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The Laguerre transform, introduced by Keilson and Nunn (1979), Keilson, Nunn and Sumita (1981) 

and further studied by Sumita (1981), provides an algorithmic framework for the computer evaluation of repeated 

combinations of continuum operations such as convolution, integration, differentiation and multiplication by 

polynomials. The procedure enables one to numerically evaluate many distribution results of interest, which have 

been available only formally behind the 'Laplacian curtain'. Since the initial development, the formalism has been 

extended to incorporate matrix and bivariate functions and fmite signed measures. The purpose of this paper is to 

summarize theoretical results on the Laguerre transform obtained up to date. In a sequel to this paper, a summary 

is given focusing on algorithmic aspects. The two summary papers will enable the reader to use the Laguerre trans· 

form with ease. 

§o. Introduction 

In applied probability and statistics, on€, often encounters expressions involving re-

peated combinations of continuum operatiomi such as multiple convolutions, different i-

ation, integration and multiplication by polynomials. The server busy period density 

for M/G/l queueing systems (Takacs [29]), the effective service time density of M/G/1 

queueing systems with service interruptions (Gaver [2] and Keilson [6]) and the test of 

uniformity on the sphere (Beran [11 and Girl(;:~]) are typical examples. Numerical evalua-
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468 U. Sumita and M. Ki;ima 

tiOll of rmelt continuum operations i8, in geneml, quite tedious. The brute force approach 

via discretization often fails due to problems of expense and uncharacterized accumu­

lated errors. These numerical barriers have limited the use of many theoretical findings 

and have substantially impeded the growth of applied probability as an engineering and 

lllallagement resource. 

The Laguerre transform, introduced by Keilson and Nunn [7], Keilson, Nunn and 

SUlIlita [8]' and furiher studied by Sumita [18], provides an algorithmic framework for 

the computer evaluation of rnultiple convolutions and other continuum operations as de­

scribed above. The transform based on generalized Fourier series employs the Laguerre 

functiolls as a basis, and maps functions f(x) in L2 into discrete sequences utf),::oo' Cor­

respondingly, various continuum operations are mapped into lattice operations, thereby 

providing the desired algorithmic basis. The procedure enables one to numerically evalu­

ate many distribution results of interest, which have been available only formally behind 

the 'Laplacian curtain', with speed and accuracy. The power of the Laguerre trans­

form has been demonstrated through a variety of applications in applied probability and 

statistics [7 ,8,9,1O,11,12,18,19J. 

The formalism of the Laguerre transform requires further extensions to deal with 

more complicated models. The matrix Laguerre transform has been developed by Sumita 

[18,21] for the study of semi-Markov proce.3Se!: and associated semi-Markov renewal pro­

cesses. Convolutions and other continuum opera.tions involving matrix functions can 

be evaluated through the matrix version of the Laguerre transform. Consequently this 

extension provides modeling flexibility ill the :ltudy of reliability systems and in the per­

formance evaluation of computer and communication systems, enabling one to conduct 
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Theory and Algorithm of Lague"e Transform 469 

dynamic analysis of such systems. Successful applications of the matrix Laguerre trans­

form have been reported in [16,18,21,26]. 

An extension of the formalism for bivariate functions is also useful and important. In 

the study of bivariate processes, expressions of many theoretical results involve repeated 

combinations of bivariate continuum operations such as multiple bivariate convolutions, 

marginal convolutions, double integration, partial differentiation and multiplication by 

bivariate polynomials. A cumulative shock model associated with correlated pairs of 

random variables by Sumita and Shanthikumar [27] and the waiting time structure of 

split queueing systems analyzed by Sumita and Kijima [23] are such examples. Numerical 

evaluation of these bivariate continuum operations is substantially harder than that for 

the univariate case. The bivariate Laguerre transform has been developed by Sumita 

and Kijima [22] and further studied by Kijima [14] for mechanizing various bivariate 

continuum operations, thereby enhancing numerical exploration of applied probability 

models with bivariate distributions and bivariate processes. The bivariate formalism is 

an extension of the univariate Laguerre transform, using the product orthonormal basis 

generated from the Laguerre functions. This extension is nontrivial since the bivariate 

transform has many peculiar problems of its own. 

In Figure 0.1, the development of the Lag:llerre transform to date is described. The 

figure consists of 12 basic components which are classified into two categories: Theory 

and Applications. Logical relations among these components are indicated by arrows. 

The purpose of this paper is to provide a COll( ise summary of theoretical aspects of the 

Laguerre transform. In Section 1, the Laguerre transform is formally introduced. Some 

useful identities for the Lagllerre sharp COf:!ffiClents and basic operational properties are 
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then summarized. Extensions of the formalism to the matrix form and finite signed mea­

sures are also described. Section 2 is devoted to the discussion of the bivariate Laguerre 

transform. Through a product orthonormal hasis generated by the Laguerre functions, 

the bivariate Laguerre transform is formally introduced. Some useful identities for bi­

variate sharp coefficients and various operational properties are given next. Of particular 

interest is the discussion of the minimum and maximum of a pair of correlated random 

variables through the bivariate Laguerre transform. A discussion of the bivariate La­

guerre transform for finite bivariate signed measures is also given. The paper is intended 

to provide an overview of the development of the Laguerre transform and a collection of 

the main results with proofs and details, for the most part, omitted. 

In a sequel to this paper, we will focus on algorithmic and applicational aspects of 

the Laguerre transform. In particular, computational procedures will be summarized for 

finding Laguerre coefficients of many probability density fucntions of interest in applied 

probability and stochastic processes. Opera.tional properties will be described in an 

algorithmic form and many successful applications of the Laguerre transform will be 

reported. Combining these papers, the reader will be able to use the Laguerre transform 

with ease. 
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§1. Theory of the Univariate I,agufo!rre Transform 

§1.1 The Laguerre Transform 

The Laguerre polynomials Ln(x) defined by the Rodrigues formula 

~ x d)n (! , n -3; 

Ln(x) =,. -d' (x e ) n. .1: 
(1.1.1) 

form a set of orthonormal polynomials with weighting function w(x) = e- X on (0,00), see 

e.g. Szego [27]. The associated Laguerre functions en(x) = e-x/2Ln(x) then constitute 

an orthonormal basis of L2(0, 00) = {f: J~lO f2(x)dx < oo}. To incorporate functions on 

full continuum, we introduce the extended Laguerre function hn(x) of order n by 

h ( ) - {In(X)U(X), n ~ 0, 
nX - -Ln-1(-:c)U(-x), n<O, (1.1.2) 

where U(x) = 1 for x ~ 0 and U(x) = 0 for ;1: < O. One then easily sees that the extended 

Laguerre functions constitute an orthonormal basis of L2 ( - 00, 00) = {J: J~oo P (x) dx < 

oo}. The function space L2(-00,00) is a I:lilbert space with an inner product < f,g >= 

J::'oo f(x)g(x)dx. For any f E L2( -00.00), onl! has the Fourier-Laguerre expansion 

00 

f(x) = L fJhn(x); 
n=-oo 

fJ =< J,hn >= L: f(x)hn(x)dx. (1.1.3) 

Equality holds in the sense of the limit in the mean, i.e. if we define 

N 

SMN(X) = L fJhn(x) , (1.1.4) 
n=-M 

one has limM,N-+oo J~{J(x) - SMN(X)}2dx = O. The speed of convergence of the La-

guerre dagger coefficients (JJ)~oo to zero depends on the smoothness and the boundedness 

of f(x). Let 

f+(x) = f(x)U(x); f-(x) = f(x)U(-x), (1.1.5 ) 
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Theory and Algorithm of.Laguerre Transform 473 

so that f(x) = f+(x) + f-(x). It has been Bho ..... n in [7,8,18] that if f+(x) and f-( -x) be-

long to the class of rapidly decreasing functior/; denoted by Cf(O, 00), then the sequence 

of the dagger coefficients (fl)~oo is also rapidly decreasing in the sense that 1 n Ik 1 fll--+ 0 

as 1 n 1---+ 00 for any positive integer le. We define a class of such functions f by 

C1"'*(-oo,oo) = {J: I+,f- E C1"'(O,oo)}. (1.1.6) 

We note that f E Cf*(-oo,oo) may have discrepancy at the origin, i.e. f(x) I~~o-= 

f(O+) - f(O-) =1= o. It is clear that for any f E C1"'*(-oo,oo), the ordinary pointwise 

convergence of SMN(X) to f(x) is assured almost everywhere. In what follows, we restrict 

ourselves to this class for theoretical simplicity. The reader is referred to [7,8,18] for 

further detailed discussions. 

The extended Laguerre functions pOSBess two important properties which play an 

essential role in developing the Laguerre transform. The first property is that the values of 

hn(x) can be generated efficiently through the recursion formula. The Laguerre functions 

satisfy 

fn+l(x) = _1 -[(2n + 1 - x)tn(x) - nfn-l(X)], n;:::: 1, 
1£+1 

(1.1. 7) 

starting with lo(x) = e-z/ 2 (see e.g. Rainville [17]). This recursion formula is numerically 

stable and enables one to generate values of en(~~) with speed and accuracy. Using (1.1.2), 

the values of fn(x) can be easily converted to those of hn(x). Hence once (fl)~oo is 

obtained, values of f(x) can be calculated through (1.1.3) efficiently. 

The second important property of hn(x) as a tool for mechanizing continuum opera-

tions is the form of the Laplace transform given by 

(
8-1/2)" 
8 + 1/2 ' 1 Re(8) 1< 1/2, -00 < n < 00. (1.1.8) 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



474 U. Sumita and M. Kijima 

The fact that the index n of hn(x) appears as a. geometric power in its Laplace transform 

enables one to relate the generating function of the Laguerre coefficients (J~)~oo of f(x) 

with the Laplace transform </>1(8) = f~oo e-- SX f(3:)dx in a simple manner. Let 

00 00 

TJ(u) = L ftu n
; Tf(u) = (1 - u)T}(u) = L f!u n

. 
n=-oo n=-oo 

We note that 
n 

ft = L f//:; f # - It - It n - n n-l' -00 < n < 00. 
m=-oo 

For I E cr*(-oo, 00), one sees from (1.1.3) and (1.1.8) that 

By letting u = :~!~~, Equation (1.1.11) then leads to 

T#( )_A. (11+U) 
1 u -~' 1 2 1 - u . 

(1.1.9) 

(1.1.10) 

(1.1.11) 

(1.1.12) 

Equation (1.1.11) is valid at least for .9 E Im = {8: 8 = it, t ER}. Correspondingly, 

Equation (1.1.12) is valid at least for u E A. = {u: lul = 1, u~l}. 

Equation (1.1.12)' is the key formula that provides a bridge between continuum op-

er at ions and lattice operations. For example, consider the convolution (J * g)(x) = 

f~oo f(x - t)g(t)dt for f,g E Cr*(--oo, 00). Since </>1*g(8) = </>1(8)</>g(8), it can be readily 

seen from (1.1.12) that 

(1.1.13) 

or equivalently 
00 

(J * g)ff = L I!-mgt,· (1.1.14) 
m=-oo 

The Laguerre transform maps functions I,g into sequences (J/t)~oo and (gtf)~oo' Cor-

respondingly, the continuum convolution (f * g) is mapped into a lattice convolution via 
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(1.1.14). The resulting Laguerre sharp coefficients ((I * g)~)~oo can then be inverted back 

onto the continuum using (1.1.10) and the series representation (1.1.3). As we will see, 

other basic continuum operations are also mapped into lattice operations conveniently. 

§1.2. Some Useful Identities for the Laguerre Sharp Coefficients 

The key to accuracy of the Laguerre transform method is the ability to represent a 

function !(x) with a sequence of Laguerre sharp coefficients of reasonable length. Quan-

tification of truncation error is quite hard, as its counterpart in Fourier series theory 

where error bounding is known to be quite difficult, and broad and useful results are 

hard to come by. The key formula (1.1.12) ell,ables one to develop various identities for 

Laguerre sharp coefficients. Such identities can be useful for heuristically determining 

how many terms are needed for a given accuracy. 

Theorem 1.2A. (Moment Formula) 

00 ()(, 

M(i) = loo xi !(x)dx = 4i I: (-ltni rlt, 0:::; i:::; 2. 
n=--(X) 

Extensive numerical experiments suggest that if truncation points M and N are 

determined, for a given E > 0, by 

N 

IM(i) - 4i L (_l)nni rltl < E, 0:::; i:::; 2, (1.2.1) 
n=-M 

it is likely that 
N 

I!(x) - L f~hn(x) I < E, X ER. (1.2.2) 
n=-M 

For all practical purposes, this criterion for determining the truncation points M and N 

is satisfactory. Other identities of interest are: 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



476 U. Sumita and M Kijima 

Theorem 1.2B. 

(a) 2:~=-00 rlt = o. 

(b) I:~=-oo nft = f(x)I~!o_· 

(c) 2 I:~=o ffn+I = - fooo f(x)dx. 

§1.3. Operational Properties 

Using the key formula (1.1.12), the o}Hl1'ational properties of Laplace transforms can 

be converted to those of the Laguerre sharp generating functions, thereby mapping contin-

uum operations into lattice operations. Accordingly, the utility of the Lagnerre transform 

method is enhanced by a large number of simple rules, permitting one to generate La-

guerre sharp coefficients needed from other known Laguerre transforms. In this section, 

we summarize key operational properties of thf:! Laguerre transform. For a given sequence 

(an)~oo' we define the first difference by il[anl = an - an-I. Higher differences ilk[anl 

are defined similarly. 

Theorem 1.3A. 

(a) r(x) = ft-x) r# = f# . n --n' 

(b) r(x) = f~oo f(x - y)hm(y)dy <==> r,t = Ll[f!'-ml. 

Theorem 1.3B. (Convolution and Integration) 

(a) 

(b) 

r(x) = f~oo f(x - y)g(y)dy 

r(x) = f~oo f(x + y)g(y)dy 

Remark 1.3C. 

# - .... ~oo f# #. r n - L..m=-oo n-mgm' 

r# - ,,",00 f# g#. n - L..m=-oo n+m m' 

The tail integral fxoo f(y)dy for f on (-00, co) can be evalua1,ed from Theorem 1.3B(c) 
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in the following manner. We recall from (1.Ui) that f(x) = f+(x) + f-(x). When x ~~ 0, 

one has 

(1.3.1) 

Since f+ (x) has non-negative support, Theore~l 1.3B(c) is directly applicable. For x < 0, 

we note that 

(X> /00 (OO ix f(y)dy = -00 f(y)dy - ix f-( -y)dy. (1.3.2) 

The first term can be found from Theorem ] .2A with i = 0. The second term can be 

evaluated using Theorem 1.3B (c) since f _ (--11) has support on [0,00). 

Theorem 1.3D. (Differentiation) 

(a) r(x) = fxf(x), x # 0 ~ rtt = tu,t + f!-d - Onof(x)I~~o_' 

(b) r(x) = fxf(x) + U(x), x # 0 {:=> rtt = fJ - f(x)I~!o_. 

Here Oij = 1, i = j and Oij = 0, i # j. 

Theorem 1.3E. (Multiplication by Polynomia.l and Exponential Function) 

(b) r(x) = cox f(x), f ontO, 00) .~ rit = L~=o f,t,(Pnm(8) - Pn-l,m(8)), 

Remark 1.3F. 

In a series of papers [4,5], Karlin and McGregor study the spectral structure of birth-

death processes from an analytic and an a.pplied point of view. In particular, they find 

in [5] that a linear growth birth-death proces:; N(t) with birth rates An ,-= n + 1, n ~~ ° 
and death rates Itn = n, n > 0 has it spectral representation in terms of the Laguerre 

polynomials Ln(:Z:) associated with spectral measure e-X on (0,00). The matrix ~(8) = 
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[Pmn(O)] appearing in Theorem 1.3E(h) is the t.ransition probability matrix of this birth­

death process. A computational procE!dure for evaluating Pmn(O) can be found in [20,25]. 

Theorem 1.3G. (Shifting and Scaling) 

(a) r(x) = I(x - T) -F:> rff = E~~=-oo It_mD.[hm(T)]. 

(b) r(x) = e-i(1-c)xI(cx), Ion (0,00),0 < c < 1 -F:> 

rff = D.[E~=n Iln (r:)cn(1 - c)m-n]. 

Remark 1.3H. 

It has been shown in [13] that the sequence (D.[hn(T)])~oo is square summable but is 

not absolutely summable. Hence the sequencll has a rather long tail. Shifting operation 

can be performed with accuracy only when the tails of ut) disappear rapidly. 

It is well known that the Laplace transform does not have any operational property 

for product of functions. Hence for developing the Laguerre transform of a product of 

functions, a different approach is necessary. 

Theorem 1.31 (Product of Functions) 

r(x) = I(x)g(x), I,gon [0,00] <:==> rl = LtT 4Jn)~t, n ~ 0, 

where Lt = [Id, It. ... ], ~t = [g~,gL ... ], and 4(n) = [aij(n)] with aij(n) = 

Jooo li(x)lj(x)ln(x)dx, i,j, n :? O. 

Matrices 4(n) can be computed efficiently based on a recursion formula, see [14,25]. 

Remark 1.3J 

Let I(x) = I+(x) + I-(x) and let g(x) = g+(x) + g_(x). One then easily sees that 

I(x)g(x) = I+(x)g+(x) + 1- (x)g_(x). Hence a product of functions on (-00, +00) can 

easily be treated based on Theorem 1.31. 
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§1.4. The Matrix Laguerre Transform 

A K x K matrix function g(x) = [aij(a:)] is called a matrix p.d.f. if aij(x) ~ 0 for all 

i, j, -00 < x < 00, and if g = f::"oo g(x)dx is a stochastic matrix. In the study of additive 

processes on finite Markov chains and related Markov renewal processes (see Part 11), one 

often encounters matrix convolution of two such matrix p.d.f.'s 

g(x) = g(x) * g(x) = I: g(x - y)g(y)dy. (1.4.1) 

Hence it is of interest to extend the Laguerre transform procedure to this matrix setting. 

Let M2(-00,00) = {g(x) = [aij(x)] : ££,;j(x) E L2(-00,00)}. Then the space 

M2(-00,00) is a Hilbert space with an inner product 

1 /'Xl < g(x) , g(x) >= K -IXl tr{g(x)g(x)T}dx. (1.4.2) 

The set of matrix functions {ll (x)} with h (:1:) = h,,(x)I becomes an orthonormal basis 
_" =n -

of M2(-00,00) in the following matrix sense. For any g(x) E M2(-00,00) there exists a 

unique sequence of the Laguerre dagger coeffident matrices (gl)~oo such that 

00 

g(x) = L ~~(x); 
"=-00 

~~ = £: g,(x)~(x)dx. (1.4.3) 

The key formula (1.1.12) for the scalar La@;uerre transform now extends to the matrix 

form naturally. Let g(s) = f::"oo e-S:l:g(x)dl:. From (1.4.3), one then has 

as = at ---00 1 (s _1/2)" 
=() "foo =Rs + 1/2 s + 1/2 

(1,...4) 

The matrix generating functions ~(v,) = 2:~'_I)()~un and r:!!(u) = E':'=-oo!&tu"' with 

g'![ = gt, - gl-l then lead to the matrix version of the key formula 

T# (u) = (1 - u) Tt ( If.) =q (11 + u) . == -'" ,- 21- u 
(1,...5) 
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For matrix convolution Il(x) = g(x) * g(;z:), Olle has 2(.s) = g(.s)!!(.s) so that, as for the 

scalar case, 

(1.4.6) 

Equation (1.4.6) implies that 

g# = 
==n 

(1.4.7) 
m=-oo 

providing again an algorithmic basis for evaluating matrix convolution. Other operational 

properties can be developed similarly. 

§1.5. Extension to Finite Sigm!d Mea:mres 

It has been shown in [13,181 that the Laguerre sharp transform maps every finite 

measure J-l on (-00,00) into a square summ:tble sequence (J-l~) and there is a one to 

one correspondence between the probability measures and their sharp transforms. The 

Laguerre sharp norm in this context can then be used as a distance between any two 

probability measures. The norm is a practical tool for measuring convergence of iterative 

procedures and provides a stopping criterion for such procedures. This section gives a 

brief summary of these interesting results. 

For any finite signed measure J-l on (-()o, ,X)) , let FJL(x) = f:=ooJ-l(dx'). Since ~hn(x) 

are uniformly bounded by one, the Laguerre ~harp coefficients 

(1.5.1) 

are well defined. One then has: 

Theorem 1.5A. Every finite signed mea5ure It is mapped into a square summable se-

quence (J-l~)~oo by (1.5.1). This La.guerre sha,rp transform J-l +-+ (J-l~)~oo is a one to one 

mapping. 
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Theorem 1.5B. For a finite signed measure p" let tP/L(s) = f~oo e-sxdF/L(x), Define 

T#(u) = ' (ll+U). 
/L <P/L\21_u (1.5.2) 

Theorem 1.5e. For a finite signed measure p" let 1Ip,lIt = V'L';:=-oo(p,~)2. Then a 

sequence of probability measures p,j converge:; weakly to p, if and only if IIp,j - p,llt --+ 0 

as j --+ 00. 

Theorem 1.5D. Let p, and v be probability n:easures. Then lip, * vllt s 1Ip,lItllvllt. 

§2. Theory of the Bivariate Laguerre Transform 

§2.1. The Bivariate Laguerre Transform 

hmn(x,y) = hm(x)h,,(y), -00 < X,y < 00. (2.1.1) 

It is then easy to see that {hmn(x,y)} i:3 arJ orthonormal basis of L2(R2). For any 

f E LdR2), the Laguerre dagger coefficients I)",,, are given by 

(2.1.2) 

One has the Fourier-Laguerre series expansio1L 

8 I (h)(X,y) = E E f)",nhmn(X,y) 
(m,n)EI(k) 

f(x,y) = lim SI(k)(X,Y)i k->oo (2.1.3) 

where I(k) is a sequence of nested compact sds ill Z2 such that Uk I(k) = Z2. 

For any f,g E L2(R2) with U)",n), (gtn,,), we have 

(2.1.4) 
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and 

IIfll~ := ! k2 f2(x, y)dx dy = L L f!;n· (2.1.5) 
(m,n)EZ2 

Let f++(x,y) = f(x,y)U(x)U(y), f+-(x,v) = f(x,y)U(x)U(-y), f-+(x,y) 

=f(x,y)U(-x)U(y) and L_(x,y) = f(x,y)U(-x)U(--'y) so that f(x,y) = L:a,bE{I,-I} 

fab(X, V), where fab(X, y) = f+- (x, y) if a = 1 and b = -1, etc. If each fab(ax, by) belongs 

to the class of rapidly decreasing bivariate functions, we say that f E Cr"(R2), the 

bivariate counterpart of (1.1.6). Note that f E Cr"(R2) possibly has discrepancies on 

the set {(x,y): xy = o}. If f E Cr"(R2) then the ordinary pointwise convergence of 

SI(k) (x, y) to f(x, y) is guaranteed almost everywhere. In what follows, we treat functions 

belonging to Cr"(R2) only. The reader is referred to [14,22J for detailed discussions. 

We note from (1.18) and (2.1.1) that for all (rn, n) E Z2 

! r e-sz-wYhmn(x,y)dxdy = _1_ (8 - !)m _1_ (w _ !)n 
JR2 8+! 8+! w+! w+! ' 

For f E er" (R2) c Ll (R2), its bivariate Laplace transform 

1 
max {IRe(8)1, IRe(w)l} < -. 

2 

(2.1.6) 

is well defined at least for (8,W) E Im x Im = {(8,w)18 = ia, w = ib, a,b ER}. 

Hence, for such (8,W), 1/J/(8,W) can be formally obtained from (2.13) by interchanging 

the summation and the integration, and then by using (2.1.6). Namely, one has 

00 00 1 (8 _ !) In 1 (w _ !) n 
1/J/(8,W) = L L fln +! + r -=-I-! =----.1..+! ' (8,W) Elm x Im. 

m==-oom==-oo 8 2 8 2 W 2 W 2 

(2.1.7) 

We now define the bivariate generating fUIlctions T} (u, v) and Tt (u, v) by 

0) 

l 't( ) ~f / u,v - L (2.1.8) 
m=-oon==-co 
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00 

T # ( ) def '""' t U,V = ~ 
00 

L It.numvn~ (1- u)(1- v)T}(u,v). 
m=-oon=-co 

483 

(2.1.9) 

It should be noted that the dagger <:oefficients U.t.n) and the sharp coefficients UlI:.n) 

are related in the following manner. For a bivariate sequence (amn ), we define the three 

types of the first differences: 

(2.1.10) 

(2.1.11) 

The higher differences are denoted by ~t, ~~. and ~ k. One then has 

m 

I~n = ~u.tal!); Ill! = L (2.1.12) 
i=-ooj=-oo 

By letting u = (s - !)/(s + !) and v = (w _. !)/(w + !), one sees from (2.1.7) through 

(2.1.9) that 

T#(u,v) = tPf (~+ u, 11 +V). 
f 21-u 21-v 

(2.1.13) 

We note that Equation (2.1.13) is valid for (u,v) being in the set A where 

A = {(u, v): lul = Ivl = 1, u -11, v -I1}. (2.1.14) 

Equation (2.1.13) is the key formula, pr<.viding a bridge between bivariate contin-

uum operations and bivariate lattice operations. For example, consider the bivariate 

convolution 

U * g)(x,y) = f fR2 I(x _. x',y - y')g(x',y')dx'dy' 

for I,g E Cf*(R2). Since tPt*g(s,w) == <Pt(s,to)<Pg(s,w), one has from (1.13) that 

Tf.g(u, tI) === lj'! (u., v )Tt(u, v), (2.1.15) 
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or equivalently 
00 00 

(J * g)tt.n = L L j::'-i,n-ig~· (2.1.16) 
i=--oo i=-oo 

The bivariate Laguerre transform maps functions j, g into bivariate sequences 

U//;n), (gtt"n) by (2.1.13). Correspondingly, their bivariate continuum convolution is 

mapped into a bivariate lattice convolution via (2.1.15). The resulting sharp transform 

U * g)tt.n can then be inverted back onto the continuum using (2.1.12) and the series 

representation (2.1.3). 

§2.2. Some Useful Identities for the Bivariate Sharp Coefficients 

As for sharp coeflicients Ut!) of the unival'iate case, there also exist various identities 

for bivariate sharp coefficients U//;n). ThE' first two moments of j(x,y), for example, 

are conveniently obtained from U//;n) as we will see. These identities are not only of 

theoretical interest but also of practical importance. Since storage capacity of computers 

is limited, the series eXlJansion (2.1.3) must be truncated. Because of the bivariate nature 

of the sequence (J//;n), developing a means tha1, heuristically determines truncation points 

in (2.1.3) for a given accuracy is of great importance. 

Theorem 2.2A. (Moment Formulas) 

00 00 

111 (i, j) = J JR2 xiyi j(x, y)dxdy= ,ti-I-J L L (_l)rn+nmini f/l:n, 
m==-()() n=--(X) 

o :s i, j :s 2. 

For many functions the values of moments M(i,j), 0 :s i, j :s 2 are known. Ex-

tensive numerical experiments suggest that if truncation points MI, M2, NI and N2 are 

determined, for Cl. given E > 0, by 

M2 N3 

IM(i,j) - 4 i +] L L (_1)m+"m i n j jitml < E, O:S i, J":S 2, (2.2.1) 
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it is likely that 

M z Nz 

lJ(x,y) - L L f.L,hmn(a:·,y)1 < Cf., -00 < x,y < 00. 

The constant C depends on a function f bu I; is typically between 1 and 1000. Other 

identities of interest are: 

Theorem 2.2B. 

(a) l:~=-oo 2=~=-00 mnf/l; ... = f(x, y) I~~o-I:~!o-

(b) 4l:~=0l:~=offm+l,2n+l = fooo Jo~ f(x,y)dx dy 

(c) 4l:~=0 l:~=o ffm+l,-2rt-l = fo
oo J~oo f(J:, y)dx dy 

(d) 4l:~=0 l:~o f!!'2m-l,2It+l = f~oo Jooo f(J:, y)dx dy 

(e) 4l:~=0 l:~=o f!!'2m-I,-2n--1 = f~oo J~co f(x, y)dx dy 

§2.3. Bivariate Operational Properties 

In this section, various operat.ional proper1;ies of the bivariate Laguerre transform are 

provided via the key formula (2.1.13). As for the univariate case, the bivariate Laguerre 

transform bypasses numerical integration, multiple convolutions and differentiation. All 

of these basic continuum operations are conveniently mapped into lattice operations, 

thereby providing powerful numerical took 

Theorem 2.3A. (Symmetry) 

(a) r(x, y) = f(y, x) ~ rtt.n = fffm· 

(b) r(x, y) = f( -x, y) ~ r#- f# rnn - -l1l.,n· 

(c) r(x, y) = f(x, -y) ~ # - f# r ,nn - m,"-n" 

Theorem 2.3B. (Convolution) 

(a) r(x,y) =.r fR2 f(x - x',y - y')g(x',y')dxidy' 
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~ r# = "\'0 "l?O '#, ,gt! mn L...t=-oo L...)=-oo Jm--t,n-) t)' 

(b) r(x) = I~oo f(x - y,y)dy ~ r~ = 1:::'''''-00 f!:-n,n' 

(c) r(x) = I~oo f(x + y, y)dy ~ r~ = 1:::'''''-00 r!:+n,n' 

Let g(x) E Cf*(R) with (gh")~oo' 

(d) r(x,y)=eoo'g(x-x')f(x',y)dx' ~. r~n=E'f'=-oog!_kftn. 

(e) r(x, y) = I~oo g(x - x')f(x, y')dU' ~ r~n = E~-oo g~_kf!k' 

Theorem 2.3C. (Marginal Functions) 

(a) r(x) = I~oof(x,y)dy <=> r~ = E::'=_oo(-I)nf~n' 

(b) r(y)=I~oof(x,y)dx ~ rh"=E:=_oo(-I)mf~n' 

Theorem 2.3D. (Integration) 

Let f: R~ ---t R where R~ = [0,00) X [0,00). 

(a) r(x,y) = I~ f(x',y)dx' ~ rtnn = 2E~m+1 Ei=o(-1)m+ifi1· 

(b) r(x,y) = 1;0 f(x,y')dy' ~ rl'nn = 2E~oE~n+1(-I)n+jfi1· 

(c) r(x,y) = 1;0 I:' f(x',y')dx'dy' ~ rtnn = 4E~m+1 E~n+1(-I)m+n+i+j ft· 

Remark 2.3E. For f: R~ --+ R, valuer. of r(x, y) = It Icf(x', y')dx'dy' can be found 

easily since 

r(x,y) = 10
00 

1000 
f(x,y)dx dy + ~oo loo f(x',y')dx'dy' 

- loo fx(x')dx' - fuoo fy(y')dy' 
(2.3.1) 

where fx(x) = 1000 f(x, y)dy and fy (y) = J~)() f(x, y)dx. The first term in (2.3.1) is 

evaluated from Theorem 2.2A with t' = i = 0 and the second term is obtained from 

Theorem 2.3D{c). fx{x) and fy{y) are the marginal functions (see Theorem 2.3C) so 

that the third and fourth terms are calcula.ted using Theorem 1.3B{c). 

Remark 2.3F. For functions f: R2 ---t R, the integration procedure is slightly more 
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complicated. As in §2.1, we decompose I into four functions defined on each orthant, 

i.e. I(x, y) = 2:a,bE{l,-l} lab (x, y). Clea.rly lab (ax, by) is defined on R~. Values of 

f",oo I(x', y)dx', f::'oo I(x', y)dx', f;: f~ I(x',yt)dx' dy', etc. for any x and y are then eval­

uated by applying Theorem 2.3D and Remark 2.3E appropriately to lab (ax, by) and the 

univariate Laguerre transform. For example, for x, y < 0, 

/. 00 [00 I(x',y')dx' dy' = [00 Ix(x')dx' _ /11 fy(y')dy' +/00/00 I--(-x',-y')dx' dy'. 
!I }'" }'" -Cle) -11 -'" 

Theorem 2.3G. (Partial Differentiation) 

Let I be differentiable everywhere. 

(a) r(x,y) = iz/(x,y) <===:> rtfm = ~~2[Jrtan + I~-l,n]' 

(b) r(x,y) = t
ll
l(x,y) <===:> # - l~ [rt ft ] r mu -- 2 1. mn + m,n-l' 

(c) 82 
r(x, y) = "5iaY I(x, y) <===:> rtfm = ~(f,tn + I~-l,n + I~,n-l + I~-l,n-l)' 

Theorem 2.3H. (Multiplication by Polynomial and Exponential Function) 

(a) r(x, y) = xl(x, y) <===:> r~n = -~i[(rn + 1)/!+l,n]' 

(b) r(x,y) = yl(x,y) <===:> r~n = -~~[(n + 1)/!,n+1]' 

(c) r(x,y) = xyl(x,y) <===:> r~n = ~2[(m + l)(n + 1)/!+1,n+1]' 

(d) r(x,y) = e-81 ",-82I1 f(x,y), f on R~ -<==> 

r~n = 2:~0 2:'1=0 Ilj (Pim (8t) - Pi,m-d8t} I (Pjn(82) - Pj,n-d82)) , where Pmn(8) is as 

in (1.4.1). 

Theorem 2.3I. (Shifting and Scaling) 

(a) r(x, y) = I(x - a, y - b) <===:> r~n = L~-oo 2:i=-00 I:::_i,n_j~[hij(a, b)]. 

(b) r(x,y) = e-!(l-a)Z-!(1-b)lIl(ax, by), I on R~ <===:> 

# - A[""OO ",,00 It (m') ("!) mln(] _ )m'-m(1 _ b)n'-n] r mn - ~ £"'m'=m £"'n'=n m'n' m n a ) - a . 
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§2.4. Minimum and Maximum of a Pair of Correlated Random Variables 

Let (X, Y) be a pair of correlated nonn(!gative random variables. In certain reli-

ability models, one often encounters the life1;ime distribut.ions involving the minimum 

v = min{X, Y} and the maximum W = max(X, Y}. If stochastic analysis of the under-

lying model requires multiple convolutions and other continuum operations involving the 

probability density functions (p.d.f. 's) of V B,nd W, numerical evaluation of the model 

becomes quite tedious. The 1)urpose of this sect.ion is to develop an algorithmic procedure 

for calculating the Laguerre coefficien1.s corresponding to the p.d.f. 's of V and W in terms 

of those of the joint p.d.f. of (X, Y). Detailed discussions are found in [14,24j. 

Let Fxy(x, y) be the joint cumulative distribution function (c.d.f.) of (X, Y) and 

let Fx(x) = Fxy(x, 00) and Fy(y) = FxY«x>,y). The c.d.f.'s of V and Ware denoted 

by Fv(x) and Fw{x) respectively. We assume that the c.d.f. Fxy(x,y) is absolutely 

continuous with a joint p.d.f. /xy (x, y) = 8:;~yFXy (x, y). For notational convenience, 

we define Fxy(x, y) = P[X > x, Y > yj. The survival function F(x) of a c.d.f. F(x) 

is defined in the ordinary manner. It is further assumed that /Xy(x,y) is a rapidly 

decreasing function. 

It can be readily seen that 

Fv(x) = Fxy(x,x)j Fw(x) = Fxy (:r,O) + Fxy(O,x) - Fv(x). (2.4.1 ) 

Using (2.1.12) and Theorem 2.3D(c), the da~ger coefficients UkY'mn) of fxY(x,y) can , 

be converted to the dagger coefficient.s (F1Y;mn) of Fxy(x,y). Hence both Fv(x) and 

Fw(x) can be evaluated straightforwardly using (:F1Y;mn) and the series representation 
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(2.1.3), i.e. 

cc "" 
FV'(x) = L L FLr;m"fm(x)f,,(x), (2.4.2) 

m=On=O 

and 
00 00 

Fw(x) = L L F~Y;mn(tm('<;) + fn(x) - fm(x)en(x)). (2.4.3) 
m=On=O 

The dagger coefficients (F~n) and (F~tJ ean now be obtained from (2.4.2) and (2.4.:3). 

For two matrices g = [bmn ] and g = [cmn ], 1n, n ;::: 0, we define 

co 00 

+ / + /g ® g = L L bmncmn. (2.4.4) 
m~O n=O 

h A -t [-t] h T eorem 2.4. Let Exy = FXY;mn ,rn, n ~ o. T en 

-t ~ -t O~ -1 -t 
FWk = L FXY;kn + L FXY;mk - FVk> k ~ o. 

n=O m=O 

The matrix 4Jk), k ~ 0 has been introduced in Theorem 1.31. 

The Laguerre dagger coefficients (Fi'n) and (F~n) should be obtained if analysis of 

the underlying stochastic model requires multiple convolutions and other continuum op-

erations involving 1/ and W. When only the moments of 1/ and Ware needed, however, 

one can bypass the computation of the Laguerre coefficients. 

Theorem 2.4B Let V = J~~ (-Q(M)) where Q(M) is defined in (1.4.6). Then 

(a) E[Vk] = k(+/ + rElv ® .!'::.k-l) , k 2" 1. 

(b) E[Wk] = E[Xk] + E[yk]_ E[yk], k 2" 1. 

We note from Theorem 2.3C that t,he Laguerr'~ sharp coefficients UJ~n) and Utfn) for the 

marginal densities fx(x) and fy(y) respectively can be generated easily from UjfYmn). 

By applying Theorem 1.2A repeatedly, E[Xk] and E[yk] are computed. 
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Of relaLed interest is the probability 

P[X ~ Y] = 1000 

dx loo fxy (x, y)dy. 

Let r(x, y) = 11/00 fxy (x, y')dy'. The Laguerre coefficients (rtnn) of r(x, y) can be obtained 

from Theorem 2.3D(b). Then 

{()() 00 00 

P[X ~ Y] = 10 r(x,x)dx = L L rtnnomn. 
o m=On=O 

(2.4.5) 

The probability P[X > Y] is found by 1- P[X ~ Y]. 

§2.5. Extension to Finite Bival'iate Signed Measures 

An extension of the univariate Laguerre 3harp transform to finite signed measures 

has been discussed in §1.6. In this section, we describe the bivariate counterpart of 

this extension (see also [14]). For any finite bivariate signed measures JJ, on R2, let 

F~(x,y) = I!!.ooI~ooJJ,(dx',dy'). Since £\[hmn(x,y)] is uniformly bounded, one has the 

Laguerre sharp coefficients 

JJ,~n = f /, £\[hm" (x, Y)ldF~(x, y). R2-
(2.5.1) 

In parallel with Theorems 1.6A through 1.6D, the following theorems hold. 

Theorem 2.SA. Every finite bivariate signed measure JJ, is mapped into a square 

summable sequence (JJ,~n)~,n=-oo by (2.5.1). This Laguerre sharp transform JJ, t--t (JJ,~n) 

is a one to one mapping. 

Theorem 2.5B. For a finite bivariate signed measure M, let 4>~(s,w) 

r# (u v) = A.. (11 + u 1 1 + V) . 
~, 'I"~ 2 1 - u' 2 1 - v (2.5.2) 
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Theorem 2.5C. For a finite bivariate signed measure I-l, let 

III-lllt = VE':;:=-oo E~=_oo(l-l~n)2. Then a sequence of bivariate probability measures I-lj 

converges weakly to I-l if and only if III-lj - I-lllr --> 0 as j --t 00. 

Theorem 2.5D. Let I-l and v be bivariate probability measures. Then III-l * vllt < 

III-llltllvllt· 

ACKNOWLEDGMENT 

The authors wish to thank Sue North and Paulo Goes for their extensive technical 

contributions. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



492 U. Sumita and M Kijima 

REFERENCE:S 

[1] Beran, R.J. (1968), "Testing for Uniformity on Compact Homogeneous Space," Jour­
nal of Applied Probability, Vol. 5, pp. 177-195. 

[2] Gaver, D.P. (1962), "A Waiting Line with Interruption Service, Including Priorities," 
Journal of the Royal Statistical Society, Series B, Vo!. 24, pp. 73-90. 

[3] Gine, M. (1975), "Invariant Tests for Uniformity on Compact Riemannian Manifolds 
based on Sobolcv Norms," The Annals of Statistics, Vol. 3, pp. 1243-1266. 

[4] Karlin, S. and McGregor, J. (1957), "The Differential Equations of Birth and Death 
Processes and the Stieltjes Moment Problem," Transactions of the American Mathe­
matical Society, Vol. 85, pp. 489-546. 

[5] Karlill, S. and McGregor, J. (1958), "Linear Growth Birth and Death Processes," 
Journal of Mathematics and Mechanics, Vo!. 7, No. 4, pp. 643-662. 

[6] Keilson, J. (1962), "Queues Subject to Service Interruption," The Annals of Mathe­
matical Statistics, Vol. 33, No. 4, pp. 1314-1322. 

[7] Keilson, J. and Nunn, W.R. (1979), "Laguerre Transformation as a Tool for the 
Numerical Solution of Integral Equations of Convolution Type," Applied Mathematics 
and Computation, Vo!. 5, pp. 313-359. 

[8] Keilson, J., Nunn, W.R. and Sumita, U. (1981), "The Bilateral Laguerre Transform," 
Applied Mathematics and Computation, Vol. 8, No. 2, pp. 137-174. 

[9] Keilson, J., Petrondas, D., Sumita, U. and Wellner, J. (1983), "Significant Points for 
Some Tests of Uniformity on the Sphere," Journal of Statistical Computation and 
Simulation, Vol. 17, No. 3, pp. 1\)5-218. 

[10] Keilson, J. and Sumita, U. (1981), "Waiting Time Distribution Response to Traffic 
Surges via the Laguerre Transform," The Proceedings of the Conference on Applied 
Probability-Computer Science: The Interface, Boca Raton, Florida. 

[11] Keilson, J. and Sumita, U. (1983), "The Depletion Time for M/G/1 Systems and a 
Related Limit Theorem," Advances in Applied Probability, Vol. 15, pp. 420-443. 

[12] Keilson, J. and Sumita, U. (1983), "Evaluation of the Total Time in System in a Pre­
empt/Resume Priority Queue via a Modified Lindley Process," Advances in Applied 
Probability, Vol. 15, pp. 840-856. 

[13] Keilson, J. and Sumita, U. (1983), "A General Laguerre Transform and Related Dis­
tance Between Probability Measures," to appear in Journal of Mathematical Analysis 
and Applications. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Theory and Algorithm oj'Laguerre Transform 493 

[11] Kijima, M. (1986), "Development of the Bivariate Laguerre Transform for Numerical 
Study of Bivariate Distributions and Bivariate Processes," Ph.D. Thesis, William E. 
Simon Graduate School of Business Administration, University of Rochester. 

[15] Ledermann, W. and Reuter, G.E.H. (19()4), "Spectral Theory for the Differential 
Equations of Simple Birth and Death Processes," Philosophical Transactions of the 
Royal Society of London Series A, Vol. 2·46, pp. 321-369. 

[IG] Masuda, Y., Shanthikumar, J.G. and Sumita, U. (1986), "A General Software Avail­
ability /Reliability Model: Numerical Exploration via the Matrix Laguerre Trans­
form," Stochastic Models, Vol. 2, pp. 203-236. 

[17] Rainville, E.D. (1971), Special Functions, Chelsea Publishing Co., New York, Revised 
Ed. 

[18] Sumita, U. (1981), "Development of the Laguerre Transform Method for Numeri­
cal Exploration of Applied Probability Models," Ph.D. Thesis, WiIliam E. Simon 
Graduate School of Business Administration, University of Rochester. 

[19J Sumita, U. (1983), "On Sums of Independent Logistic and Folded Logistic Variants­
Structual Tables and Graphs," Journ(~l 0/ Statistical Computation and Simulation, 
Vol. 17, pp. 251-274. 

[20] Sumita, U. (1984), "The Laguerre Transform and a Family of Functions with Non­
negative Laguerre Coefficients," Mathematics of Operations Research, Vol. 9, pp. 
510-521. 

[21] Sumita, U. (1984), "The Matrix Laguerre Transform," Applied Mathematics and 
Computation, Vol. 15, pp. 1-28. 

[22] Sumita, U. and Kijima, M. (1985), "The Bivariate Laguerre Transform and Its 
Applications-Numerical Exploration of Bivariate Processes," Advances in Applied 
Probability, Vol. 17, pp. 683-708. 

[23] Sumita, U. and Kijima, M. (1985), "Numerical Exploration of a Bivariate Lind­
ley Process via the Bivariate Laguerre Tra.nsform," to appear in The Proceeding of 
the Conference on Statistical and Computational Problems in Probability Modeling, 
Williamburg, New York. 

[24] Sumita, U. and Kijima, M. (1985) "Evaluation of Minimum and Maximum of a Cor­
related Pair of Random Variables via j,he Bivariate Laguerre Transform," Stocha8tic 
Models, Vol. 2, pp. 123-149. 

[25] Sumita, U. and Kijima, M. (1987), "The Laguerre Transform of Product of Func­
tions" , submitted for publication. 

[26] Sumita, U. and Masuda, Y. (1986), "Anal:/5is of Software Availability /Reliability un­
der the Influence of Hardware Failures," IEEE Transactions on Software Engineering: 
the Special Issue on Software Reliability - PART Il, Vol. SE-12, pp. 32-4l. 

[27] Sumita, U. and Shanthikumar, J.G. (1985), "A Class of Correlated Cumulative Shock 
Models," Advances in Applied Probability: Vo!. 17, pp. 133-147. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



494 U. Sumita and M. Kijima 

[28] Szego, G. (1975), Orthogonal Polynomials, 4th Ed. American Mathematical Society 
Colloquim Publications, Vol. 23. 

[29] Takacs, L. (1962), "The Time Dependence of a Single-Server Queues with Poisson 
Input and General Service Times," The Annals of Mathematical Statistics, Vol. 33, 
pp. 1340-1348. 

Ushio Sumita: William E. Simon 
Graduate School of Business 
Administration, University of 
Rochester, Rochester NY 14627 
lJ.S.A. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.




