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Abstract This paper deals with stochastic models of an optimal sequential allocation of resources between con-

sumption and production. We obtain the following results by means of the theory of martingales. For a model of 

resource allocation we establish the dynamic programming equation and show that a supermartingale characterizes 

the composition of the model and clear the composition of the optimality, representing the sufficient condition 

for an allocation to be optimal via a martingale. Further, we show the following three results as the application of 

the above result. (I) For the Kennedy's model we give another proof for the fact on an optimal allocation. (2) For 

a model with a convex utility function, we represent an optimal allocation via a supermartingale. (3) For a model 

with a logarithmic utility function, we obtain an explicit optimal allocation. 

1. I ntroduct ion 

In this paper, we consider stochastic models of resource allocation. 

Resource is sequentially allocated for consumption and production, and utility 

and resource are sequentially generated. We want to obtain the maximum sum of 

the expected utilities. 

The model of resource allocation has been investigated by Beckmann [1], 

Dynkin and Yushkevich [3], Foldes [4], and Kennedy [5]. The model in section 

2 is an extension of the Kennedy's model [5] in which the utility function is 

a special form. Kennedy's model that we treat in section 3 is an extension of 

the model in [3]. The model described in [3] is the stochastic version of the 

deterministic model given by Beckmann [1]. Foldes [4] has obtained necessary 

and sufficient conditions for an allocation to be optimal under the assumption 

that the utility function is concave and increasing. 
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2 T. Nitta 

In section 2 we analyze a stochastic model of resource allocation via the 

technique of dynamic programming and the theory of martingales. The analysis 

proves the sufficient condition for an allocation to be optimal. Section 3 of 

this paper derives another proof for the fact on an optimal allocation of the 

Kennedy's model by means of the results in section 2. Section 4 gives the 

results on optimality for a model with a convex utility function, utilizing 

the results obtained from section 2. The results in section 4 are similar to 

those of Kennedy's [5]. Section 5 is devoted to derivation of an explicit 

optimal allocation for a model with a logarithmic utility function by using 

the results obtained from section 2. The model is an extension of the 

deterministic model considered by Beckmann [1]. The results Ln section 5 are 

similar to one of the model considered by Beckmann [1]. The model of Dynkin 

and Yushkevich [3] is another one that gives an explicit optimal allocation. 

2. A Model of Resource Allocation 

We deal with a discrete time stochastic model of resource allocation 

with the infinite time horizon. The model behaves in the following way. A 

resource is allocated for consumption and production at each time. The product 

of the amount of resource allocated for production and a random parameter is 

occurred as a resource at next time. The product of the value of the utility 

function corresponding to the amount of resource allocated for consumption and 

a random parameter is obtained as a utility at next time. 

We formulate the model mathematically. Assume that our argument bases 

on the probability space (0, F, p). Let U = {U ;n~l} and R = {R ;n~l} be two 
n n 

given nonnegative processes. Un LS a random parameter which is a generaliza­

tion of the discount factor for utility at time n. We assume that only Un is 

nonnegative, and independence of {Un} is not assumed. Rn is a nonnegative 

random parameter for resource at time n. Let X = {Xn;n~a} be a nonnegative 

process and Xa=l. Xn represents the amount of resource at time n. Xo is the 

initial resource. Also let Y {Yn;n~l} and Z {Zn;n~l} be two nonnegative 

processes such that Xn- 1 = Yn + Zn for all n~l. Yn represents the amount of 

resource allocated for the consumption at time n-1, and zn represents the 

amount of resource allocated for the production at time n-1. For convenience, 

we define RO=l and ZO=l. Let f : [a, +(0) -+ [-00, +(0) be the utility function. 

Using the description above, the behavior of the model can be described as 

follows: for all n~l, Yn out of the resource Xn_ 1 ia allocated for consump­

tion and Zn xn-
1 

- Yn is allocated for production at time n-l. Then the 

utility Unf(Yn ) LS obtained and the resource Xn RnZn is occurred at time n. 
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Stochastic Resource Allocation Model 3 

Also let {F ;n~O} be a sequence of sub-a-fields of F such that F cF 1 for 
n n n+ 

any n:::O. Intuitively. for any n~O. Fn represents the information that can be 

utilized until ~ime n. Concretely. for any n:::O. Fn represents the information 

on {XO' V
1

• R
1 

• •••• Vn' Rn}' Note that {Fn;n:::O} is independent of our policy. 

Suppose that Yn and 2n are Fn _
l
-measurable for any n:::l. This assumption means 

Yn and 2n are chosen utilizing the information based on {XO. V
1

• R
l 

• •••• V
n

_
l

• 

Rn _
1

}. Obviously, Vn and Rn are Fn -measurable for any n:::1. The objective of 

our argument is to determine the allocati.on between Y and z which maximizes 

the sum of the expected utilities. 

The above model is an extension of the Kennedy's model [5] in which the 
. l' .. l/p ., I h' b' ut~ ~ty funct~on ~s y where p ~s f~xe(. p>l. T at ~S. we su st~tute f for 

l/p 
y • In other words. the model ~n this section and Kennedy's model are based 

on the same conditions except for a utili.ty function. 

We use the following notations. Let D be the set of processes A - {A ;n>O} 
n -

such that An ~s Fn _ l -measurable. 0:SAn:S1 for any n:::l and AO = 1. Then we can 

see that there is a one-to-one relationship among Y. 2 and A£D given by 

(2. 1 ) Y 
n 

(l-A)X 1.2 n n- n 

An represents the proportion of the resource that is allocated for production 

at time n-1. Deservedly (l-A ) represents one for consumption. 
n 

Let D 
n 

{A£DIA
k

=l for all k (05k::;n)} for any n:::O.. Note that D = DO' For any A£D, let 

B = {B 'n>O} where n' - , 

(2.2) B 
n 

n-1 
(l-A ) IT A

k
, n:::l and BO=O. 

n k=O 

Also let 0, On be the sets of such processes corresponding to D, Dn' 

tively, through (2.2). That is. let 0 = {BIA£D} and ° = {BIA£D }. 
n n 

0=00 , It is easy to see that On {B£OIBr<:.O (r~O). Bk = 0 (k:sn), 

We assume that 

r-l 
(2.3) sup E[ I V/«l-Ar ) IT AkR

k
) IXO··1]<00. 

A£D r=l k=O 

r-1 

respec­

Note that 
00 
I Br::: 1 }. 

r=n+1 

Note that (l-A ) IT AkRk Y represents the amount of the resource consumed at 
r k=O r 

time r. (2.3) guarantees that the supremum of the sum of the expected utili-

ties exists. Formally. the problem is to choose predictable sequences Y = 

{Yn;n~l} and 2 = {2n;n~1} so as to 
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maximize E[ I U fey ) 1XO=1] 
r=l r r 

We can also describe the problem in the following form, 

r-1 
(2.5) maximize E[ I U

r
f((l-A

r
) IT AkR

k
)] over AED. 

r=l k=l 

We call AED an optimal allocation if 

(2.6) 
r-1 . 

sup E[ I Ur f((l-Ar ) IT AkR
k

)] 
AED r=l k=O 

00 r-1 
E[ I Ur f((l-Ar ) IT AkR

k
)]· 

r=l k=O 

At this time, we will discuss about the composition of an optimal alloca­

tion. Define 
r-1 

(2.7) D* = {AEDIE[ I Ur f((l-A
r

) IT AkRk)]>-oo}. 
r=l k=O 

Then it ~s evidently in D*, if the optimal allocation exists. 

Note that if f ~ 0, D* = D. We wish to see an optimal allocation. We 

accordingly restrict the subject of the investigation to D*. We show in 

Theorem 2.1 that the dynamic programming equation holds. (2.9) is similar to 

the dynamic programming equation established in Striebel [8], and we use the 

Kennedy's technique [5] in the proof of Theorem 2.1. Though in most systems 

the dynamic programming equation holds, it must be rigorously proved. 

Lemma 2.1 and Definition 2.1 are quoted from [6, p.121]. The proof of 

Lemma 2.1 is omitted here. 

Lemma 2.1. For every family H of random variables X defined on a proba­

bility space (~, F, P), there exists only one random variable Y such that 

(a) Y ~ X a.s. for all XEH 

(b) if Z is a random variable such that Z ~ X a.s. for all XEH, then Z ~ Y 

a. s. 

Definition 2.1. For the family H ~n Lemma 2.1, define 

ess sup W"Y, 

where Y is the random variable in Lemma 2.1. 

(2.8) 

Definition 2.2. For any n~O, A {A ;n>O}ED*, define n -
r-1 

W (AO, ••. ,A ) = ess sup 
n n AED* 

E[ I U f((l-A ) IT AkR
k

) IF ]. 
r=l r r k=O n 

Ak =A
k 

(O::::k::::n) 
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Stochastic Resource Allocation Model 

Remark: W (A
O

' ••• ,A ) represents the max~mum conditional expected utility n n 
at'n if we use' AO, •.• ,An until time n. 

Theorem 2.1. For W (AO, ... ,A ) for any n:::O with A 
n n 

by (2.8), we have 

(2.9) W (AO, .•. ,A ) n n = ess sup 
AED* 

Proof: 

A =A (O<k<n) k k --

- * For any n~O, AED ; 

E [W 1 (An' •. • ,A,A 1) IF] . n+ n n+ n 

r-l 

W (AO, •.. ,A) = ess sup E[ I UJ«I-A) IT AkRk ) IF ] 
n n AED* r=1 -- r k=O n 

A =A (O<k<n) k k --

r-l 
= ess sup 

AED* 
E[E[ I U f«I-A ) IT AkRk ) IF 1] IF ] 

r=l r r k=O n+ n 

(2.10) 

A =A (0 <k<n) k k --

r-l 

5 

= ess sup 
AED* 

E [ess sup 
Af-D* 

E[ I U f«I-A) IT AkR) IF 1]IF] 
r=1 r r k=O n+ n 

Ak =Ak (O::;k::;n) 

= ess sup 
A£D* 

Ak=Ak(O::;k:sn) 

Ak =AJc(O:Sk:sn) 

An+l =An+l 

E[W I(AO,···,A,A 1)IF]. n+ n n+ n 

The validity of the third equality can be shown as follows. It is trivial 

that left hand side is not greater than right hand side. Therefore we show 

that right hand side is not greater than left hand side. For any AED* such 

that Ak=Ak(O:Sk:sn), define 

00 r-l 
(2.11) {E[ I U f«I-A) IT AkRk ) IF 1]; AED*, Ak=Ak(O:Sk:sn), A I=A I}. 

r=1 r r k=O n+ n+ n+ 

Then F* is directed upwards (cf. [6, p. 95]) for any AED* such that Ak =A
k 

(O::;k::;n), 

that is, given any two random variables from the set there is a third dominating 

the two.almost surely. Hence we can choose the sequence {f
j

; j=I,2, •.• } in 

increasing a.s. and then ess sup F*=lim f. a.s. (cf. [6, p.121]). 
] j+oo 

Therefore, for any posi ti ve integer j, AcD* such that Ak =A
k 

(O::;k::;n), 

(2. 12) ess sup 
AED* 

Ak=Ak(OSksn) 

r-l 

E[E[ I u f«I-A) IT AkRk ) IF +1]IF ]~E[f·IF J. 
r=1 r r k=O n n ] n 
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6 T. Nitta 

Letting j+oo and using monotone convergence theorem we have 

r-l 
(2.13) ess sup 

Ae:D* 
E[E[ I U f«l-A ) IT AkRk ) IF 1] IF ]~E[ess sup F*IF ], 

r=l r r k=O n+ n n 

Ak =A
k 

(05ksn) 

for any Ae:D* such that Ak=Ak (05k5n). 

From (2.13) we can see that right hand side is not greater than left hand side. 

The following Lemma 2.2 can be easily proved. 

Lemma 2.2. Suppose that the set of random variabl~s G 

E[X(a)]>-oo} is directed upwards. 

Then E[ess sup G) = sup E[x(a)]. 
ae:C 

Q.E.D. 

{X(a) I ae:C; 

The following Theorem 2.2 corresponds to the results in [5], and repre­

sents a characteristic of the model. 

Theorem 2.2. Define W (AO, ••• ,A ), for any n~O, A = {A ;n~O}e:D* in (2.8). 
n n n 

Then for any Ae:D*, {W (AO, ••• ,A );n~O} is a supermartingale with respect to 
n n 

{Fn }. That is, {Wn(AO, ..• ,A
n
)} satisfies the following condition; (1) for 

any n>O, W (AO, ..• ,A ) is adapted to {F }, (2) E[W (AO, ••• ,A )-]>-00, where 
- n n n n n 

let x-=in(x,O), and (3) E[W l(AO,··.,A,A l)IF ]<w (AO, ..• ,A). n+ n n+ n - n n 

Proof: Fix Ae:D* arbitrarily. (1) (2) It is trivial that {w (AO, ... ,A )} 
n n 

is an adapted process and E[W (AO, ••• ,A )-]>-«>. 
n n 

(3) From Theorem 2.1, for any n~O, Ae:D* s.t. Ak=Ak(0~k5n). 

W (AO, ••• ,A ) 
n n 

(2.14) 

ess sup 
Ae:D* 

Ak=Ak(0~k5n) 

E [w 1 (AO' ••• , A , A 1 ) IF] n+ n n+ n 

~ E[W l(AO,···,A,A l)IF]. n+ n n+ n 

Consequently, for any n~O, W (AO, ••. ,A »E[W l(A
O
,···,A,A l)IF]. n n - n+ n n+ n Q.E.D. 

The following Theorem 2.3 corresponds to the result in [8], and the suffi­

cient condition for an allocation to be optimal is represented via a martingale. 

Theorem 2.3. Suppose that the following three conditions (i)-(iii) hold. 

(i) There exists the sequence {a ;n~O} such that lim a =0 and 
00 r-l n n+oo n 

sup E[ I U f«l-A) IT AkRk)]sa for any n~O. (ii) {W (AO, ••• ,A );n~O} is a 
Ae:D* r=n+l r r k=O n n n 
martingale with respect to {F ;n~O}, that is, for any n~O (1) {w (AO, •.• ,A )} 

n n n 
is an adapted process, (2) Elw (AO, ... ,A )1<00, (3) E[W l(A

O
, .. ·,A l)IF] = 

n n n+ n+ n 
W (AO, ••. ,A). (iii) A satisfies 

n n 
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co r-l 

(2.15) I Elvr f«l-Ar ) IT AkR
k

) I <+00. 
r=l k=O 

Then A is an optimal allocation. 

Remark 1. If for any y:;:.O, there exists a constant K<oo such that fey) ~ 
r-l 

K(l+y) and E[ I V
r

(l+ IT R
k

)] <+co, the assumption of the Theorem 2.3 holds. 
r=l k=O 

Remark 2. (2.15) always holds if 1=~0. 

Remark 3. The assumption of the Theorem 2.3 holds, if 

co r-l 
(2.16) lim sup E[ L Vr f«l-A r ) IT AkRk)]=O. 

n+oo A£D* r=n+l k=O 

Proof: As {W (AO, ••• ,A )} is a martingale, for any n:;:O 
n n 

(2.17) E[W (liO, ••• ,A )]. 
n n 

Accordingly, 

(2.18) Hm E [w (AO, •.• ,A )]. 
n n 

11"+00 

Now, for any A£D*, from Lemma 2.2 and directed upwards property, 

r-l 
(2.19) sup E[ L Vr f«l-.I!r) IT AkRk )]. 

A£D* r=l k=O 

7 

That is, the left-hand-side of the equation (2.18) represents the sup of the 

sum of the expected utilities. On the other side, from Definition 2.2, (2.15), 

the assumption of Theorem 2.3, and directed upwards property, for any n~O, 

n r-1 
E[W (AO, ... ,A)] n n E[ l. Vr f«l-Ar ) IT AkRk )] 

r=l k=O 

r-1 
+ sup 

A£D* 

Ak=Ak(O~k::n) 

E[ L V/«l-Ar ) IT AkRk )] 
r=n+1 k=O 

(2.20) 

(frOIL Lemma 2.2) 

n r-1 
~ E[ I V f«l-A ) IT AkRk)]+a • 

r=l r r k=O n 

Hence, from Hm a =0, (2.15), (2.18) and (2.19), Theorem 2.3 ~s 
n 

n-+oo 
proved. 

Q.E.D. 
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8 T. Nitta 

3. Kennedy's Model 

Kennedy has cleared the composition of an optimal allocation [5] (We call 

the model Kennedy's model). Here, we give another proof for the fact on an 

optimal allocation in Kennedy's model by means of Theorem 2.3. 

Kennedy's model and the model in section 2 are in fact the same one except 

for a utility function which is f(y)=y1/p in Kennedy's model, where p>l. 

(note that it is a nonnegative and concave function) The definitions of D, 

Dn' 0, On are the same as the ones in section 2. The decision maker with a 

concave utility function is called risk averse ([2], [7]). 

(3.1) 

(3.2) 

(3.3) 

The assumption in Kennedy's model is as follows: 

r-1 
E [{ I U;( IT R

k
)Q/P}l/Q]<+oo, where Q=p/(p-1). 

r=l k=O 

For any n~O, define 

W 
n 

r-1 
ess sup E[ I U ((l-A ) IT AkR

k
) l/P IF ], 

A£D r=n+1 r r k=O n 
n 

T = min{n~OIE[W 1 IF ] n+ n O} • 

{W } satisfies a dynamic programming equation which is a special form of 
n 

Theorem 2.1 (we will discuss about it in section 4), and is a supermartingale 

([5]). We also note that Wn represents the maximum conditional expected 

utility at n if no consumption takes place before time n+1. 

We can find the properties on {w
n

} in Lemma 3.1. They can easily be 

proved. 

Lemma 3.1. For any n~O, E[W
n

+1 IFn] = 0 on {Tsn} and Wn>O on {T>n}. 

The following Theorem 3.1 is the result given by Kennedy [5]. 

Here, we can prove it by using Theorem 2.3. 

(3.4) 

Theorem 3.1. An optimal allocation Jli ;n>O} is as follows: n -

(E[W 1 IF ]/w )qI{T>r} for any r~O 
r+ n r 

li = {li ;n~O}. 
n 

where Wn and T are defined by (3.2) and (3.3), respectively. 

Remark: The composition of an optimal allocation in Kennedy's model is 

similar to the one in Beckmann [1] which is solved explicitly. 
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Proof: It is easy to see the assumption (0 of Theorem 2.3 and (2.15) 

We show that {W (AO, ••• ,A )} is a martingale in the following descrip-
n n 

hold. 

tions. (1) It is trivial that {w (AO, ••. ,A )} is an adapted process. (2) From 
n n 

(3.1) we have Elw (AO, ••• ,A ) 1<+00 for any n~O. (3) For any n~O, from Theorem 
n n 

2.1, 

E[W l(AO, ••• ,A ,A l)IF] n+ n n+ n 

n 
+ ( IT A ) 1 /p 

k=O k 

n 
ess sup {E[U l IF ]( IT R

k
)l/P(l-A )l/p 

n+ n k=O n+l 
O:O;An +1 :0;1 

(3.5) + A 
1 

/Pl E [w 1 IF]} 
n+ n+ n 

+ (~A )l/P{E[U l1F]( ~ R
k
)l/P (l-A l)l/P 

k=O k n+ n k=O n+ 

+ Al /Pl E [w 1 IF]} 
n+ n+ n 

n+1 1'-1 n+l 
= E[ L U

r
«l-A

r
) IT AkR

k
) l/p + ( IT A

k
) l/Pw +1 IF ]. 

r=l k=O k=O n n 

The third equality follows from Lemma 3. 'I and the fact that if we let 

h(x)=a(1-x)1/p+bx 1 / p (a.b~O;O:s;x:;:l), where q=p/(p-1), max h(x)=h(bq/(aq+bq » , 
n O<x<l 

and W q=(E[U l 1F ]( IT R
k

) l/p)q + (E[W ,IF ])q for all n~O (See the remark 
n n+ n k=O n+ 1 n 

of Proposition 4.1). On the other hand, for any n~O 

(3.6) 
n+l r-l n+l 
L U «I-A) IT A R )l/p+( IT A )l/pw 

r=l r r k=O k k k=O k n+l 

Hence from (3.5) and (3.6), for any n20, 

W (AO, ••• ,A )=E[W l(AO,···.A.A l)IF]. n n n+ n n+ n 
Consequently. {w (AO, ••• ,A )} is a martingale. Therefore A 1S an optimal 

n n 
allocation by Theorem 2.3. Q.E.D. 
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4. A Model with a Convex Utility Function 

In section 2 we explored the composition of an optimal allocation. 

Hence we can see more definitely the composition of the model having a special 

convex utility function. 

The model in this section and the Kennedy's model are indeed the same one 

except for a utility function which is f(y)=yP in this section, where p~1. 

(Note that it is nonnegative and convex.) A decision maker having a convex 

utility function is called a risk taker ([2], [7]). The definitions of D, Dn' 

0, On are the same those mentioned in section 2. 

(4.1) 

(4.2) 

Throughout this section, we make the following assumptions: 

r-1 
E[( I u q( IT R )pq) 1/q ]<00, where q=p/(p-1) 

r=1 r k=O k 

00 r-1 
E[( I U~( IT R

k
)S)l/S]<oo, where S>l 

r=1 k=O 

We will explain the composition of an optimal allocation. 

(if p>1) 

(ifp=l). 

Though (2.9) is similar to the dynamic programming equation established 

Ln Striebel [8]. we can transform it into the form of dynamic programming 

equation established in Kennedy [5] by means of Proposition 4.1. 

(4.3) 

Proposition 4.1. Define for any n~O 

W 
n 

00 r-1 
ess sup E[ I u «1-A ) IT AkRk)PIF ]. 

AE:D r=n+1 r n k=O n 
n 

Then for any n~O we have 

(4.4) 

W 
n 

n 
ess sup {E[U 11F]( IT R

k
)P(l-A l)P+E [W 11F ]AP 1} 

n+ n k=O n+ n+ n n+ 
O:'>An +1=>l 

n 
max {E [u 1 IF] ( IT R

k
) P, E [w 1 IF] }. 

n+ n k=O n+ n 

Remark: As the proof the first equality in (4.4) is independent of the 

value of p, we see t,hat {w
n

} in Kennedy's model also satisfies the dynamic 

programming equation in the same type as the first equality in (4.4). 

Proof: From Theorem 2.1, for any n~O, AE:D, (2.9) holds. 

Hence for any n~O 
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W (1 •...• 1) = ess sup 
n A'ED 

E [w 1 (1 ••••• 1 .A I 1 ) / F ] n+ n+ n 

(4.5) A' k =1 (O:sk:sn) 

n 

ess sup {E[U l/F]( IT R
k

)P(l-A l)P+E[W l/F ]AP 1}. 
O A 1 n+ n k=O n+ n+ n n+ 

:0 n+l:O 

Here for any n~O 

(4.6) W (1, ... ,1) = W • n n 

Hence from (4.5) and (4.6). we obtain the first equality in (4.4). 

Maximizing the second expression in (4.4) on A
n

+
1

• we have the second equality 

(4.4) . Q.E.D. 

From Theorem 2.2. for any AED, {W (AO •••• ,A )} is a supermartinga1e. 
n n 

But we find that {W
n

} is also a supermartinga1e by means of the following 

Proposition 4.2. 

Proposition 4.2. Define W in (4.3). 
n 

Then {W ;n~O} is a supermartingale 
n 

with respect to {F ;n~O}. 
n 

Proof: It is trivial that (1) {W
n

:· is an adapted process and (2) E [W~]>-oo 

for any n~O. (3) From Proposition 4.1. for any n~O. 

n 
(4.7) W = max {E [u 1 / F ]( IT R

k
) p. E [w 1 IF]} > E [w 1 IF] . n n+ n k=O n+ n - n+ n 

Q.E.D. 

In the following Theorem 4.1 we explain the composition of an optimal 

allocation, utilizing Theorem 2.3. 

(4.8) 

(4.9) 

Theorem 4.1. Define W in (4.3) and 
n 

n 

o = min{n~OIE[Un+lIFn]( IT Rk)P ~ E[Wn+1IFn]}. 
k=O 

AO 1 '1 • ../ 

; •. ;:J. ..• <~ 

A r+l I{o>r} for any r~O 

A {A ;n~O}. n 

Then AED is an optimal allocation and the optimal value is 

o 
(4.10) E[U (IT R )PI{O<O<+oo}]. 

0+1 k=O k - . 

Proof: It is trivial that AED. And it is obvious that the assumption 

(i) of Theorem 2.3 and (2.15) hold. We shall show in the following descriptions 
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that {W (AO, ••• ,A )} is a martingale. (1) It is trivial that {W (AO, ••• ,A )} 
n n n n 

is an adapted process. (2) It follows from (4.1) and (4.2) that 

EIwn(AO, ... ,A
n

) I <ex> for any n:;:.O. (3) For any n::O, from (2.8), (2.9) and (4.4), 

W (AO"" ,A ) = n n 

(4.11) 

ess sup 
AtD* 

Ak=Ak(OSksn) 

n r-1 
I Ur «l-Ar ) IT AkRk)P 

r=l k=O 
n n 

+ ( IT Ak)Pmax{E[U 1IF]( IT Rk)P,E[W 11F]) 
k=O n+ n k=O n+ n 

+ AP 1 E [w 1 IF]} n+ n+ n 

E [W 1 (AO' ••• ,A ,A 1) IF]} n+ n n+ n 

n 

where the fourth equality derives from the fact An +1=1, E[Un +1 IFn](k~oRk)P 

< E[Wn+1IFn] on {o>n} and An +1=O, E[Un+1IFn] ? E[Wn+1IFn] on {o=n} and there 

exists lsksn such that Ak=O on {o<n}. Hence {Wn(AO •••• ,A
n
)} is a martingale. 

Therefore A is an optimal allocation by means of Theorem 2.3. Q.E.D. 

Intuitively the composition of the optimal allocation is as follows: 

no allocation for consumption takes place before time 0 and we allocate the 

whole resources for consumption at the random time o. The meaning of 0 ~s 
n 

as follows: the conditional expected utility at n is E[U 1 IF ]( IT Rk)P, if we 
n+ n k=O 

allocate the whole resources for production before n and allocate the whole 

resources for consumption at n. And the maximum conditional expected utility 

at n is E[W 1 IF ], if we allocate the whole resources for production before 
n+ n 

n+1. That is, 0 is the first time when the former exceeds or equals the latter. 

In other words, Theorem 4.1 tells us that compare the conditional expected 

utility obtained by allocating the whole resources for consumption with the 

maximum conditional expected utility obtained by allocating the whole resourceS 

for production, and allocate the whole resources for the profitable side. 

Thus the optimal allocation accurately indicates that the decision maker with 

a convex utility function is speculative. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Stochastic Resource Allocation Model 13 

Below is an example of this model. Assume that a man bought some shares 

at time O. He can sell it gradually and do at a single stroke. Here, {Rn;n~O} 

represents that shares fluctuate in price. That is, Rn>l represents a rise 

and R <1 a fall and R =1 no fluctuation for all n~O. The model in this section 
n n 

corresponds to the problem that the decision maker with the utility function 

yP (p;::1) decides the allocation to obtain the maximum expected utilities. 

The decision maker should sell it by one effort in accordance with Theorem 4.1. 

On the other hand, the utility funccion in the Kennedy's model is concave 

and the optimal allocation is as follows: resource is fittingly allocated for 

consumption and production at all time. The optimal allocation exactly 

indicates the attitude of the decision maker with a concave utility function 

is steady. 

5. A Model with a Logarithmic Utility Function 

In this section we explicitly obtain an optimal allocation for the model 

with a logarithmic utility function by using Theorem 2.3. 

The model in this section and Kennedy's model are almost the same. The 
n-l 

different respects are as follows: (I) u =S a.s. for any n>O, where S is a 
n -

discount factor such that O<S<l. (2) The utility function is f(y)=log y for 
e 

y>O and f(y)=-oo for y=O (3) For any n;::O, Rn>O a.s. (4) {Rn;n~1} is an LLd. 

process. The definitions of D, Dn' 0, ° are the same those mentioned in 
Il 

section 2. 

Definition 5.1. For any AED, define 

~ r-l r-l 
E[ L S f(C 1- A

r ) IT AkR
k
)]. 

r=l k=O 
(5.1) 

Remark: ~(A) represents the sum of the expected utilities that we have 

obtained by using AED. 

The following assumptions will be made throughout this section: 

(5.2) b<oo. 

To obtain an optimal allocation, we first divide D into DO and Dl, where 

(5.3) {AEDiO<An+l<l a.s. for any n>O}, 

(5.4) 
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Then it is obvious that ~(A)=_oo for any A8Dl. Accordingly, in this section D* 

in (2.7) is as follows: 

o 00 r-l r-l 
D* = {A8D IE[ I S log«l-A) 1I AkRk)]>-oo}. 

r=l r k=O 
(5.5) 

It is evidently in D*, if the optimal allocation exists. In the following 

Theorem 5.1 we explicitly obtain an optimal allocation by means of Theorem 2.3. 

Theorem 5.1. Suppose that 

(5.6) for any n?l, 

where S is the discount factor with O<S<l. 

Then A*gD* is an optimal allocation and the optimal value ~s 

(5.7) 
2 2 

(log(l-S»/(l-S)+(SlogS)/(l-S) +cS/(l-S) . 

Proof: It is trivial that A*gD*. It is easy to see that the assumption 

(i), (iii) of Theorem 2.3 hold. For any n?O, from (2.8) and (2.9) 

W (A
O
*"" ,A*) 

n n 

(5.8) 

E [w 1 (AO' ••• ,A ,A 1) IF] n+ n n+ n 

n+l r-l 
~ E[ I sr-l log «l_S)Sr-l 1I R

k
) + 

r=l k=O 

I sr-l logSn+l 

r=n+2 

00 r-l _ r-1 _ r-1 
E[ I S log«l-Ar ) IT Ak 1I R

k
) + ess sup 

0<An+2 <1 

0<An +
3

<1 

r=n+2 k=n+2 k=O 

E[W 1 (AO*,···,A*,A* l)IF]. n+ n n+ n 

The inequality follows from the fact that max g(x)=g(b/(a+b», if g(x)= 
O<x<l 

a'log(l-x)+b'log(x), where O<x<l, a.b>O. On the other hand, from Theorem 2.2 

{W (AO*, ••• ,A*)} is a supermartingale. Accordingly, we have for any n?O 
n n 

(5.9) W (AO*, •.• ,A*) = E[W 1(AO*,···.A*,A* l)IF]. n n n+ n n+ n 
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Consequently, {W (AO*, ... ,A*)} is a martingale. Therefore, from Theorem 2.3, 
n n 

A* is an optimal allocation. Q.E.D. 
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