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Abstract A stochastic production planning problem with a fmite number of planning periods is analyzed where 

cumulative demands up to each period are independent random variables with continuous probability distributions. 

In the problem, backlogging is permitted and production is restricted by its capacity. Dynamic but linear costs 

of inventory holding and backlogging, and of production with setup charge are considered. A branch·and-bound 

algorithm is developed to find an optimal plan within fmite searching steps, and its computational effectiveness is 

evaiuated. 

1. I ntroducti on 

This paper considers a production planning problem with known stochastic 

demands where the planning horizon is composed of a finite number of planning 

periods and cumulative demands up to each period have a continuous probability 

distribution. Capacity restrictions are imposed on production. and unsatis­

fied demands are backlogged. Furthermore. dynamic but linear costs of 

inventory holding and backlogging. and of production with setup charge are 

included. The production problem can then be interpreted as in a similar form 

to a stochastic programming problem with simple recourse (Ziemba [12]). In 

fact. the stochastic production problem shall be transformed to an equivalent 

deterministic problem from which an optimal solution to the original problem 

~s obtained. 

The equivalent deterministic problem has an objective function which is 

neither convex nor concave. Rather. it is a mixture of convex and concave 

functions which makes it difficult to solve the problem by using usual convex 

programming or concave programming algorithms. Therefore. this paper suggests 
532 

© 1988 The Operations Research Society of Japan



Stochastic Production Planning 

a branch-and-bound algoritlun which can determine an optimal solution to the 

deterministic problem within finite searching steps. 

533 

The branch-and-bound algoritlun is exploited based on the concept of 

convex envelope (Falk and Hoffman [5]). That is, by transforming the concave 

part of the objective function into an underestimated linear approximate, an 

~nderestimated convex objective function, so-called, convex envelope, is 

derived. The convex envelope and its associated solution space are then 

partitioned so as to constitute subproblems. Each of the subproblems leads 

to construct a sub-tree in the branch-and-bound algoritlun for which branching 

rules and bounding schemes are mechanized to make an efficient optimal solu­

tion search for the equivalent deterministic problem (and accordingly for the 

original problem) within finite steps. 

Hadley [6] has discussed a similar problem in a dynamic programming 

formulation but without incorporating any production capacity restriction. 

Nevison and Burstein [9] have treated a stochastic production problem with 

stochastic lead times of demand. They permitted inventory backloggings but 

did not consider any production capacity. Bitran and Yanasse [3] have con'­

sidered deterministic approximations to stochastic production planning problems 

where cumulative demand quanti ties are random variables and no backlogging is 

allowed. 

In section 2, the stochastic production planning problem is formulated in 

a mathematical model, and its equivalent deterministic problem is derived. 

In section 3, a branch-and-bound algoritrm is developed. In section 4, a 

convex programming algorithm is introduced for subproblems corresponding to 

each sub-tree of the branch-and-bound algoritlun. In section 5, the computa­

tional performance of the algoritlun is evaluated on various criteria by use of 

its test results on a number of numerical examples. In section 6, concluding 

remarks are presented. 

2. Model Formulation 

(i) 

(ii) 

(iii) 

(i v) 

(v) 

For the stochastic production problem, the followings are assumed; 

The cumulative demand up to each period has a known continuous proba­

bility distribution. 

Production at each period is restricted within its capacity. 

Backloggings are permitted. 

Setup charge is imposed on each production, and costs of production, 

of on-hand inventory holding, and of inventory backlogging are linear. 

Planning horizon of periods is finite. 
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With the assumptions (i)-(v), the stochastic production problem (sPp) is 

formulated as follows; 

(SPp) 

Min. 

where 

T 

x
t 

d
t 

It 

+ 
It 

-
It 

Ut 

Kt 

et 

h+ 
t 

h
t 

c5 (y) 

E [.] 

F(x) 

o :5 X t :5 Ut ' 

+ 
It = It - It ' 

+ -
x t ' It' It ~ 0 for all t=l, ... ~T, 

planning horizon, 

amount of production at period t, 

nonnegative random demand for period t, 

amount of inventory at the end of period t, 

on-hand inventory at the end of period t, 

backlogged inventory at the end of period t, 

production capacity at period t, 

setup cost at period t, 

unit production cost at period t, 

inventory holding cost per unit at period t, 

inventory backlogging cost per unit at period t, 

1 if y > 0, or 0 otherwise, 

operation of expectation. 

In the model, without loss of generality, it is assumed that the starting 

inventory IO=O. 
+ -

It and It are restated as follows; 

t 
(1) + max{O, L (x. -d .) } It 

i=l 
~ ~ 

t 
(2) It max{O, L (d.-x.)} 

i=l ~ ~ 
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+ -
Substituting It and It in (sPp) with (1) and (2), respectively, the following 

problem (SP) is obtained as an equivalent formulation of (SPp): 

(Sp) 

Min. 

(3) 

s. t. 

(4) 

t 
+ h~max{O. I (d.-x.)}]] 

i=l ~ ~ 

o ~ x
t 

~ Ut' for all t=l •...• T. 

F(x) in (3) can be rewritten 

T t 
F(x) I [{KtC(Xt)+ctxt } + E[h;max{O. I (x.-d.)} 

t=l i=l ~ ~ 
t 

+ h~max{O, I (d.-x.)}]] 
i=l ~ ~ 

Letting 

Zt = (x 1'···.xt ). 

pt(xt ) = KtC(Xt)+ctxt • and 

if follows that 

where 

F(x) = p(x) + Q(x) 

p(X) 
T 

I pt(xt ) and Q(x) 
t=l 

Let g (0) be the probability density function of the cumulative demand up 
t t 

to period t. I d .• t=l •...• T. Then an explicit expression of Q(x) is easily 
i=l ~ 

derived in terms of gt(o), 

t 

(5 ) 

I x. 
i=l ~ t t t 

(h;+h~)f ( I x·-y)gt(y)dy + h~[E( I d.)- I x.] • 
o i=l ~ i=l ~ i=l ~ 

for all t=l, ...• T. 

Y
t In (5). the term f (Yt-y)gt(y)dy represents the expected number of 

o 
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on-hand inventory at period t, which may characterize whether or not the ex­

pected inventory cost (incurred by both holding and backlogging), Qt(Zt)' at 

period t can be interpreted as a deterministic function. Since the cumulative 
t 

production up to period t, Y
t

= L x., is finitely bounded above for all t=l, 
i=l ~ 

Y
t 

... ,T, the integral f (Yt-y)gt(y)dy exists for all Y
t

, t=l, ... ,T. 
o 

Recall that in problem (SP), the objective function F(x) is decomposed 

into the production cost p(x) and the expected inventory cost Q(x). And the 

random variables d
t

, t=l, ... ,T, are related only to the function Q(x). Thus, 

by representing Q(x) in the explicit form of (5) which is not haunted by the 

random variables d
t

, t=l, ... ,T, the overall cost function F(x) takes a deter­

ministic form. This leads to the following equivalent deterministic problem 

(EDP) of (SPp). 

(EDP) 

(6) Min. F(x) = p(x) + Q(x) 

s.t. 0 ~ x
t 

~ Ut' for all t=l, ... ,T, 

where Q(x) is defined as in (5). 

If demands in each period are independent Gamma or normally distributed 

random variables, then the cumulative demands up to each period are also Gamma 

or normally distributed, respectively. Thus, from these distributions, the 

deterministic functions F(x) as required in (6) can analytically be derived 

from the well-known Gamma-Poisson relationship or by integrating by parts, 

respectively. 

3. Branch-and-Bound Algorithm 

In order to formulate a solution algorithm, it shall first be proved 

that the expected inventory cost function Q(x) is convex. Let Z denote the 

solution set of problem (EDP); 

z {x I 0 5 x t 5 Ut' t=l, ... ,T } . 

Then z is a compact convex set. 

Theorem 3.1. The expected inventory cost function Q(x) in (5) ~s convex 

for all x E Z. 
Yt 

The integral term f (Yt-y)g (y)dy in (5) can easily be shown as 
o t 

Proof: 

a convex function for all x E Z by following the procedure of Hadley ([6], 
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p .89) for all t=1, ... ,T. It follows that Q(x) is the summation of convex 

functions for all x £ z. This completes the proof. 

537 

On the other hand. the expected production cost function p(x) is observed 

as a concave function for all x £ Z, since it is the summation of concave 

functions P (x ) on Z, t=1, ... ,T. 
t t: 

Now let w(x) be a linear underestima.ting function of p(x) for all x £ z; 

T 

(7) W(x) = L Wt(xt ) 
t=1 

where 

for all x=(x1 •... ,xT) £ Z and t=1, ... ,T. 

Then, according to Falk and Hoffman [5], w(x) is a convex envelope of p(x), 

which is characterized as in the next theorem. 

Theorem 3.2. Let w(x) be defined as in (7). Then w(x) is a convex 

envelope of p(x) defined on the convex set z, which satisfies the conditions 

(i) W is a convex function defined over the convex set Z where W(x) ~ 

p(x) for all x £ Z, and 

(ii) if H is any convex function defined over Z such that 

H(x) S p(x) for all x £ z, 

then H(x) ~ W(x) for all x £ Z. 

Proof: The convexity of w(x) directly follows because w(x) is a linear 

function for all x £ Z. It also holds that 

W(x) - p(x) 
T 

L [Kt{Xt/U t - O(xt )}] ~ 0 , 
t=1 

since 0 ~ x t ~ Ut for all t=1, ... ,T. Therefore, the condition (i) ~s satis­

fied. Now, for all t=1, ... ,T, 

Moreover, pt(x
t

) is concave for all Xt' 0 ~ xt ~ Ut' Thus, it is evident that 

the linear function Wt(xt ) satisfies the result of (ii). This completes the 

proof. 

Let f(x) = W(x) + Q(x), where Q(x) is defined as in (5). From Theorem 

3.2, it can easily be verified that f(x) is a convex envelope of F(x). There­

fore, by substi.tuting f(x) for F(x) in (EDP), the following convex programming 

problem (cp) is derived: 
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(cp) 

Min. f(x) 

s.t. xe:Z 

Moreover, solutions of (EDP) and (Cp) lead to the following relationship. 

Theorem 3.3. * Let x and x be the optimal solutions of (Cp) and (EDP), 

respectively. Then, it follows that 

, * 
f(x ) $ F(x ) 

Proof: By definition, for all x e: Z, f(x) $ F(x). Therefore 

, * * f(x ) , f(x ) S F(x ) , 

* ' since x e: Z and min{f(x) Ix e: Z} = f(x ). This completes the proof. 

Now, our branch-and-bound algorithm is described. Soland [11] has 

proposed a branch-and-bound algorithm for an optimal facility location problem 

with concave costs. Recently, Erenguc and Tufekci [4] presented an extended 

branch-and-bound algorithm for a lot sizing problem with deterministic demands, 

from which our algorithm is derived similarly. 

° 1 Let the nodes of the branch-and-bound tree be denoted by N • N , .••• with 

NO representing the initial node. Each node ~ represents a subproblem with 

solution space zk defined as a subset of Z and its corresponding objective 

function ~ which is a convex envelope of F on zk. Each zk is specified as 

follows: 

that 

where 

zk = {xIL~ ~ xt ~ 0:, t=l, •.. ,T} for all k (k=0,1,2, .•. ) such 

(i) 

(ii) 

(iii) 

e: 

k and k if t e: Ak, Lt e: Ut Ut' 
k 

Lt ~ = 0, if t k e: B , and 

Lk 
t ° and 0: Ut' if t 

k 
e: J • 

{l, ..• ,T}, 

the set of pre'-specified production periods, 

the set of pre-specified non-production periods, 

k k 
I - A U B = the set of undecided periods, and 

an arbitrary small positive value provided initially so as to 

indicate each possible production setup. 
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At the k-th stage during the algoritlun, a node, say, wr is selected to 

provide a least lower bound value among a.ll current candidate nodes for further 

branching. Then at the next stage k=k+1, the tree branches from the node wr 
2k-1 2k. 2k-1 to two new nodes Nand N correspondl.ng to the solution spaces z and 

z2k, respectively, such that z2k-1 Uz 2k = zr. In the way, the algoritlun 

° 1 m generates a sequence of feasible points 1n Z, (x , x , ... , x , ... ) (m=O, 1, 

2, ... ), where xm is an optimal solution of subproblem at node~. Since xm is 

a feasible point in z, F(xm) becomes an upper bound of F(x) for subproblem at 

node ~. 

Denote by UB(~) the upper bound attained at node ~, so that UB(~) ,. 

F(xk
). Let UB

k
F 

= min{F(xi )li=O,l, ... ,k} and UB
k = xh for xh E z, where UB

k 
, x F 

F(xh
). UB

k is an upper bound on the optimal solution value of problem (EDI'), 
F 

and UB
k is the best solution of (EDP) found over nodes NO through N

k 
x 

Let LB(~) denote a lower bound of the optimal value of F defined on zk. 

It is now shown how the lower bound LB(~) is calculated. Let the convex 

envelope of F(x) associated with zk be denoted by ~(x) which satisfies 

(8) ~(x) = ~(x) + Q(x) 

where 

~(x) 
T 

L >{(xt ) and 
t=l 

~(Xt) - I Kt if t 
k 

+ CtXt , E A 

0, if t 
k and E B 

(c
t + Kt/Ut)Xt , if t 

k 
E J 

for all t=l, ... ,T. 

For k=O, let A
O and BO be null sets so that J

O = I. 

From the result of Theorem 3.3, substituting f(x) and z with ~(x) and 

zk, respectively, leads to ~(xk) $ F(X*), where 

~(xk) = min{~(x) Ix E zk} and 

F(X*) = min{F(x) Ix E zk} . 

Therefore, a lower bound of the ml.nl.mum of F(x) defined on zk is deter­

mined such that LB(~) = ~(xk), where xk solves the following subproblem 

(Cpk) at node ~; 

(cpk) 

Min. ~(x) 

s. t. 
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Now, suppose that, at the end of stage k during the branch-and-bound 

algorithm, an intermediate node N
r 

is to be branched further. This will only 

be the case in which LB(N
r

) < UB;k, where the last numbered node at the stage 

is NZk. Let xr be the solution to problem (Cpr) at the corresponding node ~. 
Choose any t E J

r
, called t

r
, which maximizes the difference 

(9) 

Then, at the (k+l)st stage, the node ~ is branched to generate two nodes 
Zk+l Zk+Z . Zk+l Zk+Z . Zk+l 

Nand N accordLng to Z and Z ,respectLvely, where Z and 

zZk+Z differ from zr only at the period t
r which satisfies (9). Theorem 3.4 

underlies the determination of such a period tr. 

Theorem 3.4. Assume that NZ(k-l) is the last numbered node at the start 

of the k-th stage during the branch-and-bound algorithm and N
r 

is one of the 

intermediate nodes such that LB(~) < UB;(k-l). Then there exists at least 

one period t such that 

(i) 

(H) 

(Hi) 

r 
t E J 

r o ~ xt < Ut ' and 

r 
Kt (l - Xt/Ut) > 0 

Proof: Since N
r 

is an intermediate node, Jr has at least one element. 

Otherwise, it is an already fathomed node which cannot be branched from. 

Thus, we have 

so that 

(10) 

Moreover, 

[p(xr ) + Q(xr ) 

p(xr ) _ wr(xr) 

r 
For all t=l, ... ,T, from the definition of Wt(x) Ln (8), it follows 

that 

( 0, 
if 

r Br 
pt (xr) 

t E A U r r 
(11) - W

t 
(x ) 

= K
t

(l r 
if 

r 
- xt/ut ), t E J 

Since F(X
r

) - r(x
r

) > 0 from (10), it follows that there exists at least 

one period t which satisfies the conditions (i)-(iii). This completes the 

proof. 
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Based on the results of Theorem 3.4, at the k-th stage ZI is divided into 
Zk-l Zk 

two subsets Z and Z . These subsets are specified by their index sets 
Zk-j BZk- 1 d AZk d Zk . I A and an an B ,respectl.ve y, such that 

(i) AZk- 1 
= AI U {tr

} and BZk- 1 = BI , and 

(H) A
Zk 

= A
r and B

Zk 
= BI U {tr } , 

where 

As the algori thm proceeds, a lis t of nodes that need be further branched 

from is maintained. This list is called the candidate list. Now, the branch­

and-bound algorithm is formulated as in Steps (i), (ii), and (iii). 

Step (i). Let k=O=p. Set NO with zO=Z, and 

. ° ° ° ° ° gl.Ve LB(N )=f (x ), UB(N )=F(x ), 

Add NO to the candidate list. Go 

° ° A =B =cjl. Solve 

° ° UBF=UB(N ), and 

to step (iH). 

fO(x) for xO to 

° ° UB =x 
x 

Step (ii). If there is no node in the candidate list, then terminate and 

obtain an optimal solution of (EDP). Otherwise, find r such that 

LB(~) is the minimum of LB(~) among all intermediate nodes ~ in 

the candidate list. If LB(~) ;:: UBZk, then terminate and obtain 
Zk F 

an optimal solution of (EDP), UB Otherwise, set p=I and go to 
x 

step (Hi). 

P n-l Step (iii). Let k=k+l. Branch from node N to generate two new nodes N 
Zk . Zk-l Zk and N added to the candidate list. Fl.nd LB(N ) and LB(N ). 

Zk Zk 
Update UB and UB 

F x 

Step (iv). (Fathoming tests) 

Step (iv-a). (Completeness test) 

Fathom a node Ni in the candidate list such that Ai U Bi I. 

Step (iv-b). (Bound test) 

Fathom a node Ni such that LB(~) ;:: UB;k. Go to Step (ii). 

The above branch-and-bound algorithm is illustrated by Figure 1 depicting 

the entire tree of subproblems for T=3. It should be clear that, if the 

algorithm terminates at stage k, then UB;k (the last numbered node NZk) is an 

optimal solution of (EDP). The algorithm terminates within finite steps, 

since at most (ZT+ 1 ) nodes are necessary to be examined for the optimal solu­

tion. 
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° (0,0,0) 

0<:2,1,1)* 6 

(2,0,0) 

t (2,2,0) 

t (2,1,2) 

* = optimal node, t : fathomed node, ("".) : period state, 

where ° 
2 

undecided period, 1 = production period, and 

non-production period. 

Figure 1. The Tree of Subproblems for T ~ 3 

4. Convex Programming Algorithm for Each Subproblem 

T each node ~ in the branch-and-bound algorithm, the subptoblem (Cpk) LS 

corresponded. Recall that 

Min. ~(X) = ~(x) + Q(x) 

S. t. 

By definition, wk(x) is a continuous differentiable convex function 
k defined on Z , and Q(x) in (5) is also a continuous differentiable function 

for all x E zk. Let V~(x) = (V~(x), ... ,V~(x» where V~(x) = a~(x)/axi' 

i=l, .•. ,T. Then it follows that V~(x) = a~(x)/ax. + aQ(x)/ax. for all 
J. J. J. 

i =1, ••• , T, where 

1 

c i ' if i E Ak 

a~(x)/ax. 0, if i 
k and E B 

J. 

c.+K./U., if i 
k 

E J 
J. .1 J. 

and 

aQ(x)/ax. is given in Theorem 4.1. 
J. 
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Theorem 4.1. For all i=l, ••• ,T, 
T 

aQ(x)/axi = I.[(h;+h;)Gt(Yt)-h~] , 
t=~ 

t 
Gt (') is the distribution function of I d., for all t=I, ... ,T. 

i=1 ~ 

Proof: Based on the differentiation rule of a definite integral with 

respect to a parameter Y
t 

(Heyman and Sobel [8], pp.518-519), 

T 

aQ(x)/ax. = I aQt(Zt)/ax .. 
~ t=1 ~ 

+ - Y t 
aQt(Zt)/axi = a[(ht+ht){J (yt-y)gt(y)dy} 

o 

if t=I, ... ,i-I and 

if t=i, ... ,T. 

This completes the proof. 
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Since (cpk) is a usual convex programming problem, general solution algo­

rithms can be adapted for the convex programming. In specific, the algorithm 

of Frank and Wolfe [2] is employed here to solve the subproblem (Cpk), since 

it guarantees generally the convergence of the solution to the Kuhn-Tucker 

point. The Frank-Wolfe algorithm is given below where for brevity of expres­

sion the stage index k is deleted: 

Step O. Find an initial feasible point x in z. 

Step I. Calculate Vf(x) and let for all t=I, ... ,T, 

y = 
t 

(

Ut' if Vft(x)<O , 

Lt' if Vft(x)~O . 

* Step 2. Find the scalar value \ where 

* \ argmin{f(h + (I-\)y) IOS:\S:I} 

* * * * Step 3. Let y = \ x + (1-\ )y. If If(y )-f(x) I s: E, then terminate. 

* Otherwise, update x = y and go to Step I. 

* In Step 3, the scalar value \ can be found by using any available one-

dimensional search method, for example, the well-known Golden Section method 

or the Newton method. In this paper, an efficient search method, so-called, 

Brent's method, is rather employed which intends parabolic interpolation to 
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* find the optimal value of scalar A (Press et al. [10]). 

For each subproblem (Cpk), an initial feasible solution can easily be 

provided, since the solution set zk is defined over the ranges L~ ~ x
t 

~ ~ 
for all t=l, ... ,T, and so any x

t 
value can be selected as the initial solution 

k k 
between Lt and Ut' Thus, incorporating the algorithm of Frank and Wolfe [2] 

o 1 
into the branch-and-bound algorithm, a sequence of feasible points (x , x , 

... , xk, ... ) (k=O, 1,2, ... ) is obtained where xk is an optimal solution at 

each subproblem at node~. This leads to an optimal solution of (EDP) by 

following the whole procedure of the branch-and-bound algorithm over such all 

possible nodes. 

5. Computational Effectiveness of the Branch-and-Bound Algorithm 

To examine the effectiveness of the proposed branch-and-bound algorithm 

a number of numerical examples are generated by varying the problem parameters. 

And then by solving the problems, the computational performance is evaluated 

on various criteria. This computational experiment is designed based on the 

study of Baker et al. 's [1] where they have treated a similar problem with 

deterministic demands, stationary costs and capacities. 

(a) Generation of numerical examples 
In order to draw valid conclusions, a number of variations on problem 

parameters are considered. The problem parameters include demand pattern, 

planning horizon, cost variations in ratio, and capacity level. 

For the demand pattern, two cases, stationary and seasonal demands, are 

considered. For the stationary demand, the expected value of demand at each 

period t, D
t 

= E[d
t

], is generated from the uniform interval [100, 300] and 
1/2 

its variance is given as (Var(d
t
» O.lD

t
. For the seasonal demand, the 

demand is given: 

(12) Dt =)l + a-sin[2'rr(t+b/4)/b], t=l, ... ,T, 

where 

T planning horizon, 

)l average demand during the planning horizon T, 

a = amplitude of the seasonality, and 

b length of seasonal cycle, in periods. 

For each test problem with a planning horizon T, the average demand )1 is 

generated from the uniform interval [100, 300]. Then with the fixed value of 

)1, the expected value of demand at period t (t=l, ... ,T) is given by the equa-
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tion (12) at a = 0.5~ and b = T. For this seasonal demand, the variance of 

demand at period t is given to increase 'with time: 

1/2 
(Var(d

t
» = 0(1 + at), t=I, .•. ,T, 

where a = 0.1~ and a = 0.01. 

545 

The aforementioned two cases of the demand pattern imply that demands at 

each period follow normal probability distributions with the corresponding 

expected demands and variances. 

For the planning horizon T, three cases are considered: T 

(in periods). 

6, 12, and 24 

The average ratio of production to inventory holding cost and inventory 

backlogging cost are given by, respectively: 

And these costs are generated from the following uniform intervals by allowing 

50% deviations from the midpoints, 10, 1" and 15, respectively: 

+ 
et = [5, 15], h

t 
= [0.5, 1.5], h

t 
= [7.5, 22.5] 

Since the effectiveness of the branch-and-bound algorithm may greatly 

depend on the cost approximation procedure, a wide range of setup costs and 

capacities are considered. 

For the setup cost, three levels are chosen such that 

(1) low level: Kt = [46.875, 140.625] 

(2) medium level: Kt = [421.875, lZ65.625] 

(3) high level: Kt = [1687.500, 5062.500] 

The midpoints of these intervals, 93.75, 843.75, and 3375.00, are figured (Jut 

in correspondence to economic order quantities of 200, 600, and 1200 units, 

respectively. Note that if the demands are assumed deterministic with the 

fixed demand level 200 units at each period, then the corresponding planning 

horizons will include 1, 3, and 6 periods, respectively. The formula for 

* computing the economic order quantity Q with stationary demand rate d, setup 

cost K, inventory holding cost h+ and backlogging cost h is given by (see, 

Hax and Candea [7]): 

Q* = (2Kd(h + +h -) /(h +h -» 1 /2. 

For the capacities, with the given value of the expected demand Dt' 

t=I, ... ,T, three levels are considered: 

(1) low level: Ut = [U1' u2 ] 

(2) medium level: Ut = [U2' u3 ] 

(3) high level: Ut = [U3' u4 ] 
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T T 
where U1 = I Dt/T, U2 = Max{Dtl t=l, ... ,T}, U3 = (U1+U2 )/2, and U4 = I Dt · 

t=l t=l 
With reference to each of parameter combinations (demand pattern, planning 

horizon, level of setup cost and capacity), five probabilistic replications 

shall be generated randomly. It follows that the performance of the algorithm 

need be tested on a total of 2x3x3x3x5 (= 270) numerical examples. 

The solution algorithm is programmed in PASCAL and run on a 32-bit Micro 

VAX 11 computer with the parameter E = 0.01. 

(b) Performance of the algorithm 
The computational performance of the algorithm sahll be evaluated with 

respect to the following criteria: 

(1) Tree size - the total number of subproblems examined for each 

numerical example. 

(2) Elimination effectiveness of the fathoming test - the percentage of 

subproblems fathomed by the bound test and the completeness test in Step (iv) 

of the algorithm in Section 3. 

(3) Depth effectiveness of the bound test - the number of undecided 

periods at the node fathomed by the bound test. If the node is fathomed with 

M undecided periods, then 2M
-

1 nodes are implicitly eliminated. 

(4) Computing time in second - the central processing unit time to solve 

each problem. 

With respect to the demand pattern, the algorithm performs on all criteria 

better for the stationary demand case than for the seasonal demand one. The 

computational results as summarized in Table 1 show that on the average the 

algorithm solves fewer number of subproblems, eliminates greater number of 

subproblems at higher levels in the tree, and spends fewer computing times, 

for the numerical problems with the stationary demand pattern than with the 

seasonal demand pattern. 

In general, the tree size and the computing time may increase with the 

planning horizon T. However, since the cost function is more tightly approxi­

mated to at the low levels of setup cost and capacity, it can be expected that 

at each corresponding low level many subproblems might be eliminated by the 

bound test. This intuition is reflected by the computational results in Table 

1 and Table 2. In Table 1, the number of examined subproblems increases with 

the planning horizon T and the level of capacity, while the level of setup 

cost does not seem to affect the tree size as significantly as the planning 

horizon T and the level of capacity. 
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Table 1. Number of Examined Subproblems and Computing Times (in Second) 

Averaged over All Demand Patterns and Replications. 

T=6 T=12 T=24 

Capacity 
L M H L M H L M H Leve 1 

,~ 8.2 13.0 13.8 19.4 29.4 36.6 116.8 79.2 85.8 
L 

B 1.7 1.6 1.0 3.S 5.4 4.2 39.3 18.3 18.0 

Setup i~ 12.2 14.2 15.6 22.6 29.6 56.4 89.6 207.6 263.2 
Cost M 
Level B 1.4 2.0 1.7 5.1 5.3 7.0 23.8 54.5 64.6 

A 12.0 14.6 14.4 26.2 35.2 35.4 55.6 193.2 196. ,+ 
H 

B 1.8 2.0 2.0 6.1 7.9 6.7 36.8 40.2 50.3 

L low, M = medium, H = high, A number of examined subproblems, 

B computing time in second. 

Table 2. Percentage of Subproblems Eliminated by the Bound Test and 

Number of Levels Up from Bottom of Tree at Elimination 

Averaged over All Demand Patterns and Replications. 

T=6 T=12 T=24 

Capacity 
L M H '" M H L M H Level 

A 55.2 45.0 42.9 49.1 45.0 45.5 50.4 47.8 48.8 
L 

B 3.7 3.3 2.9 7.2 6.1 5.2 13.3 11.4 13.2 

Seutp A 46.5 38.9 37.8 48.6 45.6 44.3 49.6 49.0 48.2 
Cost M 

Level B 3.2 2.9 2.9 6.7 5.9 5.5 12.8 11.7 10.4 

A 47.0 39.5 39.7 47.7 44.2 44.8 51.3 48.4 48.9 
H 

B 3.1 2.8 2.8 6.3 5.4 5.4 14.4 11.0 11.6 

A: percentage of eliminated subproblems, B: levels up from bottom of tree. 
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Table 3. The Fraction of the Worst Tree Size to 2
T

+1. 

T 

6 

12 

24 

Worst size 

33 

141 

557 

Fraction 

0.508 

0.034 

(less than 0.001) 

Even if the tree size increases with the planning horizon, Table 3 shows that 

the fraction of the worst tree size to the maximum possible size 2T+1 for each 

T decreases rapidly as T increases. 

The number of fathomed nodes by the completeness test is very few. For 

example, the maximum number fathomed among all examined problems is 8. How­

ever, more than 40% of examined nodes are eliminated by the bound test as 

summarized in Table 2. This implies that the algorithm eliminates about half 

the examined nodes until it finds a solution. Computational results in Table 

2 show that the average depth level of elimination is about half the planning 

horizon. 

In summary, this eV<lluation shows that the algorithm performs weakly as 

the planning horizon and the levels of setup cost <lnd capacity incre<lse. 

However, the ratio of tree size to its m<lximum possible size decreases rapidly 

as the planning horizon incre<lses. And the fathoming test gives rise to 

eliminate many subproblems at around half the level of the tree throughout all 

cases. The computing time takes less than 10 seconds for the planning horizons 

T = 6, 12. 

6. Conclusion 

A stochastic production planning problem with a finite planning horizon. 

where cumulative demands up to each period are random variables. is analyzed 

based on the solution characteristics of its equivalent deterministic problem. 

A branch-and-bound algorithm is proposed. which employs a cost approximation 

procedure of the objective cost function to the convex function at each 

branching stage. A convex programming algorithm is then incorporated in the 

branch-and-bound algorithm for lower bound calculations at each subproblem. 

The performance evaluation experiment concludes that the algorithm may work 

practically for reasonably sized problems. 

The application area of the branch-and-bound algorithm proposed in this 
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paper can include stochastic programming problems with simple recourse, since 

the associated recourse program part can be expressed in a deterministic 

program so that an equivalent deterministic program (to the whole program) 

composed of two deterministic programs can be derived in the similar form of 

this paper. Further applications may include stochastic transportation-loca­

tion problems, and capacity expansion problems with random demands. 

As a further research, the authors have been considering a decomposition 

approach of non linear programming as another treatment of the concave part 

(fixed charge) of the cost function. 
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