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Abstract This note gives a characterization of the universal pair of bases of a pair of polymatroids as the nearest 

pair of bases with respect to a class of pseudo·distances including the Kullback-Leibler divergence. 

N. Megiddo considered the lexico-optimal flow problem in a multiterminal network N = (V, A, c; S+, S-) 

(V: vertex set, A: arc set, c: capacity, S+: supply (source) vertices, S-: demand (sink) vertices), which is to find a 

maximal flow such that the supply flow (s+(v) I v E S+) [re,p., the demand flow (s-(v)lv E S-) 1 is as proportional 

as possible to a given weight vector. This problem is treatt,d by S. Fujishige as a special case of the lexico-optimal 

base problem for a single polymatroid. 

This paper considers the problem of finding a maximal flow such that the supply flow s+ and the demand flow 

s- are as "near" as possible (where a one-to-one correspondence between S+ and S- is assumed to be given), and 

generalizes it to the problem of finding a "nearest" pair of bases of a pair of polymatroids. It is shown that the 

"nearest" pair coincides with the universal pair if either of the following criteria is adopted. 

(1) The {-divergence (a generalization of the Kullback-Leibler divergence) between the bases should be 

minimized; 

(2) The vector consisting of the ratios of the corresponding components of the bases should be lexico­

graphically maximized. 

1. Introduction 

The lexico-optimal flow problem in a multi terminal network considered by N. Megiddo 

[6] may be described as follows. Let N = (V, A., Cj S+, S-) be a capacitated multiterminal 

network with vertex set V, arc set A, nonnegative capacity C E (R+ U {O})A (where R+ 

denotes the set of positive reals), set of sources S+ (=I- 0), and set of sinks S- (=I- 0), where 

S+ U S- ~ V and S+ n S- = 0. A vector r.p E RA is a flow in N if 

0:::; r.p(a) :::; c(a) (a EA), 
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566 K. Murota 

L <pea) - L <pea) = 0 (V E V - (s+ u S-», 
aE6+v aE6-v 

s+(v) == L <pea) - L <p(a):::: 0 (V E s+), 
aE6+v aE6-v 

where 8+v (resp. 8-v) is the set of all arcs having v as their initial (resp. terminal) vertex. 

For a nonnegative vector x E (R+ U {O})E and a positive vector y E R~ (E: finite 

set) in general, we denote by w(x, y) the IEI-tuple of numbers x(e)/y(e) (e E E) arranged 

in order of increasing magnitude. The lexico-optimal flow problem with respect to given 

positive weight vectors w+ E': Rr and w- E Rf is then to find a maximal flow <p such 

that both w(s+,w+) and w(s-,w-) are lexicographically largest possible. (The case of 

w+( v) = 1 (v E S+) and w-( v) = 1 (v E S-) is treated in [6].) This problem is generalized 

by S. Fujishige [4] to the lexico-optimal base problem for a polymatroid and an efficient 

algorithm is given in [4]. 

Put 

{ 

-logt 

faCt) = 1_4a2 (1 - t!¥-) 
tlogt 

(a = -1); 

(-1 < a < 1); 

(a = 1) 

and for positive vectors x, y E R~ we define 

(1.1) ( 
y( e») 

Da(x,y) = L x(e) fa -( ) . 
eEE x e 

When x(E) = y(E) = 1, we may regard x and yas probability distributions on E, and then 

Da(x, y) is called the a-divergence or the Chernoff distance of degree a; D-l agrees with 

the Kullback-Leibler divergence and Do with the Hellinger distance [1]. As a generalization 

of (1.1) we consider 

(1.2) D(x,y) = L x(e)f(y«e») 
eEE X e 

with f( t) being smooth and strictly convex for t > 0, and adopt D as a distance measure. 

When x(E) = y(E) = 1, D(x, y) is called the f-divergence [2]. 

The problems treated here are polymatroidal generalizations of the following network­

flow problems for N, where we further assume that a one-to-one correspondence is given 

between S+ and S-. 

Problem N1: Find a maximal flow <p in N such that the supply vector s+ and the 

demand vector s- are as close as possible in the sense that D( s+, s-) is smallest; 

Problem N2: Find a maximal flow <p in N such that the supply vector s+ and the 

demand vector s- are as close as possible in the sense that w(s+,s-) is largest. 

The polymatroidal generalizations are as follows. Suppose we are given a pair of 

polymatroids (E, pt) and (E, P2) defined on the same ground set E with respective rank 

functions PI and P2; the base polyhedra will be denoted by B(Pl) and B(P2). 
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Problem Ml: Minimize D(x, y) subject to x E B(Pl), yE B(P2); 

Problem M2: Maximize w(x,y) subject to x E B(P1),Y E B(P2)' 
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We call (x, y) a nearest pair with respect to D if it is a solution to Ml, and a lexico-optimal 

pair if it is a solution to M2. 

This note shows that the solution sets to the two problems coincide, and that they 

agree with the set of universal pairs (see §2). 

2. Result 

We shall largely follow the notation of [4]. For a finite set E, vectors x, y E RE and 

S ~ E in general, x(S) will mean EeES x(e) and x A y is a vector z E RE such that 

z(e) = min(x(e),y(e) for e E E. For positive vectors X,y E R~ let Cl < C2 < ... < cp be 

the distinct numbers among (x( e)/y( e)le E E) and put Sk = Sk(X, y) = {e E Elx( e)/y(e) :::; 

q} (k = 1, ... ,p); we set Co = -00, Cp+1 = +00, So(x, y) = 0. 
For i = 1,2, the set of independent vectors of polymatroid (E, Pi) is denoted by P(Pi), 

whereas the set of bases, i.e., the base polyhedron, is by Bi = B(Pi); depi(x, e) will denote 

the dependence function of (E, Pi). The polymatroid intersection problem for (E, Pi) (i = 

1,2) is to find a vector x E P(P1) n P(P2) that maximizes x(E). A pair of bases x E B(p!) 

and y E B(P2) is called a universal pair of bases if (1 - 8)x A (1 + 8)y is a solution to the 

polymatroid intersection problem for (E, (1-8)P1) and (E, (1 +8)p2) for all 8 (-1 < 8 < 1) 

[9], [10], [11]. For each 8 

L(8) == {S ~ EI~(S; 8) :::; ~(T; 8), VT ~ E} 

constitutes a sublattice of 2E , where 

Furthermore, 

Lal\ == U L(8) 
-1<//<1 

is also a sublattice of 2E ([5], [9], [10]). 
The following theorem characterizes the solution to problems Ml and M2. The equiv­

alence (a) ~ (b) is well known; the equivalence (f) ~ (g) is established in [9], [10]; 
and the implicat.ion (f) ::::} (d) is mentioned in [11] without proof. 

Theorem. Assume B(Pl) C R~ and B(P2) C R~, where R+ denotes the set of 

positive reals. For x E B(Pl) and y E B(P2) the following seven conditions are equivalent. 

(a) 

dep1(x, e) ~ Sk(X, y) (Ve E Sk(X, y); k = 1, ... ,p), 

deP2(y, e) ~ E - Sk(X, y) (Ve E E - Sk(X,y); k = 1, ... ,p). 
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(b) 

X(Sk(X,y)) = Pl(Sk(X,y)) (k = 1, .. . ,p), 

y(E - Sk(X, y)) = P2(E - Sk(X, y)) (k = 1, ... , p). 

(c) x is the lexico-optimal base with respect to y (in the sense of [4]), and y is the lexico­

optimal base with respect to x. 

( d) (x, y) is a lexico-optimal pair. 

(e) (x, y) is a nearest pair with respect to D. 

(f) (x, y) is a universal pair. 

(g) 

x(S) = Pl(S) (VS E Lau), 

y(E - S) = P2(E - S) (V SE LaU). 

Proof: Let Xe (E RE) be such that Xe( e) = 1 and Xe( e') = 0 for e' =F e. 

(a) -<=} (b): The equivalence of (a) and (b) is well known; see [3),[4). 

(b) -<=} (c): See [4). 

(d) =} (a): If 3 e E Sk, 3 e' E dePl(x, e) - Sk, then x' == x + d(Xe - Xe') belongs to Bl 
for some d > 0 and w( x', y) > w( x, y). This establishes the first assertion of ( a). Similarly 

for the second. 

(b) =} (d): Put To = 0,Tk = Sk(X,y) - Sk-l(X,y) (k = 1, ... ,p) and let (x,y) be a 

lexico-optimal pair. We shall show by induction on k = 0, ... ,p that 

x(e)/y(e) = x(e)/y(e) (e E Tk). 

This is trivially true for k = o. 
Suppose that 

x(e)/y(e) = x(e)/y(e) (e E Sk-l). 

Since w(x, y) ~ w(x, y), we must have 

(2.1 ) x(e)/y(e) = Ck ~ x(e)/y(e) (e E Tk). 

From this follows that 

(2.2) 

On the other hand, the assumption on (x, y) and the optimality of (x, y) together yield 

X(Tk) = X(Tk)(= Pl(Sk) - Pl(Sk-l», 

y(Tk) = y(Tk) (= P2(E - Sk-l) - P2(E - Sk», 

where the established implication (d) =} (b) is used. Substituting these relations into (2.2) 

and noting the fact Ck = X(Tk)/y(Tk) we obtain 
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This shows that (2.2) and (2.1) hold with equalities. 

Ca) {=::} Ce): Put 

(2.3) g(u, v) = uf(v/u), 

which is convex in (u, v) E R! on account of the convexity of j and has the derivatives 

g11. == 8g / 8u, gv == 8g / 8v given as follows: 

(2.4) gv = f'(~). 

From these expressions and the strict convexity of j, we see that 

(2.5) 
, , x(e') x(e) 

g11.(e):5 g11.(e) {=::} gv(e) ~ 9v(e) {=::} y(e') :5 y(e)' 

where g11.(e) == g11.(x(e),y(e)) and gv(e) == gv(x(e),y(e)). Namely, (a) is equivalent to (2.6) 

below: 

(2.6a) g11.(e'):5 g11.(e) (e' E depI(x,e)), 

(2.6b) 

Suppose (x, y) minimizes D(x, y). Then we must have (2.6), since 

D(x,y) = L g(x(e),y(e)). 
eEE 

Conversely suppose (a) (and hence (2.6)) holds. Let (x,y)(x E B},y E B2) give the 

minimum of D(x,y). Since x,x E B}, there exist dI(e",e') ~ O(e' E depI(x,e")) (see [3]) 

such that 

(where the summation is taken over all pairs (e", e') with the indicated relation), i.e., 

Similarly there exist d2( e" , e') ~ 0 (e' E deP2(y, e")) such that 

These relations, eombined with the convexity of g( u, v), yield 

g( e) ~ g( e) + g11. ( e ) [ L dICe, e') - L dI(e", e)] 
e':e'EdePl(x,e) e":eEdep, (x,e") 

+ gv(e)[ L d2(e, e') - L d2(e", e)], 
e':e'EdeP2(y,e) e":eEdep,.,(y,e") 
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where g( e) == g( x( e), y( e» and g( e) == g( x( e), y( e». Taking the sum of the above expres­

sions over e E E, we obtain 

D(x, y) - D(x, y) 

> L [g,,(e) - g,,(e')]dI(e,e') + L [g.,(e') - g.,(e)]d2(e', e), 

which is nonnegative by (2.6). (The summations are taken over all pairs (e, e') with the 

indicated relations.) 

(b) {:::=} (f): By choosing 8 = (CA: - l)/(Ck + 1) we can easily show that (f) implies 

(b). Conversely suppose (b) holds. For any 8 there exists k (0 :5 k :5 p) such that 

Ck :5 (1 + 8)/(1 - 8) < CHI' The relation 

[(1 - 8)x /\ (1 + 8)y](E) = (1 - 8)X(Sk) + (1 + 8)y(E - Sk) 

= (1 - 8)PI(Sk) + (1 + 8)P2(E - Sk) 

implies (f) when combined with the well-known minimax relation for polymatroid inter­

section problem. See [9], [10] for further details. 

(f) {:::=} (g): See [9], [10]. 0 

3. Remarks 

Remark 1: The theorem implies that the problems Ml and M2 can be solved effi­

ciently by utilizing the algorithm of [9J, [1OJ designed for the universal pair. 

Remark 2: The theorem does not apply to integer versions of the problems Ml and 

M2 for integral polymatroids. 

Remark 3: The theorem reveals that the nearest pair with respect to DOt for a 

particular value of a is universally nearest for all a. 

Remark 4: We have observed that 9 of the form (2.3) with strictly convex f enjoys 

the crucial property (2.5). The converse is also true as follows, which would justify our 

assumption (1.2) on the form of D. Suppose g( u, v) is a smooth function having the 

property (2.5). Then there are smooth functions, say, <pet) and t/J(t) defined for t > 0 such 

that 

g,,(u,v) = <p(v/u), <p'(t):5 O(t > 0), 

g.,(u,v) = t/J(v/u), t/J'(t) ~ O(t > 0). 

Putting G(r,8) = g(rcos8,rsin8) we see that both aG/ar and (1/r)aG/a8 are indepen­

dent of r. This implies that 

G(r,8) = rH(8) + C 

with a function H(8) and a constant c, or equivalently, 

g(u,v) = VU2 + v2 h(v/u) + C 
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with a function het) and a constant c. We see that g(u, v) can be written in the form (2.3) 

by putting J(t) == v'f+t2'" het) and assuming c = 0 (without loss of generality since x(E) 

is constant for x E Bl). Then the convexity of J(t) follows from (2.4) and (2.5). 

Remark 5: In §1, we have mentioned a network N = (V,A,c;S+,S-) with a one­

to-one correspondence between S+ and S-. For N we may think of the following two 

optimization problems: 

(PI) Maximize the total amount of flow s+(S+)( = s-(S-»; 

(P2) Minimize (lexicographically) w(s+,s-) . 

If we consider (P2) among the solutions to (PI), we are led to the problem treated 

in this paper. On the other hand, if we consider (PI) among the solutions to (P2), we 

are led to the problem of maximizing the total amount of a flow subject to s+ = s-; the 

maximum value is known to be equal to the maximum amount of a flow in the product 

(i.e., the cascade connection) of many copies of N (see [7], Theorem 4.3 of [8]). 
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