ABSTRACT

ALGORITHMS USING A BRANCH AND BOUND METHOD FOR FINDING ALL REAL SOLUTIONS TO AN EQUATION OF ONE VARIABLE

Shinji MIZUNO

Tokyo Institute of Technology

In this paper，we propose algorithms using a branch and bound method for finding all real solutions to an equation $f(x)=0$ of one variable x on an interval $[a, b]$ ．We denote by $P([c, d])$ the subproblem in which we find all approximate solutions to $f(x)=0$ on $[c, d] \subseteq[a, b]$ ．The algorithms repeat the following procedure for each subproblem $\mathrm{P}([c, d])$（the first subproblem is $P([a, b])$ ）until we terminate all the subproblems：If we solve the subproblem $P([c, d])$ then we terminate $i t$ ，otherwise we split it into two new subproblems $P([c, e])$ and $P([e, d])$ for $e=(c+d) / 2$ ．Here we can solve the subproblem $P([c, d])$ when there is no solution of $f(x)=0$ on $[c, d]$ or when there exists a solution of $f(x)=0$ on $[c, d]$ and the width $d-c$ is sufficiently small．

We assume that there are two functions $g(x)$ and $h(x)$ such that $f(x)=$ $g(x)-h(x)$ and one of the following conditions holds：
（1）The functions $g(x)$ and $h(x)$ are continuous and monotone increasing．
（2）The first derivatives $g^{\prime}(x)$ and $h^{\prime}(x)$ are continuous and monotone increasing．
（3）The second derivatives $g^{\prime \prime}(x)$ and $h^{\prime \prime}(x)$ are continuous and monotone increasing．

Then we present new sufficient conditions that the equation $f(x)=0$ has no solution on $[c, d]$ ．Those conditions are used in the algorithms for solving subproblems．We also show that if the function $f(x)$ is a sum of elementary functions then there exist the functions $g(x)$ and $h(x)$ which satisfy the above as sumption．

Furthermore we present sufficient conditions that the equation $f(x)=0$ has exactly one solution on $[c, d]$ ．We propose two algorithms which solve the subproblem $\mathrm{P}([c, d])$ efficiently when the conditions hold．

