
Journal of the Operations Research
Society of Japan

Vol. 31, No. 4, December 1988

AN ALGORITHM FOR SINGLE CONSTRAINT
MAXIMUM COLLECTION PROBLEM

Seiji Kataoka
Waseda University

Susumu Morito
Waseda University

(Received August 6,1987. Revised June 7,1988)

Abstract There are many studies which consider an optimal tour on a given graph including the well-known

Traveling Salesman Problem (TSP) and Vehicle Routing Problem (VRP). Most of these studies, however, assume

that "all" nodes on a given graph should be visited exactly once or at least once. In this paper, we relax this assump­

tion and consider the following problem:

"Given items with known values located at nodes of network, one wants to collect items so that their total

value is maximized, under the assumption that a tour starting from the "center" node and returning to the center

node is completed within a predetermined time limit."

Because of the added (time) constraint, one may not visit all nodes. The addition of this simple-looking

constraint makes the problem difficult as it introduces an added dimention of selecting nodes to visit.

After a brief introduction, Section 2 presents two formulations of the problem, a native formulation and

an improved one based on the introduction of self-loops to the graph corresponding to the problem. The latter

formulation allows us to utilize solution strategies developed for the standard TSP. A branch and bound solution

strategies together with a solution method of a relaxation problem is described in Section 3. A relaxation problem

is generally an assignment problem with an added constraint for which an efficient branch and bound procedure

is proposed. In particular, a recommended strategy for the selection of the branching variable is identified, and

also an efficient procedure to transmit information from a branching problem to its sub-problems is proposed.

Section 4 presents results of computational time requirements and basic characteristics of the proposed algorithm

are clarified.

1. Introduction

There are many studies which consider an optimal tour on a given graph. Included

here are such well-known problems as the Traveling Salesman Problem (TSP) or Vehicle

Routing Problem (VRP). Most of these studies assume that "all" nodes on a graph should

be visited exactly once or at least once.
51.5

© 1988 The Operations Research Society of Japan

516 S. Kataoka and S. Morito

In this paper, we study a problem of maximizing the total value collected by visiting

nodes of a graph under a single constraint, say, a time constraint. Some known value is orig­

inally assigned to each node, and if one visits nodes, the associated values can be collected.

One then wants to determine which nodes to visit and how (i.e., in what order) the selected

nodes are visited in such a way that the total collected value is maximized and also that one

returns to the starting node within the specified time limitation. This problem is very much

similar to TSP and to VRP, but has an added dimension of selecting nodes to visit. As one

of a family of routing problems, the problem of interest is simple and basic, and thus many

practical applications are likely to exist.

D.Gensch[5] treated the problem, which he calls the optimal subtour problems, of find­

ing the shortest tour under a single constraint. Gensch's algorithm does not guarantee to

give an optimal solution, as his algorithm does not necessarily optimally solve the relaxed

problem (called (R) in this paper), which is an assignment problem with a single linear side

constraint. A heuristic algorithm is proposed by B.Golden[7] for the Gensch's problem.

2. Problem Formulations

2.1. Original formulation

Consider an asymmetric graph G(V,E), where V (I VI=n) and E denote node and arc

sets, respectively. A directed arc, which we simply call an arc, from node iE V to node jE V

is denoted as (i,j)EE, whereas e;2':0 and tij2':O denote value allocated to node iE V and time

required to travel arc (i,j)EE, respectively. We consider a general problem with asymmetric

distances. If distances are symmetric, simply set tij=tji' With a graphical image of the

problem just described, a mathematical

programming formulation (Formulation 1) naturally results by associating variable Xij to arc

(i,j)EE, and variable Yi to node iE V. Both types of variables are 0-1 variables. In the subse­

quent formulation, if denotes those nodes selected to visit, i.e. if={ iliE V, E;'=l,#i xij=l}.
Sand S are a partition of if such that SUS= if, sns=<p, 8# <p and S# if.

(Formulation I}
(2.1) Max. E:'=l GiYi
(2.2) s.t. L:i'=1 L:;'=l,#itijXij S;TC
(2.3) E;'=l Xij = Yi for all i

(2.4) E;=l Xij = Yj for all j

(2.5) EiEs EjEs Xij 2': 1 for any partition of if, (S,S)
(2.6) Xij E{O,I}, Yi E{O,l}, Y1=1 (node 1 is cent er node.)

(Formulation 1), though natural as we described, has problems from a stand point of

a solution algorithm.

A relaxed problem without a constraint (2.2) and also without so called multiple sub-

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Maximum Collection Problem 517

tour elimination constraints (2.5) is nothing but the assignment problem and thus can be

solved easily. However, variables Vi, iE V, must be determined prior to solving the assignment

problem.

If a Lagrangean relaxation is considered by putting constraints (2.2) and (2.5) into the

objective function, Lagrange multipliers only appear as coefficients of Xij and thus coefficients

of Yi are not affected by Lagrange multipliers.

To alleviate these difficulties, we transform the graphical representation of the problem

as discussed below.

2.2. Alternative formulation

(Transformation I) Assign a value coefficient Cij ;::: ° to each arc (i,}) EE. A value of an

arc coefficient Cij for each arc (i,j)EEis Cj, that. is, Cij=Cj, i E V-{j}.

(Transformation 2) Create a self-loop for each node and associate a variable Xii E{O,l},

iE V. Cost and time coefficients of a self-loop are Cii=O, (.;i=O, iE V-{l}, respectively. For the

center node, set Cll =0 and tll =TC.

Fig. 2-1 The Transformed Graph

Based on the above transformation of the graph (Fig.2-1), our problem can be formu­

lated as (Formulation 2). We note that self-loops are not regarded as subtours in the subtour

elimination constraints (2.11). The problem thus formulated will be ca.lled (P).

(Formulation 2)

(2.7) (P) Max. 2:::'=12::7=1 CijXij

(2.8) s.t. Ei=1 2::7=1 CijXij STC

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

518

(2.9)

(2.10)
(2.11)

(2.12)

s. Kataoka and S. Morito

E7=1 Xij=1

E?=l Xij=1

EiES EjES Xij ~ 1

Xij E{0,1}

for all i

for all j

for any partition of if, (S,S)

(Formulation 2) has the following properties which make it easier to

apply a standard solution algorithm of TSP.

(Property 1) The number of variables in (Formulation 2) is identical to that in (Formulation

1).

(Property 2) Constraints (2.9), (2.10) are those of the assignment problem, and thus the

relaxed problem without (2.8) and (2.11) can be solved by any algorithms for the standard

assignment problem.

(Property 3) When one considers, e.g., to obtain an upper bound, a Lagrangean relaxation

by putting the knapsack-type constraint (2.8) and the subtour elimination constraints (2.11)

into the objective function, Lagrange multipliers affect coefficients of all arcs (i,j)EE .

(Property 4) Nodes which are not to be visited will automatically be detected by self-loops,

while satisfying assignment constraints.

3. Basic Solution Strategy and Algorithm for Solving Relaxed Problem

3.1. Basic solution strategy

An application of a branch and bound method will be considered to solve the problem.

We first consider problem (R) which is problem (P) without subtour elimination constraints

(2.11):

(3.1) (R) Max.

(3.2) s.t.

(3.3)

(3.4)
(3.5)

E?=l E7=1 CijXij

E?=l E7=1 CijXij ::;TC

E7=1 xij=1

E?=l xij=1

Xij E{0,1}

for all i

for all j

Because of the constraint (3.2), the constraints matrix of problem (R) still does not

have the unimodularity, and thus problem (R) must be solved as a 0-1 integer programming

problem. Obtaining a stronger upper bound improves the efficiency of a branch and bound

method, and thus we use (R) as the relaxation problem, even though (R) still difficult to

solve.

We first present the basic branch and bound solution algorithm for solving (P), as­

suming the existence of an optimization algorithm for solving problem (R), which will be

discussed in 3.2.. Our basic branch and bound algorithm is essentially same as that for an

asymmetric TSP[l1].

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Maximum Collection Problem 519

An optimal solution of relaxation problem (R) generally consists of a number of sub­

tours. This is clear as problem (R) is original problem (P) without subtour elimination

constraints. If the solution consists of more than one subtour, then we select a non-self-Ioop

arc (p,q) included in one of the subtours, and branch to two subproblems, one called the

"right" subproblem in which Xpq is fixed to 1 so that arc (p,q) will always be taken, and

the other called the "left" subproblem in which Xpq is fixed to 0 so that we never take arc

(p,q). When there exists single subtour excluding self-loops for a subproblem, or no further

branching from it is profitable, we stop branching. We continue branching until no unsolved

subproblems are remaining. When no unsolved subproblems exist, the best solution obtained

thus far is optimal.

3.2. Relaxation of problem (R)
We do not attempt to solve problem (R) directly as an integer program. Instead, to

solve relaxation problem (R), we consider an LP-relaxation of (R), which we denote (R).

Here, we treat a minimization problem using the transformation c:j=M - Cij(~O), where M
is assumed to be a large constant.

(3.6) (R) Max.

(3.7) s.t.

(3.8)

(3.9)

(3.10)

Ei=l Ej=l CijXij
Ei=l Ej=l CijXij :::;TC
Ej=l xij=l

Ei=l xij=l
0:::; Xij :::;1

for all i

for all j

Problem (R) can be regarded as a linear relaxation of the assignment problem with

a single additional linear constraint. Kobayashi[10] studied a more general problem of the

minimum cost flow problem with a single additional constraint, and thus we solve problem

(R) by specializing the algorithm proposed by Kobayashi.

First, consider the following parametric problem R(</J) by putting the "time" constraint

(3.7) in the objective function with Lagrange multiplier </J:

R(</J) Min. Ei=l Ej=l d;jXij + </J Ei=l :~j=l tijXij = Ei=l Ej=l Cij(</J)Xi,
s.t. Ei=l xij=1 for all j

(3.11) Ej=l xij=1 for all i

O~ Xij :::;1

where Cij(</J)=C:j+</Jtij

Here, we denote an optimal solution of R(</J) as xi'j(</J) and assume that

TJ=Ei=l Ej=l tijxij(</J)· Then, iffor some </J , xi'j(</J) gives TJ=TC, then x'ij(</J) solves (R). This

implies that (R) can be solved if R(</J) can be solved parametrically in </J (Kobayashi[lO]).

Problem R(</J) for a fixed value of </J is nothing but the linearly relaxed assignment problem,

and thus an integer optimal solution xij(</J) can be found easily.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

520 s. Kataoka and S. Morito

The relationship between if! and 'T] is depicted in Fig.3-1 which forms a staircase graph.

This is because:

(1) Within some interval of if!, the optimal integer solution remains identical, thus giving a

horizontal portion of the graph.

(2) For some value of if! , there exist at least two distinct integer optimal solutions whose

convex combination also gives an optimal non-integer solution. This corresponds to the

vertical section of the graph.

(3) 'T] is monotone non-increasing in if!.

TJ

I The solution of (R)

Te r-------------~-------------------------

I

o L-______________ ~ ______________________ ___

(J •

Fig. 3-1 Relat ionship between (J and TJ

An optimal solution of (R) corresponds to the intersection of a horizontal straight line

'T]=TC and the staircase graph as in Fig.3-l. We assume that these two graphs intersect at

if! =if!*. Let 'T]o be the value of'T] corresponding to the optimal solution of R(O) with if!=O. In

case where there exist alternative integer optimal solutions of R(O), TJo is the smallest value of

'T] among these optimal solutions. If TJo <TC, 'T]=TC would never intersect with the staircase

graph because of its non-increasing property. The solution which gives 'T]o would then be the

optimal solution of the original problem. Similarly the two graphs would not intersect if eta

corresponding to the optimal solution of R(00) exceeds TC. Then Xii = 1 (i E V) is optimal,

indicating that one cannot visit any node due to the time constraint.

We try to find an optimal solution of (R) by solving R(if!) parametric ally using the

following two steps systematically:

1) a step to increase if!

2) a step to decrease 'T]

Each of these steps can be formulated as follows, where the dual of R(if!) is denoted as

D(if!) , for a given ~, vas an optimal solution of D(~), x as an optimal solution of R(~).

Primal Problem (a step to decrease 'T])

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

RP(~,v)

Maximum Collection Problem

Min. 11=Ei=l E;'=l t,jX,j
s.t. Ei=l x,j=l

E;'=l x'j=l

for all j

for all i

X,j=O if Vj-V, < c';j(</J)
X,j 2:0 if Vj-v,=c';j(</J)

Note that any feasible solution of RP(~,v) is an optimal solution of il(~).

Dual Problem (a step to increase </J)

RD(i) Max. </J
s. t. Vj-V,-</Jt,j ~ doj

Vj-V,-</Jt'j = doj

V"Vj,</J 2:0

if i,j=O
if i,j=l

521

Note that if (~,v) is any feasible solution of RD(v), then v is an optimal solution of D(~).

Algorithm SOLil

STEPl Solve il(O) and obtain an integer optimal solution, i. Let 110 be the value of 11

corresponding to i, or be the smallest value of 11 if there exist alternative integer

optimal solutions. If 110 <TC, i solves (R), and STOP. Otherwise, go to STEP2.

STEP2 Solve RD(i). If a finite optimal solution (~,v) is found, go to STEP3.

Otherwise (</J=oo), STOP.

STEP3 Solve RP(~,v). Let i be the optimal solution and 11 be the corresponding value of

11 (smallest value in case of alternative solutions). If 11 ~TC, compute x such that

11=TC, based on information obtained before solving RP(~,v) and STOP.

Otherwise, return to STEP2.

Refer to Kobayashi[lO] for the solution algorithms of RD(i) and RP(~,v). We note

that in STEPl, R(O) can be solved by minimizing 11 with Xii set to 0 for all i E V. Also note

that algorithm SOLR is applicable even when some X,j are fixed.

We now examine basic characteristics of SOLR which can be exploited to improve the

algorithm itself. Firstly, RP(~,v) solves the linearly relaxed assignment problem with only

those variables for which the corresponding constraints of RD(i) are satisfied with equality

at the optimal solution of RD(i), and with all other variables set to O. As a result, the

effective number of variables in RP(~,v) is small, and thus RP(~,v) can be solved with ease.

This implies that the effective number of variables in RP(~,v) is relatively small, and thus

efforts to solve RP(~,v) repeatedly while solving (R) within the branch and bound frame­

work to solve (R) is not substantial. Instead, a major portion of computational requirements

emanates from efforts to solve RD(i) when (R) is solved repeatedly in the overall branch and

bound algorithm for (R). Therefore, reduction of the computational requirements of RD(i)
is expected to improve the overall algorithmic efficiency. Also it is known that, when the

optimal solution of (il) found by algorithm SOLil is fractional (i.e., non-integer), at least

one of the variables taking fractional value corresponds to a self-loop. The reason why this

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

522 s. Kataoka and S. Morito

is the case and the algorithmic improvement based on this property would be discussed in

the next section.

3.3. Selection rule of the branching variable

A branch and bound procedure is developed to solve the relaxed problem (R) using

information obtained from (R). We note here that the coefficient matrix (Cij) has a special

structure such that non-diagonal entries of an arbitrary column are identical, as was observed

earlier in the discussion of the graph transformation (Fig.3-2). We now propose a selection

rule of the branching variable which exploits this special structure.

CDCen ter Ci j 3 4

o 5 7 6 3

5 <ID 2 0 0 6 3

3 0 o 3

4 0 5 7 0

7 @ @ 6 5 0 5 o

Fig. 3-2 An example of objective coefficient matrix (Cij)

A number beside node i indicate value Ci.

R(4)*) has at least two alternative optimal integer solutions, and the maximum and the

minimum of the corresponding value of '1 are denoted by '1u, and '1L, respectively. The cor­

responding optimal solutions are similarly denoted by xu(4)*) and XL(4)*). Refer to Fig.3-3,

where a=1 '1u-TCI/1 '1U-'1L I. Note that XL(4)*) gives a feasible solution of (R) and thus can

be regarded as a candidate for the incumbent solution.

When the final value of 1]=TC is reached in STEP3 of algorithm SOUl and if the cor­

responding optimal solution of (R) is non-integer, at least one of self-loops starts to emerge

as shown in Fig.3-3. To see that this is in fact the case, we assume that the variable which

takes a fractional value in the optimal solution of (R) does not correspond to any of self­

loops. Then, because of the special structure of the cost coefficient matrix (Cij), the value of

cx*(4>*) would remain identical while 1] is reduced from 1]u to 1]L. This implies that the op­

timal value of objective function for (R) coincides with the objective function value CXL(4)*)

of a feasible integer solution XL(4)*) of (R), which indicated that (R) has an optimal integer

solution XL(4)*) and thus (R) is solved and no further branching is necessary. Therefore,

if the branching is to continue, at least one of variables which take fractional values in an

optimal solution of (R) must correspond to a self-loop.

When the optimal solution of (R) takes the form as shown in Fig.3-3, anyone of 4 arcs

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

n

Time

Time

Maximum Collection Problem

--;:--------, 71 u
11\

a
a

\ I TC

1- a

1

2

rp'

Fig. 3-3 A process to decrease 1/

The weight for each node 1;;;;c:;;;;10, uniformly distributed

The time for each arc 50;;;;t;;;;70, uniformly distributed

Time constraint TC=50*n

Each entry reflects an avearge time (in second) for 10 instances,

using personal computer NEC,PC-9801YM2,MS-FORTRAN, Ver. 3. 3 compiler.

5 6

25. 9 65. 1

4.7 5. 2

Time 1 arbitrary branching rule

Time 2 self-loop branching rule

Table 3-1 The effect of the branching rules

7 8 9 10 15

170. 5 189. 5 163. 5 - -

10. 8 9.0 6. 9 28. 6 25. 7

20 25

- -

43. 5 71. 3

523

30

--

131. 9

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

524 s. Kataoka and S. Morito

can be regarded as a candidate for branching variables. Considering the special structure of

the matrix (Cij), however, it is expected to be more beneficial to select a fractional variable

that corresponds to a self-loop as a branching variable rather than to select arbitrarily any

one of fractional variables. This strategy has an additional merit that the depth of enumer­

ation levels will never exceed n, as there exist at most n self-loops. A simple experiment

was performed to observe the effect of this branching rule. Table 3-1 shows that the self­

loop branching strategy performs 10 to 20 times faster than the arbitrary branching rule.

It is expected that the computational time does not explode until n reaches approximately 30.

3.4" Determination of initial value of </J

When (R) is solved by algorithm SOLR, we have thus far assumed the initial parame­

ter value of </J=O. When the value of TC is relatively small, the process of increasing </J from

o in STEP2 and of eventually reaching </J* is expected to take time. For example, in Fig.3-4,

solving a problem with time limitation of TC=TC2 would require more efforts than solving

the problem with TC=TC1 (TC1>TC2) provided that all other conditions remain identical.

r;

TCI r--------+-----------------------------

TC2 r-------~--------------+_---------------

o
,p"TC1 ,p"TC2 ,p

Fig. 3-4 Relationship between the magintude of TC and ,p"

Note, however, that algorithm SOLR will find an optimal solution of (R) as long as the

starting value of </J is nonnegative and less than or equal to </J*. A procedure is now presented

to get an initial value of </J so that (R) can be solved more efficiently.

Here, the self-loop selected as a branching variable is denoted as XTT ' </Ji as the value of

</J corresponding to the optimal solution of the right subproblem (R I xTT =l), and </Jo as the

value of </J corresponding to the optimal solution of the left subproblem (R I XTT=O). In the

subsequent discussion, we assume that the value of 17 corresponding to the optimal integer

solution of R(</J*) is not equal to TC, as otherwise problem (R) is already solved. We note

the following observations:

(1) xu(</J*) gives an optimal solution of {R(</J*)I xTr=O} and 17u >TC.

(2) XL(</J*) gives an optimal solution of {R(</J*)I xTT =l} and 17L <TC.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Maximum Collection Problem 525

(3) (r/>1-r/>2)("'1-"'2)SO where "'k(k=1,2) denotes the value of 1] corresponding to the optimal

solution of R(r/>k).
The fact that 1]=TC holds for the optimal solutions of (R I xrr=O) and (R I xrr ==l),

together with the above observations indicates that (r/>~-r/>*)(TC-1]U)SO or (r/>i -r/>*)(TC-1]L) SO.

This would then imply the following inequality:

(3.12)

This suggests that STEP1 of algorithm SOLR for the left subproblem (R I xrr=O)

can be initiated with the starting value of r/> equal to r/>* of its "parent" problem (R). Simi­

larly, the right subproblem can be solved by the following algorithm SOLR' which exploits

the information r/>* of the parent subproblem. Here RP'(~,fI) is a maximization (instead of

minimization) problem for the same constraints and the objective function as RP(~,fI), and

RD'(x) a minimization problem.

Algorithm SOUl'

STEP1 Set r/>=r/>*, and go to STEP3.

STEP2 Solve RD'(x), (Note, in this case, that RD'(i) always has an optimal solution.) and

go to STEP3.

STEP3 Solve RP'(~,fI) and obtain its optimal solution x. Compare the corresponding value

of 1]. If 1] ~TC, calculate x such that 1]=TC and STO P. Otherwise, return to STEP2

U sing the mechanism just described, information obtained in the parent problem can be

transmitted to subproblerns through a single parameter r/>, thus allowing an efficient branch

and bound procedure.

4. Design of Experiments and Results

4.1. Objective of experiments

The objective of experiments is to study characteristics of the proposed algorithm con­

sidering effects on execution time requirements of factors such as time limit parameter TC,

range of travel time parameter tij, and of value parameter Ci, as well as sliding of value

parameter Ci, which determine a problem instance. All these parameters are assumed to

be integers. The results presented are obtained using a personal computer NEC-9801 VM2

(lOMHz) with Pro-Fortran77 compiler.

4.2. Numerical experiments

(Experiment 1)

Factor: Time Limit Parameter TC

We consider instances with n=lO nodes, Ci uniformly distributed between 5S Ci ::;15,

ti) uniformly distributed between 30'5:. ti) S70, a,nd time constraint parameter TC set to one

of selected values 60, 80, 100, 150, 200, 250, 300, 350, 400. Here, the minimum value of

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

526 S. Kataoka and S. Morito

TC=60 is based on the minimum possible value of any meaningful trips between the origin

and anyone of other nodes. In tables, the number of nodes visited includes the origin, thus

the number of nodes visited is 1 if there exist no feasible tours within TC. And here, the case

with TC=250 roughly corresponds to visiting half of nodes, as the average of tij is 50. Thus,

the case with TC=250 can be regarded as an "average" of various cases. Experiments 2 and

3 which follow study algorithmic performance based on the "average" case. Each entry of

Table 4-1 reflects an average of 50 repetitions.

Table 4-1 indicates that the closer one gets to the average the more computer time is

required. That is, more time is required when the number of visited nodes is roughly same

as that of unvisited nodes. When TC exceeds 400, one can often find without difficulties a

feasible tour which visits all nodes, and thus no other better solutions exist and algorithm

stops. The reason why the case of TC=60 is taking some time (as opposed to the case of

TC=400), is because the algorithm do not terminate until cP, which is gradually increased

from 0 as explained in 3.2. or 3.4., reaches infinity.

(Experiment 2)

Factor: Range of Time Parameter tij

We consider instances with n=10 nodes, and Ci uniformly distributed between 5 and

15. Time parameters tij are also uniformly distributed with mean 50, and to see effects of

the magnitude of their ranges, the following five types of ranges will be considered;

tij=50 (no variability)

40~ tij ~60

30~ tij ~70

20~ tij ~80

10~ tij ~90.

Time constraint parameter TC is set to 250, i.e., the average case as explained in

(Experiment 1). Experiments are repeated 50 times for each parameter combination (Table

4-2).

When tij has no variability, i.e., tij=50, the optimal solution can be obtained by visit­

ing 5 nodes such that the corresponding c;'s are top five. The heuristic algorithm to generate

an initial incumbent solution always produced this optimal solution. Moreover, the corre­

sponding optimal value coincides with the optimal value of the relaxation problem without

subtour elimination constraints, and thus the algorithm terminates quickly. The tendency

that the greater variability in tij results in faster execution reflects the fact that the chance

of quickly finding a tour which visits all nodes increases as the variability in tij increases.

This is because the algorithm generally tries to make a tour by selecting those arcs whose

tij'S are small. This tendency can be observed by studying the number of visited nodes for

each instance.

(Experiment 3)

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Maximum Collection Problem 527

Factor: Range of Value Parameter c.

Here, we consider instances with n=10, and t'j uniformly distributed between 30 and

70. Value parameters c. are also uniformly distributed with mean 10, and with the following

four types of range;

c.=10 (no variability)

9::; c. ::; 11

5::; c. ::;15

1::; c. ::;19

As in (Experiment 3), TC is fixed constant at 250, and the number of repetitions for

each case is 50 (Table 4-3).

Table 4-3 shows that problems can be solved quickly when all c;'s are identical. This

is because the greatest common divisor of c;'s denoted as GCD(Ci) is calculated first in the

program developed, and is used to fathom subproblems. More specifically, if there exist any

solutions better than an incumbent solution with the objective function value, say, Zo, their

values of the objective function should be at least zo+GCD(c.). If zo+GCD(c;) exceeds the

optimal value of the objective function of LP-relaxed subproblem (R), the subproblem can

be fathomed.

(Experiment 4)

Factor: Magnitude of Value Parameter c. (with fixed range)

Here, we consider instances with n=lO, and t.,. uniformly distributed between 30 and

70. Value parameters Ci are also uniformly distributed with range 20, and with the following

four types of range;

1::; Ci ::; 21

10::; Ci ::; 30

20::; Ci ::; 40

As in (Experiment 4), TC is fixed constant at 250, and the number of repetitions for

each case is 50 (Table 4-4).

Table 4-4 shows that the higher the mean of Ci, the more computations would be

required. This is because, as c;'s are slided "up" while fixing the length of interval, the dif­

ference between the optimal objective function value of (R) and CXL(c/>*) tends to be larger.

As a result, the chance is reduced that a condition "cxL(c/>*)+GCD(ci»the optimal objec­

tive function value of (R)" is satisfied which indicates fathoming of subproblem (R), thus

requiring more computations.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

528 s. Kataoka and S. Morito

Table 4-1 The results of <Experiment 1> ("# of V.N." is the nubmer of visited nodes)

TC 60 80 100 150 200 250 300 350 400

CPU Time (sec) 17. 10 34. 24 48. 86 77.42 89.08 71. 40 46. 52 16. 78 0.54

of V. N. 1. 00 1. 64 2. 22 3.34 4.70 6.18 7.50 8. 72 9.92

Table 4-2 The results of <Experiment 2> ("# of V.N." is the nubmer of visited nodes)

The range of t t=50 40 ~ t ~ 60 30~t~70 20~t~80 10~t~90

CPU Time (sec) 7. 54 102. 8 71. 40 35.94 3.74

#ofV.N. 5.00 5.04 6.18 7.42 8.94

Table 4-3 The results of <Experiment 3>

The range of c c=10 9~c~ 11 5~c~15 l~c~19

CPU Time (sec) 10. 28 61. 28 71. 40 54.18

Table 4-4 The results of <Experiment 4>

The range of c 1~c~21 10~c~30 20~c~40

CPU Time (sec) 55.82 72.74 85. 36

5. Conclusion

This paper considered a variant of the traveling salesman problem in which one wants

to maximize the total value collected by visiting nodes within a given "time" limitation.

Efficiency of the proposed algorithm was evaluated by extensive computational experiments.

We conclude the paper with the following conclusions.

(i) For the problem of interest, we showed that the choice of a proper formulation, as op­

posed to a more naive formulation, allows us to exploit existing results for, e.g., the traveling

salesman problem.

(ii) The branching variable selection rule which gives higher priority to variables correspond­

ing to self-loops produces an efficient branch and bound algorithm for the problem.

(iii) Information of a parent problem can be communicated to its subproblems in an ex­

tremely simple fashion using only one parameter.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Maximum Collection Problem 529

Acknowledgments

The authors would like to express their appreciations to anonymous referees for their

helpful comments which improved the clarity of the paper.

References

[1] Barr, R. R., Glover, D. and Klingman, D.: The Alternating Bases Algorithm for

Assignment Problems. Mathematical Programming, V01.13, No.l (1977), 11-13.

[2] Everett Ill, H.: Generalized Lagrange Multiplier Method for Solving Problems of

Optimum Allocation of Resources. Operations Research, Vo1.11, N 0.2 (1963),

399-417.

[3] Garey, M. R. and Johnson, D. S.: Computers and Intractability: A Guide to the

Theory of NP-Completeness, W.H.Freeman and Company, San Francisco, 1978.

[4] Gavish, B. and Pirkul, H.: Efficient Algorithms for Solving Multiconstraint Zero-one

Knap"ack Problems to Optimality. Mathematical Programming, Vo1.31, No.l (1985),

78-105.

[5] Gensch, D. H.: An Industrial Application of the Traveling Salesman's Subtour

Problem. AIIE Transactions, Vo1.10, No.4 (1978), 362-370.

[6] Glover, F., Karney, D., Klingman, D. and Russell, R.: Solving Singly Constrained

Transshipment Problems. Transportation Science, V01.12, NoA (1978), 277-297.

[7] Golden, B., Levy, L. and Dahl, R.: Two Generalizations of the Traveling Salesman

Problem. OMEGA, Vo1.9, No.4 (1981), 439-445.

[8] Iri, M. and Kobayashi, T.: Network Theory (in Japanese), Nikkagiren-shuppan, 1976.

[9] Kao, E. P. C.: A Preference Order Dynamic Program for Stochastic Traveling

Salesman Problem. Operations Research, Vo1.26 , No.6 (1978), 1033-1045.

[10] Kobayashi, T.: The Lexico-Shortest Route Algorithm for Solving the Minimum

Cost Problem with an Additional Linear Constraint. Journal of the Operations

Research Society of Japan, Vo1.26, No.2.5 (1983), 167-185.

[11] Konno, H. and Suzuki, H.: Integer Programming Problems and Combinatorial

Optimization (in Japanese), Nikkagiren-shuppan, 1982.

[12] Lawler, L.: Combinatorial Optimization: Networks and Matroids, Holt, Rinehart

and Winston, New York, 1977.

[13] Lawler, L.: Traveling Salesman Problem: A Guided Tour of Combinatorial

Optimization Problem, John Wiley and Sons, Chichester, 1985.

[14] Masch, V.: Cyclic Method of Solving the Transshipment Problem with an

Additional Linear Constraint. Networks, Vo1.10, No.l (1980), 17-3l.

[15] Murty, K. G.: Fundamental Problem in Linear Inequalities with Applications to the

Traveling Salesman Problem. Mathematical Programming, Vo1.2, No.3 (1972),

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

530 s. Kataoka and S. Morito

296-308.

[16] Murty, K. G.: On The Tour of a Traveling Salesman. SIAM Journal 0/ Control,

Vo1.7, No.1 (1969), 1122-1131.

[17] Murty, K. G.: Adjacency on Convex Polyhedra. SIAM Review, Vo1.13, No.3 (1971),

377-386.

[18] Tarj an , P. E.: Data Structures and Network Algorithms, SIAM, Philadelphia, 1983.

[19] Tone, K.: Mathematical Programming (in Japanese), Asakura-shoten, 1978.

Seiji KATAOKA: Department of Industrial

Engineering and Management, School of

Science and Engineering,

Waseda University, Shinjuku-ku,

Tokyo, 169, Japan.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

