profitable to reject a job with small reward for the purpose of keeping the 

capacity available for a job with large reward. Thus, it is important to 

control the input to the system by accepting or rejecting external arrival 

jobs, which is called job selection or arrival control. 

Selection of arrival jobs in an isolated service facility has first been 

studied by Naor [35] (see [24], [52] for survey on the single-facility 

problem). We consider the job selection problems in a single and two work 

stations, and show the monotonicity of the optimal control policies. 

Matsui [30] has discussed a job selection problem in M/G/1 system Ln which 

both the marginal reward S and the processing time of each job are independent 

of the arrival process. A selection criterion C is a control variable de-
u 

pending on the number u of jobs in the system. An arriving job is accepted or 

rejected according as S~Cu or S<C
u

. Let N be the storage capacity. Define a 

vector of selection criteria f as 

The problem is to decide the selection criteria f so as to maXLmLze the ex­

pected reward rate. In periodic selection policy (PSP), C is decided at 
u 

each serVLce completion. In dynamic selection policy (DSP), C is decided at 
u 

each arrival epoch. Numerical results [30] conjecture that 

(1) under the optimal policy, C
u 

monotonically increases with u; and 

(2) the policy DSP is superior to the policy PSP. 

Optimal job selection problems for GI/M/s queuing systems have been 

studied by Stidham [51]. Applying Schal's results [44], Stidham [51] has 

shown that a control limit policy is optimal under convex nondecreasing cost 

function in the GI/M/s queuing system. Under the control limit policy, a job 

is admitted into the queue if and only if fewer than n jobs are present in the 

system where n is a given constant called a control limit. 

Mendelson and Yechiali [31] have studied an alternative job selection for 

GI/M/1 queuing system. It is well known [51], [55], [70 - 72] that, when 

decisoin epochs are restricted to arrival instants, the reward-maximizing 

control policy is a control limit policy. By generalizing this simple control 

limit policy, Mendelson and Yechiali [31] have considered an (n,t)-policy such 

that the n-th job in the ,queue is accepted unless t units of time have already 

elapsed without any service completion where n is the control limit. They 

have developed conditions under which the (n,t)-policy is preferable to the 

simple control limit policy. 
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An optimal job selection problem allowing rejection of external arrivals 

in two work stations in series has been studied by Ghoneim and Stidham [13]. 
Their main results are as follows: 

The optimal policies are monotonic. in the sense that the rejection region 

is an increasing set [5Z]. that is. if the decisoin of rejection is 

optimal in a certain state of the system. then it is also optimal in a 

more congested state. 

4. Production Rate Control (Service Rate Control) 

We consider the problem of controlling service (processing) rate or the 

number of active parallel machines in a production system (see [9]). Controls 

by adjusting the service rate for M/G/l system have been studied by Mitchell 

[33] and Doshi [10]. Controls by turning servers on and off have been studied 

by Heyman [19]. Bell [Z] and Sobel [49] for a single server. For an M/M/s 

system, the control problems have been studied by Bell [3], Huang et al. 

[21], Bell [4] and Szarkowicz and Knowles [53]. 

Szarkowicz and Knowles [53] have shown a monotone form of optimal control 

policy for an M/M/s system. In their model, the system state (x
1
.xZ) is 

defined by xl' the number of jobs in the system, and xz' the number of active 

machines. Let cl (x,) be the holding cost rate, c2 (x 2) the service operating 

cost rate, and u the control action. i.e., the number of active machines after 

the control. The start-up and shut-down cost C(XZ.U) is given by 

where Cl~O and CZ$O. The interarrival times are exponential random variables 

with parameter a. The service times are also exponentially distributed with 

parameter b. Define (x
1

Ax2)=min(x
1
,xZ)' Following the idea of Lippman's 

exponential clock [Z8], we define ~(x,u)=a+(xlAu)b and L=max [~(x,u)]=a+Sb x,u 
where S is the maximum number of operating machines. L is the exponential 

parameter that yields the minimum expected duration. The state transition 

probabilities p(x~lx,u) are 

p (x~ I x, u) 

=0 

[L-a- (x, Au) b] /L 

aiL 

if x~ =x, 

if x~=(xl+l.u), 

if x~=(xl-l,u), 

otherwise. 
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Let v(n;x
l
,x2) be the minimum expected discounted cost for the last n transi­

tions, given initial states xl and x 2 • An n-step functional equation of 

dynamic programming is given by 

w(n;x
l
,u) 

min[c(x2,u)+w(n;x
1
,u)], 

ue:U 
<JO t 

I p«xl~,u)l(xl,x2)'u) f{f exp(-as) 
(xl~,u)e:X ° ° 

x (cl(xl)+c2(u»ds+exp(-at)V(n-l;xl~ .u)} 

x exp{-,q,(x,u)t}dt. 
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where a is a discount rate, X=(O.1,2, .•. )X(O,1, ••• ,S) is the countable state 

space, and U=(O,l, ... ,S) the finite control action space. Define v(n;x
l
,x2,u), 

v
l

(n;x
l
,x

2
,u) and v

2
(n;x

l
,x

2
,u) as 

v(n;x
l
,x

2
,u) - v

1 
(n;x

1
,x2 ,u), 1l~x2' 

- v2 (n;x
1
,x2,u), 1l:;:X

2
, 

v
1 

(n;x
1 
,x

2
,u) - Cl· (u-x2)+W(n;x

1 
,u), and 

v
2

(n;x
1
,x

2
,u) - C

2
·(u-x

2
)+w(n;x

1
,u). 

Furthermore, define the following: 

z(n;x
1

) - min[arg min[v
1 

(n;x,u)]l. and 
u 

z(n;x
l
) ~ min[arg min[v2 (n;x,u)]], 

u 

that is, z(n;x
1

) is the smallest value of u that minimizes v
1 

(n;x,u). 

Theorem 4.1. [53] For each state xcX and for each n=l, 2, ... ,N, the 

optimal action u* LS 

u* z(n;x
1
), x2:;:z(n;x

1
), 

u(n;x
1
), z(n;x

1
)sx2sz(n;x

1
), 

z(n;x
1
), z(n;x

1
)sx

2
, 

where u(n;x
1

) arg min[v(n;x,u)]. 
ue:U 

That is, the optimal policy is given by the control limit form. Note 

that the theorem shows the optimality of the control limit policy under less 

restrictive assumptions than those used by Huang et al. (e.g., convexity of 

the cost function) [21]. 
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Graves [15] has considered the problem of controlling processing rate at 

work stations in an FMS. An FMS is a very flexible production facility that 

consists of a set of versatile work stations. It is capable of processing a 

wide variety of jobs. Because of the lack of a dominant work flow, production 

control is often very difficult in an FMS. For each work station we assign a 

planned lead time. While the actual time spent at the work station will 

deviate from the planned lead time, one of the objectives of the planned lead 

time control should be to minimize the variance of this deviation. Graves 

[15] has derived an expression for the varLance. 

Ohno and Ichiki [37] has considered an optimal control of serVLce rates 

for a tandem queuing system that has a general cost structure. They have also 

proposed a procedure of modified policy iteration algorithm for finding the 

optimal control, and evaluated its efficiency in comparison with several 

variants of the algorithm. 

5. Production/Inventory Control 

In a Material Requirement Planning (MRP) System or a Dependent Demand 

System, it is important to control the production process depending on the 

inventory level of the products for which there are external demands. This 

kind of control is referred as production/inventory control. 

Schmidt and Nahmias [45] have considered an MRP-type assembly system in 

which an end product is assembled from two components externally supplied. 

Demands for the end product are assumed to be random. Using the functional 

equation approach of dynamic programming, they have characterized the forms 

of both the optimal order policy for the components and the optimal assembly 

policy of the end product as outlined in the following. 

Let x be the inventory level of end product, x
iO 

be the sum of x and the 

inventory level of component i, i=l,2, and x
ij 

be the sum of x
iO 

and number of 

components scheduled to arrive in the next j periods. Define x. as 
-~ 

Let decision variables y be the sum of x and the amount of new assembly, and 

Yi the sum of x
i

£ .-1 (this is the classical inventory level) and the amount of 
~ 

new order for component i. Denote by c the unit assembly cost of the end 

product, by h the unit holding cost of the end product, by p the unit penalty 

cost of the end product, by £ the number of periods required to assemble the 

end product, by c i the unit order cost of component i, by hi the unit holding 
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cost of component i,. by .Q,i the lead time of ordering component i and by S the 

one period discount factor . 
.Q, 

It is assumed that il :Si2 , S (h
1 

+h2 +p) >c and 
.Q, 

(l-S)c+S (h-h
1
-h2»0. The problem is to decide y and Yi' i=1,2, so as to 

minimize the expected cost. 

Let Cn(x'~1'~2) be the minimum expected cost for n periods when the 

current state of the system is (x'~1'~2). The functional equations defining 

an optimal policy are given by 

where 

o 

2 
min{c(y-x)+L (y) + L [c.(y.-x'.Q, l)+h.x· O] 

n i=l ~ ~ ~ i- ~ ~ 

x::;y::;min (x 10' x:w), y i?'x H .-1 }, 
~ 

for n<.Q,+l, 

Si 7[h(Y-~)+-(hl+h2)(Y-~)]d~(i)(~) 
o 

+ Si jp(~_y) +d~ (.Q,+1) (~) 
o 

x + = max(O,x), 

for n::i+l, 

and ~ denotes demands. C
n 

can be shown to be separable in x and (~1'~2). 

That is, 

Let Yn denote the minimum point of 

00 

cy+L (y)+S ID l(y-~)d~(~). 
n 0 n-

43 

Theorem 5.1. [45] The optimal assembly policy has the following structure. 

x 

if x<Yn' 

if X:?'Yn· 

In order to derive the optimal order policy ~n period n , for i+i
1

:sn:Sl+1
2

, 

we define S (u) and A (y) as n n 
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6 (u) 
n 

and 

A (y) 
n 

T. Shioyama & H. Kise 

+ (u-u ,n_ , ) 

Q, co (Q, ) 
+ 6 1 J f..~_Q, (u-Od~ 1 (0 

o 1 

+ 6 J 6n_l(u-s)d~(s) 
o 

Q" co (Q, ) 
+ 6 J A~ (u-s)d~ 1 (0 

o 

c[min(y,y )-y ] + L [min(y,y )] - L (y ) n n n n n n 

for n=Q" 

where the symbol ~ denotes the derivative, and u
'n 

is the unique zero of 

6
n 

(u) • 

Theorem 5.2. [45] Assume that 

Q" Q" Q,H, 
c, + 6 (1-6)c + (6 + •. ·+6 )h 

Q,+Q" 
< 6 (h , +h

2
+p). 

The optim~l order policy in period n, for £+£,~n~£+£2' is 

y, * = x , Q, -1 if xa -l::,x n or uln~x'Q,1-1~x2Q,,' 
1 1 1 

u
'n 

if xa -1~u'n5xn 
1 1 

x 2£ if x , Q, -1~x2£ ~uln' 
1 1 1 

For the purpose of derivation of the optimal order policy in period n, 

for n::.Q,+Q,2+1=£, we define 

for n>i, 
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for n>~. and 

00 

where A .. (u) 
~] 

13
j - 1 f (j-1) 

- 13. 1 .(u-1;)d<P (1;). 
~+ ._] 

(u-u 1 · 1 .)+ 

and u
2n 

~s the unique 

~+ -] 

Theorem 5.3. [45] Assume 

The optimal policy for the components ~n period n~i has the following form: 

Y2* x2t -1' (x 2t -1~X1t -1 and X2t -1~u2n) 
2 2 1 2 

or (xlt1-1~X2t2-1~vn) 

where vn is the unique zero of 0n(Y2)' and it can be shown that u2n < vn . 

Note that under the optimal order policy. Yi *. i=1,2, is a nondecreasing 

function of the inventory level of the other component. The optimal assembly 

policy is a base stock policy (that is, assemble up to y ) unless it exceeds 
n 

the available quantity of components. 
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The management of a system, which combines standard inventory and queuing 

submodels, presents a rather complex trade-off: if there were unlimited produc­

tion capacity, product inventories could be kept small by making products in 

small batches. However, as batch sizes are reduced, the workload in the system 

increases, causing greater congestion. Hence larger safety stocks are required 

to protect against production delays. Assume that batches are ordered ac­

cording to a (q,r) policy, that is, when the inventory level reaches the 

reorder point r, a batch of size q is ordered. The optimality of the (q,r) 

policy in the basic inventory model has been proved by Veinott [56]. The 

inventory process can be represented by one of the continuous-time, single­

location stochastic-Ieadtime models (e.g., see Hadley and Whitin [16], chapter 

4). The production facility is represented as one or more servers in a 

queuing system in which a server serves one batch at a time. The sojourn 

times (total delay plus service times) in the queuing system in turn become 

the order lead times for the inventory submodel. Combining these submodels by 

treating the mean sojourn time in the queuing system as a linking variable, 

Zipkin [74] has derived a convex program. 

Production/inventory problems, in which processing rate is controlled by 

choosing one of two processing rates, have been studied by Gavish [12] and Kok 

[26]. They have shown that the optimal policy is two-critical-number policy, 

that is, when the inventory level reaches one of the two critical numbers, the 

processing rate is changed. 

Venkatesan [57] has combined the production/inventory control and the 

equipment replacement control. A single-product single-equipment production­

inventory system with infinite storage and production capacity is reviewed 

periodically. He has provided sufficient conditions for the combined optimal 

policy to have a relatively simple monotonic structure. The production or 

replacement decisions are made on the basis of the inventory level in storage 

and the level of deterioration of the equipment. It is assumed that the 

deterioration process is a finite state Markov process with transition proba­

bilities q .. and states O,l,,,.,F. The process is independent of the demand 
~J 

process. Replacement is instantaneous. The production cost is a function of 

the level of deterioration of the equipment. 

The system state (i,x) is defined by i, the level of deterioration and x, 

the inventory level. An action (a,y) ~s defined by a=l(O) indicating replace­

ment (no replacement), and y, the sum of x and the amount produced. Four 

types of costs are considered. Let R be a replacement cost for equipment and 

A a fixed penalty cost for replacement through failure. Define o(y-x)=l for 

y>x, =0 otherwise. Define the production cost for each i<F as 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



6(y-x)K.+c.(y-x), 
~ ~ 

Optimization in Production Systems 47 

where Ki denotes the start-up cost, and x and y are inventory levels before 

and after replenishment. Let L(y) be the one-period holding and shortage cost 

function which is assumed independent of i. Let fO(j,x~) be a cost for termi­

nating the system ~n state (j,x~). One-period cost function for state (i,x) 

and action (a,y) for O<i<F is 

r( (i,x), (1 ,y» 

r «i ,x) , (0, y) ) 

R+6 (y-x)KO+cO(Y-X)+L(Y) , 

6(y-x)K.+c.(Y-X)+L(y). 
~ ~ 

The expected discounted cost function in state (i,x) by following policy n is 
n 

f (i,xin ) 
n n 

n-1 
\' n-m-1 i E {L S [r«J ,x ),(A ,y»)) X =x,J =i} 

nn m=O m m m m n n 

where (J ,X ) and (A ,Y ) are random vectors representing the state and the 
m m m m 

action at stage m. Let fn(i,x) be the optimal cost function, that is 

f (i,xin *) 
n n 

lnf f (i,xin). 
n n n 

n 

For notational convenience, we use the following notation: 

w(i,y) - CiY+L(y) , and 

g(i,y) - (c
i

-Sc
F

_
1
)y+L(y) for i<F. 

Define ~i as the infimum point y of w(i, y), Q
i 

as the infimum point y of 

g(i,y), s.(::;S.) as the smallest number satisfying w(i,s.)=K.+w(i,S.), and s. 
-~ -~ -~ ~ -~ ~ 

and Si as the upper bounds satisfying ~i:S;;-i::;~iSQisSi' g(i,S)=g(i,Qi)+SK and 

g(i,;;-.)=g(i,Q.)+(1-S)K, respectively whe:ce K.=K follows from condition 5 below. 
~ ~ ~ 

Assume the following conditions: 
F 

Condition 1. r (i)::: L q .. is nondecreasing in i<F for each q=O,1, .•. ,F, 
q j=q ~J 

Condition 2. O::;ci<oo and OSKi<oo are nondecreasing in i<F, 

Condition 3. For all x, fO(i,x)=O, i<F, =R+A, i=F, 

Condition 4. L(y) is continuous and satisfies the following; 

(a) L(y), {CiY+L(y)}, and {(c
i

-Sc
F

_
1
)y+L(y)} are quasiconvex [53] ~n y for all 

i<F, 

(b) {c
F

_
1

y +L(y) }-+oo as y-+-oo, 

(c) {(c
O
-c

F
-

1 
)y+L(y) }-+oo as y-+ +00 , 
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Condition 5. K.=K~O for all i and (I-B)K~g(i.S.)-g(i,Q.), and 
~ -~ ~ 

Conditoin 6. For all i<F, R~B(qiF-qOF)A/[I-B(I-qOF)]' 

Let 0 *(i,x) be the optimal decisoin rule at stage n. 
n 

Theorem 5.4. [57] Under conditions 1-6, for any period n~I, if the equip­

ment is observed to be in state i, O<i<F. and the on-hand inventory is x, then 

there exists an optimal policy of the form (o.(n).s .(n),S.(n),SO(n» such that 
~ ~ ~ 

o;(n)$sO(n). s .<S .(n)5s.$S .$S .(n)$S. and either 
~ -~ ~ ~ -~ ~ ~ 

(1) 

or 

(2 ) 

° . (n) <s . (n) and 
~ ~ 

°n*Ci,x) 

0. (n)~s . (n) 
~ ~ 

and 

on *Ci ,x) 

(I,SO(n», 

(O,S.(n», 
~ 

(o.x) • 

(I,SO(n». 

(O,x) , 

xE(-OO.oi(n)], 

xE(oi(n).si(n»]. 

XE (-00,0 i (n)]. 

xt;{o. (n) ,00). 
~ 

It is remarked that the dynamic programming recursion for finding s .(n), 
~ 

S;(n) and o.(n) can be made more efficient by using their boundaries s., S., 
~ ~ -~ ~ 

S. and S. for reducing the search ranges. 
-~ ~ 

6. System Configuration 

An important layout problem for a production system is to determine the 

best location of two or more service stations in series with no precedence 

constraints. For given external arrival process and service time distribu­

tions, the objective is to determine the order of the stations that minimizes 

the expected equilibrium sojourn time per job. Weber's result [60] shows that 

the final departure process is independent of the order of the stations for 

arbitrary arrival process, given exponential or deterministic service time 

distributions at all stations with unlimited storages. Whitt [65] has dropped 

the exponential or deterministic assumption. and has derived approximation 

methods. In his methods, each station is treated as a GI/G/l queuing system 

characterized by first two moments of affival and departure processes. 

The squared coefficient of variation (scv) of the renewal interval ln the 

approximating renewal process is 
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p=AT<l, 

where CaZ, C
s

Z 
and C

d
Z are scv's of arrival, service and departure processes, 

respectively, A is the arrival rate, and T is the mean service time [6Z]-[64]. 

The approximate expected equilibrium queuing delay EW in a GI/G/l queue is 

given [65] by 

EW = Tp(C Z+C Z)/Z(l-p). 
a s 

Problem is to choose the smallest of the following 

for n! permutations where n is the number of stations. He has obtained the 

following conjecture [65]: 

Z Z Z 
If Cs 1 $C s Z $ ... $C s n ' 

(l,Z, ... ,n) is the best 

C Z<l 
a 

order. 

and then, 

Consider the case of finite intermediate storage. In a saturated system 

with arbitrary service time distributions and finite intermediate storages in 

series, reversing of the order of stages does not influence the throughput. 

This, so-called reversibility property has been proved by Yamazaki and 

Sakasegawa [69], and independently by Muth [34] (see [68] for review of the 

reversibility). Thus, the production rate (throughput) of a saturated two­

stage system can be affected by two factors: the proper workload division 

between stages and the capacity of intermediate storage. Rao [40] and Wolisz 

[68] have derived closed form expressions for maximal production rate of the 

saturated two-stage system for the case _,here the distribution of service time 

is exponential at one of the stages, but arbitrary at the other one. 

Let E(b.), i=l,Z, be the mean of service time b. with the service time 
~ ~ 

distribution function B.(t). Let c. be the coefficient of variation of b .. 
~ ~ ~ 

It is assumed that E(b
1

)+E(bZ)=constant, E(bl)=l/~l' c
1

=1 and cZ~O. Rao [40] 

has shown that if O$c
Z
<l, then the throughput for E(b

1
)<E(b

Z
) is greater than 

that for E(B
1

)=E(b
Z
). He then pointed out that unbalancing of such a system 

in the direction of allotting a slightly higher load to the less variable 

stage increases system's throughput. Wolisz [68] has shown that if cZ>l, then 

the relation of Rao does not always hold. When both Bl (.) and B2 (·) are 

exponential, it is shown by Hillier and Holing [ZO] that the throughput is 

maximized at E(b
1

)=E(b Z). The delay time in the finite intermediate storages 

in series with general service times is discussed by Sakasegawa and Yamazaki 

[43] . 
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Kubat and Sumita [27] have considered a tandem queuing system with N 

unreliable machines. M storages with unlimited capacity and K additional 

equipments to lengthen uptime are available. The problem is how to determine 

which machines should have additional equipments and where to locate storages, 

so as to maximize the throughput. They have developed a bivariate dynamic 

programming procedure. 

Vinod and Solberg [58] have considered the problem of allocating machines 

to work stations in an FMS modelled as a closed network of queues so as to 

determine the system configuration that is optimal cost effective. 

Berman, Larson and Chiu [6] have considered a problem of locating a 

facility for a single mobile server (transporter) on network so as to minimize 

the response time, i.e., the sum of mean queuing delay and mean travel time. 

Demands for service arise as a Poisson process only on the nodes of a network 

G. A single mobile server resides at a facility located on G. Using the 

local convexity of the expected response time, the algorithm for finding the 

optimal location has been developed in [6]. The key results are as follows 

[6] : 

(1) for very small or very large network-wide demand arrival rate A, the 

optimal facility location is the Hakimi point that minimizes mean service 

time [17], [18]; 

(2) for intermediate values of A, the optimal location is typically not the 

Hakimi point, but is a point either on a link or a node "between" the 

Hakimi point and the point that minimizes the second moment of the service 

time. 

Conclusion 

Various aspects of optimization problems in production systems have been 

surveyed. The combined problems such as MRP-type production/inventory problem, 

production/inventory/replacement problem, etc., are desired to be solved in 

practice. The anticipated computational complexity of exploding state spaces 

may prohibit the practical use of such models. Current research in approxima­

toin methods for solving large Markov chains such as decomposition method [8], 

and aggregatoin-disaggregation method [46], [54], and approximation methods 

for large scale Markov decision processes [32], [36], [61], [73] may lead to 

practical computational procedures for these more complex production systems. 
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