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We present a network simplex method for the maximum balanced flow problem, i.e., the problem of 

fmding a maximum flow in a source·to·sink network such that each arc-flow value does not exceed a fIxed propor­

tion of the total flow value from the source to the sink. We generalize the notion of strong feasibility in the network 

simplex method for the maximum flow problem to give a finiteness proof for the new algorithm. We also consider 

the maximum balanced integral flow problem, and show that the problem can be solved in polynomial-time for a 

speciai case when the balancing rate function is constant. 

1. Introduction 

A flow in a source-to-sink network is called balanced if each arc-flow value dOllS not 

exceed a fixed proportion of the total flow value from the source to the sink. The maximum 

balanced flow problem is to find a balanced flow with maximum total flow value from the 

source to the sink. This problem was introduced by M. Minoux [8J, who mentions an 

application in the reliability consideration of communication networks. In a telephone 

network between two cities, if we consider the telephone routing as a flow and assign a 

balanced flow in the network, it is guaranteed that at most the fixed proportion of the total 

flow value from the source to the sink is blocked when some connection line breaks down. 

Recently, U. Zimmermann [10] has considered the maximum balanced flow problem with 

submodular constraints and A. Nakayama [9] has proposed a polynomial-time algorithm 

for this problem with a constant balancing rate function. 

On the other hand, T. Ichimori, H. Ishii and T. Nishida [6] considered the weighted 

minimax flow problem. S. Fujishige, A. Nakayama and W.-T. Cui [5] have shown that the 

weighted minimax flow problem is equivalent to the maximum balanced flow problem, and 

the complexity of Zimmermann's algorithm [10] is the same as that of Ichimori, Ishii and 
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Nishida's [6J. 

In spite of thirty years or more research on network flow algorithms, most of the solu­

tion method in use is still the simplex method, appropriately specialized and implemented 

[7J. It has been established (see, for example [lJ, [3]) that simplex-type procedures are very 

efficient in practice for solving ordinary and generalized network flow problems. Its major 

deficiency is that little is known about its theoretical complexity. The main purpose of this 

paper is to develop a variant of the network simplex algorithm for the maximum balanced 

flow problem which operates combinatorially on a graph. In particular, the 'strongly con­

vergent' pivot rule developed by W. H. Cunningham [lJ for the maximum flow problem is 

generalized to the maximum balanced flow problem so that a simple pivoting rule ensures 

the finiteness of the algorithm. 

The above mentioned methods all require arc-flows to have nonnegative real values. 

Until now, no polynomial algorithm is known for solving the corresponding maximum 

balanced integral flow problem with real balancing rate functions, and hence Zimmermann 

[101 conjectures that the problem is NP-hard. In Section 5, we show that the maximum 

balanced integral flow problem can be solved in polynomial-time for a special case when 

the balancing rate function is a constant function. 

2. The Maximum Balanced Flow Problem 

Let G = (V, A) denote a connected directed graph with a vertex set V and an arc set 

A, and I and R+, respectively, denote the sets of integers and of nonnegative reals. Given 

a capacity function c : A --+ R+, a balancing rate function 0: : A --+ R+ and a function 

{3: A --+ R+, consider the source-to-sink network N = (G = (V,A),c,o:,{3,s,t) where sand 

t are, respectively, the source and the sink of G. Let ao = (t, s) f/: A be the arc added to 

the underlying graph G, and D be the vertex-arc incidence matrix of Go = (V, A U {ao}). 

Then the maximum balanced flow problem is formulated as the following LP problem (P): 

(P) Maximize ~(ao) 

(2.1) subject to D~=O, 

(2.2) o ~ ~(a) ~ c(a) (a EA), 

(2.3) ~(a) ~ o:(a)~(ao) + (3(a) (a EA). 

Without loss of generality, assume that (3(a) ~ c(a) (a E A) and if o:(a) = 0 then (3(a) = 

c(a). A function ~ : A -+ R satisfying (2.1) and (2.2) is caIled a flow, and a flow ~ satisfying 

(2.3) is called a balanced flow. The flow value of ~ is ~(ao). A maximum balanced flow is 

a balanced flow ~ in N of maximum flow value. Note that ~ = 0 is a balanced flow in N. 

Let p(v) be the dual variable identified with the equation corresponding to vertex v in 

(2.1), and g(a) and y(a) be the dual variables identified with the capacity constraint (2.2) 
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and balancing constraint (2.3) on arc a, respectively. Then the dual problem (DP) of (P) 
can be written as follows: 

(2.4) 

(2.5) 

(2.6) 

(DP) Minimize L c(a)g(a) + L ,B(a)y(a) 
aEA aEA 

subject to g(a) + y(a) + p(a+a) - p(a-a) 2: ° 
p(t) - p(s) - 2: a:(a)y(a) 2: 1, 

aEA 

g(a), y(a) 2: 0 (a EA), 

(a EA), 

where a+ a and a-a represent the initial and the terminal end-vertex of a, respectively. 

We introduce a parameter z 2: 0, and consider the following parametric problem (Fz ) 

for network Nz = (G = (V,A),c,a:,,B,z,s,t). 

(Fz) Maximize rp(ao) 

subject to (2.1) and (2.2), 

(2.7) rp(a) :5 a:(a)z + ,B(a) (a EA). 

Let rp*(·,z) be the maximum flow of (Fz) in N •. Then the maximum flow value rp*(ao,z) 

is a monotone non-decreasing, continuous, piecewise linear and concave function of z. The 

following lemma establishes a connection between problems (P) and (Pz ). 

Lemma 2.1. Let z* be the maximum value of z satisfying rp*(ao,z) = z. Then rp*(., z*) 
is a maximum balanced flow in network N. 0 

Let c(S) denote the capacity of an s-t cut S, where S is a subset of V such that s E 8 

and t E S := V - 8. The value of c( 8) is defined by 

(2.8) c(8) = c(.1. +(S)) = L c(a) 
aED.+(S) 

where .1.+(8) = {a E A I a+a E 8, a-a E S}. For problem (Fz) the capacity of each arc 

a E A is redefined by 

(2.9) c(a,z) = min(c(a), (x(a)z + ,B(a)) , 

and the capacity of an s-t cut 8 is denoted by c(8, z). Then, by the max-flow min-cut 

theorem [4], we have 

(2.10) rp* (ao, z) = min{ c(8, z) I 8 is an s-t cut}. 

For an s-t cut 8, let 

(2.11) z(8) = max{ z I z :5 c(8, z) }, 
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then from Lemma 2.1 and equation (2.10), we have 

(2.12) tp*(ao) = z* = min{ z(S) I S is an s-t cut}. 

The algorithm proposed in the next section is to find z* satisfying (2.12) by making use of 

the upper-bound simplex method [2, Chapters 18. and 19]. 

3. Algorithm for the Maximum Balanced Flow Problem 

3.1 Basis structure 

Using the upper-bound simplex method [2, Chapters 18 and 19], a basis B for problem 

(Pz ) is a maximal set of linearly independent column vectors of D. The variables associated 

with the columns of B are considered to be basic variables and all others are nonbasic 

variables. A basic solution results from assigning each nonbasic variable a value equal to 

its lower or upper bound. Thereupon, a unique value results for each basic variable from 

(2.1). It is well known that the set of columns of D indexed by T ~ A U {ao} is a basis for 

D if and only if T is a spanning tree of Go. Let Land U, respectively, represent the sets 

of arcs corresponding to the nonbasic variables equal to their lower and upper bounds. We 

refer to (T, L, U) as a basis .~tructure, and also call T a basis. In the following discussion, 

we always assume that T, L, U ~ A. 

An important property of a spanning tree of G is that there is a unique path from any 

vertex of G to any other using only arcs of the tree. The set T == A - T is called the cotree 

associated with T. For each a E T we define C(T, a) to be the subset of A consisting of 

arc a and the arcs of the path from a-a to a+a in T. C(T,a) is called the fundamental 

circuit associated with T and a. We partition C(T, a) into two sets C+(T, a) and C- (T, a) 

with respect to a. C+(T, a) is the set of arcs in C(T, a) with the same orientation as a in 

the cycle formed by C(T,a), and C-(T,a) = C(T, a) - C+(T,a). For each arc a E T we 

define a subset S(T, a) of V by 

(3.1) S(T, a) = {v E V I the path from t to v in T does not contain a }, 

and a subset K(T, a) of A by 

(3.2) K(T, a) = ~ +(S(T, a)) U ~ -(S(T, a)), 

where ~ - (S(T, a)) represents the set of arcs entering S(T, a). K(T, a) is called the fun­

damental cut set associated with T and a E T. If a+a E S(T,a), we define K+(T,a) = 

~+(S(T,a)) and K-(T,a) == ~ -(S(T,a)); otherwise K+(T,a) = ~ -(S(T,a)) and K-(,f, 

a) = ~+(S(T,a)). K+(T,a) is the set of arcs with the same orientation as a in K(T,a), 

and K-(T,a) = K(T,a) - K+(T,a). 
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We say that arc a is directed toward t in T if a- a E S (T, a); otherwise we say that a 
is directed away from tin T (see [1]). For spanning tree T of G, define function AT : T --+ 

{I, -I} by 

(3.3) 
if a is directed toward tinT, 
if a is directed away from tinT. 

Given a basis structure (T,L,U), let r,o(ao) = z. Then for each a E T arc flow-value 

r,o (a, z) of a is determined by 

(3.4) r,o(a, z) = { AT(a)z + c~U n K- rt, a),z) - c~U n K+(T, a), z) 
c(U n K-(T,a),z) - c(U n K+(T,a),z) 

if si S(T,a), 
otherwise. 

We call basis T a feasible basis of (P) if there exists a basis structure (T, L, U) such that 

r,o(a,z) (a ET) defined by (3.4) satisfy (2.2) and (2.3) with r,o(ao) replaced by z. Clearly, 

(T, A - T, 0) is a feasible basis structure of (P) for r,o(ao) = z = o. We denote by z(T) and 

~(T) the maximum and the minimum value of z such that T is a feasible basis of (P). 

3.2 Algorithm 

It is easy to see that, if the arc flow-value of each arc in U is maintained to be equal to 

the changing upper bound as z increases, then the arc flow-value of each basic arc cha.nges 

in a unique way as follows. Let 

(3.5) 

(3.6) 

Ua(z) = {a E U I a(a)z + f3(a) < c(a) }, 

Uc(z) = U - Ua(z), 

and for e~ch a E T let 

7](a) = {AT(a) + a(Ua(Z~ n K-(T,a)) - a(Ua(Z~ n K+(T,a)) 
(3.7) a{Ua(z) n K-(T,a)) - a(Ua(z) n K+(T,a)) 

(3.8) €(a) =f3{Ua(z) n K-(T,a)) - f3{Ua(z) n K+(T,a)) 

+ c(Uc(z) n K-rr,a)) - c(Uc(z) n K+(T,a)). 

Then arc flow-value r,o(a, z) of a E T can be written as 

(3.9) r,o(a,z) = 17(a)z + €(a). 

if si S(T,(t), 
otherwise, 

An efficient method to determine 17(a) and €(a) is given in the description of the algorithm. 

For each a E T let 

(3.10) 

(3.11) 

z(a) = max{ z 10:5 r,o(a, z) :5 c(a, z) }, 

~(a) = min{z 10:5 r,o(a,z):5 c(a,z)}, 
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(3.12a) zl(a) = {~e(a)/T/(a) if T/(a) < 0 

otherwise, 

(3.12b) z2(a) = { ~(a) - e(a))/T/(a) if T/(a) > 0 

otherwise, 

(3.12c) z3(a) = {~(a) - e(a))/(T/(a) - a(a)) if T/(a) - a(a) > 0 

otherwise, 

(3.13a) ~l(a) = { =~a)/T/(a) if T/(a) > 0 

otherwise, 

(3.13b) ~2(a) = { ~~) - e(a))/1/(a) if 1/(a) < 0 

otherwise, 

(3.13c) ~3(a) = { ~~) - e(a))/(1/(a) - a(a)) if 1/(a) - a(a) < 0 

otherwise. 

Then we have 

(3.14) z(a) = min{zl(a), z2(a), z3(a)}, 

(3.15) ~(a) = max{~l(a), ~2(a), ~3(a)} 
(3.16) z(T) = minz(a) 

aET 

(3.17) ~(T) = max{~Eap:~(a), a}. 

When z = z(T), the flow value of an arc, say aq , of T reaches either zero (its lower bound) 

or its upper bound. The simplex pivot step is performed to obtain an alternate basis 

structure which gives a new feasible basis when z = z(T). The arc aq is removed from 

the basis and an eligible nonbasic arc on K(t, aq ), say a", is selected to enter the basis. 

This process is repeated until no nonbasic arc is eligible to enter the basis, i.e., the optimal 

value z* of z in (2.12) is reached. A detailed description of the algorithm is given below. 

Step 0: Let T be a spanning tree of G not containing ao. Set z* = Oj L = A - Tj U = 0j 

e(a) = Oj 
if a E C+(T,ao) 
if a E C-(T,ao) 
otherwise 

(a EA). 

Step 1: For each a ET compute zl(a), z2(a) and z3(a) by (3.12) and for each a E Ua(z*) 
put 

a( ) _ c(a) - ,B(a) 
z a - a(a) . 

Let 

z(T) = min{ zl(a), z2(a), z3(a) }, 
aET 

za = min{za(a) I a E Ua(z*)}. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



A Network Simplex Method for Balanced Flows 557 

If z(T) ~ ZOl, go to Step 2. Otherwise go to Step 3. 

Step 2: Identify an arc aq E UOI(Z*) for which ZOl = zOl(aq ). Change 77(a) and €(a) along 

circuit C(T, aq ) by 

if a E C+(T,aq ) 

if a E C-(T,aq ) 

otherwise, 

if a E C+(T,aq ) 

if a E C-(T,aq ) 

otherwise. 

Set z* = ZOl and go to Step 1. 

Step 9: Set z* = z(T) and identify an arc aq E T for which z* = min{zl (aq ), z2(aq ), z3(aq )}. 

If z(T) = z2(aq ) (or z3(aq )), put 

(3.18) 

Otherwise put 

(3.19) 

.6. 17 ( aq) = 77 ( aq ) (or 77 ( aq) - 0: ( aq )) , 

.6.e(aq) = €(aq) - c(aq ) (or €(aq ) - ,8 (aq )) , 

Eq = (U n K-(t,aq)) U (L n K+(t,aq)). 

If Eq is empty, go to Step 4. Otherwise select an arc ae from Eq, and change 77(a) and 

€(a) along C(T, ae ) as follows: If aq E C- (T, ae ), put 

(3.20) 

(3.21 ) 

and if aq E C+(T,a), put 

(3.22) 

(3.23) 

if a E C+(T,ae ) 

if a E C-(T,ae ) 

otherwise, 

if a E C+(T,ae ) 

if a E C-(T,ae ) 

otherwise, 

if a E C+(T, ae ) 

if a E C-(T,ae ) 

otherwise, 

if a E C+(T,ae ) 

if a E C-(T,ae ) 

otherwise. 
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Remove the arc aq from tree T, take the arc ae into T, and go to Step 1. 

Step -4: The flow cp(a,z*) = 17(a)z* + e(a) (a E A) is the maximum balanced flow with the 

maximum flow value z*. Stop. 

We denote by SA the above algorithm. Let T' = (T U {ae }) - {aq } be the next basis 

generated by algorithm SA, and cp'(a,z) = 17'(a)z + e'(a) (a E A) be the flow associated 

with basis T', then cp(a,z) = cp'(a,z) at z = z(T). It follows that T' is also a feasible basis 

at z = z(T) and the value of z* is not decreased in each iteration of Step 3. Note that the 

number of iterations of Step 2 is at most m = lA I. It is clear from the following theorem 

that the algorithm generates a maximum balanced flow in finite steps if the value of z* 
strictly increases in each iteration of Step 3. 

Theorem 3.1. If Eq defined by (3.18) and (3.19) is empty, then 

(i) K(f',aq ) is an s-t cut set, 

(ii) aq is directed toward t in T if cp(aq, z(T)) = c(aq, z(T)) and is directed away from t 

in T if cp(aq, z(T)) = 0, 

(iii) z(T) is equal to the maximum balanced flow value. 

Proof: To prove (i), we suppose on the contrary that K(t, aq ) is not an s-t cut set. Then 

from (3.7) and the definition of Eq we have 17(aq) ~ 0 if z(T) = zl(aq) and 17(aq) :::; 0 if 

z(T) = z2(aq) or z3(aq). It follows from (3.12) that z(T) = 00, a contradiction. Similarly 

as the above argument, It is easy to show that (ii) is also true. 

Next, we prove (iii). Since cp(a,z) (a E A) is a balanced flow for z = z(T), we see that 

for any s-t cut S, z(T) :::; c(S, z(T)). Furthermore, from (i), (ii), (3.4) and the definitions 

of Eq and z(T) we have 

z(T) = z(S(t, aq)) = max{ z I z :::; c(S(T, aq), z)}. 

It follows from (2.12) that z* generated by algorithm SA is equal to the maximum balanced 

flow value. D 

For each v E V let p(v) == 0 if v E S(T,aq) and p(v) = >'T(aq)/~I7(aq) if v E S(T,aq). 
Then p satisfies complementary slackness together with cp(a) = 17(a)z(T) + e(a) (a E A) 
and cp(ao) = z(T). Hence the algorithm can be regarded as a primal simplex method. 

In the next section, we describe the notion of strongly feasible basis and the rule of 

removing a basic arc, and give a proof of the finiteness of the present algorithm. 

4. Strongly Feasible Bases 

To introduce the notion of strongly feasible basis and to describe the rule of removing a 

basic arc which ensures the finiteness of the algorithm, we need a few further preliminaries. 
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Let (T, L, U) be a feasible basis structure of (P), and let <p(a) = '1(a)z + e(a) be a flow 

associated with (T,L,U). IT z(a) < 00 and &(a) > -00 in (3.14) and (3.15), we define 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

_ { 7J(a) 
~7J(a) = 7J(a) - a(a) 

{ 

e(a) 
~((a) = e(a) - c(a) 

e(a) - p(a) 

{ 
7J (a) 

~'1(a) = () () - YJa-aa 

{ 

e(a) 
~{(a) = e(a) - c(a) 

e(a) - p(a) 

if z(a) = zl(a) or z2(a), 
if z(a) = z3(a), 
if z(a) = zl(a), 
if z(a) = z2(a), 
if z(a) = z3(a), 

if &(a) = &l(a) or &2(a), 
if &(a) = &3(a), 
if &(a) = &:l(a), 
if &(a) = &:2 (a) , 
if &:(a) = &:3(a). 

Note that z(a) = -~e(a)/~;j(a), &:(a) = -A{(a)/~.!l.(a). For each a E T, define an 

(n -I)-dimensional vector x(T,a) (n = IVI) by 

(4.5) if Vi E S(T,a) 
otherwiae 

(i=I,2, ... ,n-l), 

where Vl = s and v ... = t, and define n-dimensional vectors 1t(T, a) and 1l:.(T, a) by 

(4.6) 

(4.7) 

1t(T,a) = (z(a)'>'T(a)x(T,a)/~;j(a)), 

1l:.(T,a) = (&:(a)'>'T(a)x(T,a)/~!L(a)). 

Let 1t(T) be the lexicographic minimum of 1t(T, a) (a ET), and 1l:.(T) be the lexicographic 

maximum of max{1!:.(T,a),O} (a ET): 

(4.8) 

(4.9) 

1t(T) = lexmin1t(T, a), 
aET 

1l:.(T) = lex~E&f' ma.x{1!:.(T,a),O}. 

A basis structure (T, L, U) is called a strongly feasible basis structure if the following 

(i) and (ii) hold. 

(i) 1t(T) >- 1l:.(T). 
(ii) For any a ET, if YJ(a) = e(a) = 0, Le., cp(a,. z) = 0, then a is directed away from t, and 

if (1) 7](a) = a(a) and e(a) = p(a) or (2) TJ(a) = 0 and e(a) = c(a) then a is directed 

toward t in T. 

Here the symbol '>-' stands for 'lexicographically greater than'. 

We refine algorithm SA by initiating it with a strongly feasible basis structure and 

by making a specific selection of a E T in Step 3, i.e., by selecting arc aq such that 

1t(T,aq ) = 1t(T). We denote by SSA the algorithm SA with these two refinements. Let 
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To ~ A be a directed spanning tree of G with source s as its root. Here, we assume without 

loss of generality that there exists such a directed spanning tree of G. Then it is easy to 

see that (To, A - To, 0) is a strongly feasible basis structure of (P). 

Let T be a strongly feasible basis of problem (P), T' = (T U {a.,}) - {aq} be the next 

feasible basis generated by SSA, and tp(a,z) = 7J(a)z + e(a) (tp'(a,z) = 7J'(a)z + e'(a)) 
(a E A) be the flows associated with T (T'). Then we have: 

Lemma 4.1. T' is a strongly feasible basis and we have 1f(T) -< 1f(T'). 

Proof: To prove (i) in the definition of strongly feasible basis, we show that for any 

a ET', if z'(a) = z(aq), then (4.10) holds and if ~'(a) = z(aq), then (4.11) holds: 

(4.10) 
.AT,(a)x(T',a) .AT(aq)x(T,aq) 

b.f1'(a) >- b.7J(aq) , 

(4.11) 
.AT' (a)x(T', a) .AT(aq)x(T, aq) 

b.7J'(a) -< b.7J(aq) . 

Since 7J(a) = 7J'(a) and e(a) := e'(a), i.e., tp(a,z) = tp'(a,z) for each a E T - C(T,a.,), we 

consider the arcs in C(T, a.,) alone. From (3.20) ~ (3.23), we see that for each a E C(T, a.,), 
if the orientation of arc a is opposite to that of aq in C(T, a.,), then 

( 4.12) 

( 4.13) 

and if the orientation of arc a is the same as that of aq in C(T, a.,), then 

( 4.14) 

(4.15) 

We prove that (4.10) holds if z'(a) = z(aq). Without loss of generality, suppose that 

(4.16) z'(a) = ,B(a) - e'(a) . 
7J'(a) - a(a) 

Then from (4.12) and (4.14) we see that, if7J(a) = a(a), then ,B(a) = e(a), if7J(a)-a(a) > 0, 

then 

(4.17) 
_ ,B(a) - e(a) _ 
z(a) = () () = z(aq), 7Ja -aa 

and if 7J(a) - a(a) < 0, then 

(4.18) 
,B(a) - e(a) _ 

~(a) = () () = z(aq). 7Ja -aa 
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It follows from the strong feasibility of T, the definition of aq and (4.12) ...., (4.15) that 

(4.10) holds for-each a E T. Similarly as the above argument, we can prove that (4.11) 

holds if ~'(a) = z(aq ) 

Next we prove (ii) in the definition of strongly feasible basis for T'. We show that 

for any a E C(T,ae ) such that 77'(a) = o:(a) and e'(a) = ,B(a), a is directed toward t in 

T'. From (4.12) and (4.14) we have 77(a) - 0:(11) = -~77(aq) and ,B(a) - e(a) = ~E(aq) if 

the orientation of arc a is opposite to that of i'lq, and we have 77(a) - o:(a) = ~77(aq) and 

,B(a) - e(a) = -~E(aq) if the orientation of arc a is the same as that of aq.This implies 

that 

(4.19) 

Therefore, from the strong feasibility of T, the definition of aq and (4.12) ,.., (4.15), we see 

that .AT,(a)x(T',a) ~ 0, i.e., a is directed toward tin T'. Similarly, we can prove that if 

77'(a) = 0 and e'(a) = c(a), then a is directed toward t, and if 77'(a) = e'(a) = 0, then a 
is directed away from t in T'. Thus, we see that T' is also a strongly feasible basis and 

1[(T') -< 1t(T) -<it(T'). 0 

From Lemma 4.1 we have: 

Theorem 4.1. The algorithm SSA for the maximum balanced flow problem terminates 

after a finite number of steps. 0 

5. The Maximum Balanced Integral Flow Problem 

In this section, we consider the following maximum balanced integral flow problem (P) 
for network N == (G = (V,A),c,o:,,B,s,t) with integral capacity function c and integral 

function ,B. 

(5.1) 

(5.2) 

Maximize cp ( ao) 

subject to (2.1) and (2.2) 

cp(a) ~ Lo:(a)cp(ao)J + ,B(a) 

cp(a) El 

(a EA), 

(a EA), 

where L r J represents the greatest integer less than or equal to real number r. A function 

cp : A -+ I satisfying (2.1), (2.2) and (5.1) is called a balanced integral flow. 
Until now, no polynomial method is known for solving this problem, and U. Zimmer­

mann [lOJ conjectures that the problem is NP-hard. Here, we point out that the maximum 

balanced integral flow problem can be solved in polynomial time for a special case of 

o:(a) = r (a E A) for a fixed real r. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



562 W. Cui 

We consider the following two problems (P ... ) and (P ... ) for network N .... 

(5.3) 

(5.4) 

y 

o 

(Pz ) Maximize cp(ao) 

subject to (2.1), (2.2) and (5.2) 

cp(a) :5 lrzJ + ,8(a) (a EA), 

(Pz ) Maximize cp(ao) 

subject to (2.1) and (2.2) 

cp(a) :5 rz + ,8(a) 

y = cp*(ao,z} 

y = cp*(ao,z) 

Fig. 1 

(a EA). 

z 

Let cp*(·,z) and cp*(·,z) denote the maximum flow of problems (Pz ) and (P,,) in Nz, 

respectively. Then we have 

(5.5) cp*(ao,z) = cp*(ao,k/r) 

for all z E [~,k;l) (k = 0,1, ... ). For problems (P) and (Pz ), let z* be the maximum 

value of z such that cp*(ao, z) =:: z, then z* is equal to the maximum balanced integral flow 

value. It is easy to see from (5.5) that 

(5.6) z* = cp*(ao, lrz*J/r), 

where z* is defined by Lemma 2.1 (see Fig. I). Such z* can be found in O(min(m, ll/rJ)T( 
n, m)) time by Nakayama's algorithm [9J, where T(m, n) is the time required for finding 

a maximum flow in a network with n vertices and m arcs. Therefore, the maximum 
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balanced integral flow problem with a constant balancing rate function can be solved in 

O(min(m, ll/rJ)T(n,m)) time. 
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