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Recently A. V. Goldberg and R. E. TaIjan have proposed a negative cycle method for fmding mini-

JIlum-cost flows by selecting negative cycles of minimum-mean length and have shown that the complexity of their 

method is strongly polynomial. In the present paper we examine whether Goldberg and TaIjan's approach to 

ordinary minimum-east flows can be applied to submodular flows. We prove two key theorems, which are signifi­

cant in their own right, and show that the negative cycle methods for submodular flows of S. Fujishige and U. 

Zimmermann which may not terminate in fmitely many steps can be made terminate by selecting negative cycles 

of minimum-mean l'mgth of certain special type. 

1. Introduction 

Recently A. V. Goldberg and R. E. Tarjan [7] have proposed a negative cycle method 

for finding minimum-cost flows by selecting negative cycles of minimum-mean length, and 

have shown that the complexity of their method is strongly polynomial. Goldberg and 

Tarjan's method is a version of Klein's negative cycle method [ID] which restricts the 

choice of negative cycles to those of minimum-mean length. 

Klein's negative cycle method is generalized to the independent flow problem by S. 

Fujishige [2] and to the submodular flow problem by U. Zimmermann [14]. However, 

their algorithms may not terminate in finitely many steps. The equivalence between the 

independent flow problem and the submodular flow problem is shown in [3]. 

In the present paper we shall examine whether Goldberg and Tarjan's approach to 

ordinary minimum-cost flows can be applied to independent flows and submodular flows. 

We shall prove two key theorems in Section 3, which are significant in their own right, 

and show that the negative cycle methods of Fujishige and Zimmermann can be made 

terminate by selecting negative cycles of minimum-mean length of certain special type. 
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432 W. Od & S. Fujishige 

2. Definitions and Preliminaries 

Since the independent flow problem and the submodular flow problem are equiva­

lent and the description of the submodular flow problem is simpler, we shall consider the 

submodular flow problem alone. 

Let G = (V, A) be a directed graph with a vertex set V and an arc set A. For each 

arc a E A, a+ a and a- a denote the initial and the terminal end-vertex of a, respectively. 

Let 0 be a set of subsets of V such that for any X, Y E 0 we have X U Y, X rl Y E O. 

We call 0 a distributive lattice on V. A function 1 from 0 to the set R of reals is called a 

submodular function on the distributive lattice 0 if for each X, Y E 0 we have 

(2.1) I(X) + I(Y) ~ I(X U Y) + I(X rl Y). 

For a distributive lattice 0 with 0, V E 0 and a submodular function 1 on 0 with 1(0) = 

I(V) = 0, (0,/) is called a submodular system on V [4J and we define B c RV by 

(2.2) B = {x E RV I x(X):::; I(X) for all X E O,x(V) = I(V)}, 

where for each X EO x(X) = E"EX x(e). We call B C RV the base polyhedron associated 

with (O,!) [4J. 

Given a directed graph G, base polyhedron B, lower and upper capacity functions 5:" 

c: A -+ R (for each a EA, f.{a) ::; c(a)), and a cost function "( : A -+ R, a submodular flow 

problem in the network N = (G = (V, A),5:"c,B,,,() is described as follows [1]: 

(2.3) 

(2.4) 

Minimize L "((a)cp(a) 
aEA 

subject to 5:,( a) ::; cp( a) ::; c( a) 

acp E B, 

(a EA), 

where cp : A -+ R is a flow and acp : V -+ R is the boundary of the flow cp defined by 

(2.5) acp(v) = L cp(a) - L cp(a) (v E V). 
a+a=fJ 

If cp satisfies (2.3) and (2.4), cp is called a submodular flow in N. An optimal solution of 

the above problem is called an optimal submodular flow in N. For b E Band u E V we 

define dep( b, u) ~ V by 

(2.6) dep(b,u) = {v E V 13d > 0 : b + d(X .. - XfJ) E B}. 

Here, for any u E V X .. is a unit vector in RV such that 

(2.7) X .. (w) = {~ (w = u), 
(w E V - {u}). 
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The function dep: B x V --+ 2v is called the dependence function [2J. Moreover, for any 

v E V we define 

(2.8) c(b,u,v) = max{ did 2: O,b + d(Xu - XtI) E B}, 

where if b+d(X .. - Xv) E B for all d 2: 0, then we define c(b,u,v) = +00. We call c(b,u,v) 

the exchange capacity from u to v associated with b (see [2]). We can easily show that 

c(b,u,v) =I 0 if and only if v E dep(b,u). For bE B we define 

(2.9) Ab:= {(v,u) E V21 c(b,u,v) > O,u =I v}. 

Gb = (V, Ab) is called the exchangeability graph associated with b. For a submodula.r flow 

cp in N let 

(2.10) 

(2.11) 

(2.12) 

A~ := {a E A I cp(a) < c(a)}, 

B; := {a = (a- a, a+a) I a E A, ~(a) < cp(a)}, 

AII' :=AaIl'UA~UB;. 

Here, a = (a-a,a+a) is the reorientation of a and we use this notation in the following. 

GII' = (V,AII') is called the auxiliary graph associated with submodular flow cp. For each 

a E AII' we define a capacity function clI' by 

if a E A~, 

(2.13) if a E A and a E B;, 
{ 

c(a) - cp(a) 

clI'(a) = cp(a) - ~(a) 

c( acp, a- a, a+ a) if a E Aall" 

and a cost function "Ill' by 

if a E A~, 

(2.14) if a E A and a E B;, 

if a E Aall" 

Then, NII' = (GII' = (V, AII')' clI',"III') is called the auxiliary network associated with cp. 

In network NII' the capacity of a cycle is the minimum of the capacities of its arcs, 

where a cycle is a directed closed path. The cost of a cycle Q is the sum of the costs of 

its arcs, denoted by "III'(Q), relative to cost function "Ill' and a negative cycle is a eycle of 

negative cost. The following theorem characterizes optimal submodular flows. 

Theorem 2.1 [2, 14J. A submodular flow cp is optimal if and only if there are no negative 

cycles in NII" 0 

The following lemma will be used in the next section. 
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Lemma 2.1 [2]. Suppose b E B and let u., v. (i = 1,2, ... , q) be 2q distinct vertices in 

V such that 

Vi E dep(b, Ui) 

Vi tt dep(b, u.) 

For arbitrary d. (i = 1,2, ... ,q) satisfying 

o < d. ~ c(b, u., v.) 

let b* be a vector in RV defined by 

q 

(i = 1,2, ... ,q), 

(1 ~ i < i ~ q). 

(i=I,2, ... ,q), 

b* = b + L di(Xui - x"J· 
.=1 

Then, we have b* E B. 

3. Minimum-mean Cycles in the Auxiliary Network 

o 

Based on Theorem 2.1 and Lemma 2.1 in the preceding section, the following primal 

algorithm for the independent flow problem was proposed by Fujishige [2]. We rewrite it 

for the submodular flow problem (cf. also [14]) 

(PA) Begin with any submodular flow cp. Do the following (t) while there is a negative cycle 

in N'{>: 

(3.1) 

(t) Find a negative cycle Q of the fewest arcs in N'{> and change the flow ~') along the 

cycle Q by 

{ 

cp(a) + d if a E Q n A;, 

cp(a):= cp(a) - d if a E Q n B;, 

cp(a) otherwise, 

where d is the capacity of the cycle Q. 

Because we select negative cycles of the fewest arcs, the successively obtained flows cp 

are submodular flows in N and have smaller costs than the previous ones. However, this 

algorithm may not find an optimal submodular flow in a finite number of steps (see [2], 

[14]). 
Adopting Goldberg and Tarjan's approach [7], we give a new cycle selection rule for 

submodular flows which guarantees that the primal algorithm (PA) always finds an optimal 

submodular flow in a finite number of steps. We need a few further definitions to describe 

the cycle selection rule. 
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The mean cost of a cycle in a directed graph with arc costs is its cost divided by the 

number of arcs it contains. A minimum-mean cycle is a cycle whose mean cost is as small 

as possible. The minimum cycle mean is the mean cost of a minimum-mean cycle. 

A cycle q in Nv> is a feasible cycle if after changing flow cp along it by (:u) the 

resultant flow is also submodular flow in N. 

Suppose we are given a one-to-one mapping 11" : V -t {I, 2, ... , IV I} and let 

(3.2) qv>(1J) = min{1I"(w) I arc (v,w) lies on a minimum-mean cycle in Nv>}. 

If there is no minimum-mean cycle containing v in Nv>, define qv>(v) = IVI + 1. Then, our 

cycle selection rule can be described as follows: 

(*) Select a minimum-mean cycle Q in Nv> such that for each arc a on Q we have 

qv>(a+a) =1I"(a-a) 

Such a minimum-mean cycle can be found in O(IVIIAI) time using an algorithm of 

Karp [9]. The primal algorithm (PA) with minimum-mean cycle selection rule (*) instead 

of selecting negative cycles of the fewest arcs is valid due to the following theorem. 

Theorem 3.1. The cycle Q selected by the above rule (*) in the primal algorithm is a 

feasible cycle. 

Proof: Let J.I. be the minimum cycle mean of Nv>. We denote the set of arcs in Q by 

Av> ( Q) and define 

(3.3) 

Suppose C+ { (Ui, Vi) liE I}. Then, all Ui, Vi (i E I) are distinct vertices be-

cause Q is a minimum-mean cycle. We claim that there exists a permutation (UilO Vii)' 

(Uil,Vil)"'" (Ui"Vi,) (p = Ill) of arcs in C+ such that for any k, I with 1 ~ k < I ~ P 

(3.4) 

Then, the theorem immediately follows from Lemma 2.1. To prove the claim, we suppose 

on the contrary that there were no permutation of C+ satisfying (3.4), which will lead us 

to a contradiction. 

It is ea.<>y to see that if the claim is not true, then there exist some arcs (uilO ViJ, 

(uh,Vh),,,,,(Uiq,Viq) (2 ~ q ~ p) of C+ such that for each r = 1,2, ... ,q we have 

(uir,Vir+i) E: Aav>, where jq+l = jl' For any two vertices x, y on Q, denote the directed 

path from x to y on Q by P(x,y). For each r = 1,2, ... ,q, adding arc (Uir,vir+1) to path 

P( Vir + l' u3J , we get a cycle, which we denote by Q( Vir+l' u,J. We show that Q( vir+l> uiJ 

is also a minimum-mean cycle. 
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Let "Iv>(Q) denote the cost of Q relative to "Iv>. Also let i be the number of arcs of Q 

and l,. be the number of arcs of Q(Vir+l,Uir) (r = 1,2, ... ,q). Since "Iv>(a) = 0 for every 

arc a E Aav>, we have 

(3.5) 

Hence we have 

q 

(3.6) E "Iv>(Q(Vir+1,uir)) = q"lv>(Q) - q*"Iv>(Q) = (q - q*hv>(Q), 
r=l 

q 

(3.7) Eir = (q - q*)i 
r=l 

for some positive integer q* < q. It follows from (3.6) and (3.7) that 

q 

(3.8) Ebv>(Q(Vir+lI Uir)) -irllJ = (q - q*)("Iv>(Q) -ill) = 0, 
r=l 

whereas 

(3.9) (r = 1,2, ... ,q), 

due to the definition of J.L. From (3.8) and (3.9) we see that each inequality in (3.9) holds 

with equality, that is, each Q(Vir+lIUir) (r = 1,2, ... ,q) is also a minimum-mean cycle. 

The definition of Q implies that 1r(vir) < 1r(Vir+l) (r = 1,2, ... ,q). Therefore, we have 

q q 

E 1r(vir) < E 1r(Vir)' 
r=l r=l 

a contradiction. o 

Theorem 3.2. A minimum-mean cycle of the fewest arcs is a feasible cycle. 

Proof: The proof of this theorem is similar to that of Theorem 3.1. If the claim in the 

above proof is not true, then each Q( vir+l' uir) is also a minimum-mean cycle. (The proof 

up to this point is the same.) Here, we have ir < i which contradicts the definition of Q. 

o 

The cycle selection rule (*) can be regarded as a generalization of the rule of selecting 

augmenting paths in the maximum independent flow algorithm proposed by Fujishige [2] 

and later refined by P. SchOnsleben [12] and E. L. Lawler and C. V. Martel [11]. Their rule 

is to always select a lexicographically minimum augmenting path of the fewest arcs. 

In the next section, we show that the primal algorithm with minimum-mean cycle 

selection rule (*) terminates after a finite number of steps. 
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4. Analysis of the Primal Algorithm with Minimum-mean Cycle Selection 

A function p : V --+ R is called a potential in N. A base b* E B is called a maximum­

weight base with respect to p if 

(4.1) L b*(v)p(v) = 1l!:3ff L b(v)p(v) 
vEV vEV 

It is well known that a base b E B is a maximum-weight base with respect to p if and only if 

p(u) < p(v) implies u f/. dep(b,v) (u,v E V). Optimal submodular flows are characterized 

in the following theorem (see, e.g., [5], [6]). 

Theorem 4.1. A submodular flow cp is optimal if and only if there exists a potential p 
such that 

(i) for all a E A 

(4.2) ,,(a) + p(a+a) - pea-a) > 0 ===* cp(a) = ~(a), 

(4.3) ,,(a) + p(a+a) - pea-a) < 0 ===* cp(a) = c(a), 

(ii) acp is a maximum-weight base of B with respect to p. 

Furthermore, if p satisfies (i) and (ii) for some optimal submodular flow cp, then p 

satisfies (i) and (ii) for any optimal submodular flow cp. 0 

Define "('P" : A'P --+ R by 

(4.4) 

Then, the above (i) and (ii) hold if and only if for all a E A 

(4.5) 

We introduce a notion of approximate optimality, called g-optimality, obtained by 

relaxing the above optimality condition (4.5), which plays a crucial role in our analysis. 

The notion of approximate optimality was first introduced by E. Tardos [131 for the ordinary 

minimum-cost flow problem (also see [61 for submodular flows). It was also used in the 

analysis of a primal algorithm for finding ordinary minimum-cost flows by Goldberg and 

Tarjan [7]. For any g ;::: 0 a submodular flow cp is called g-optimal if for all a E A'P 

(4.6) 

As is pointed out in [7] for ordinary minimum-cost flows, we can easily show that if all 

arc costs are integers and g < 1/1VI, then an g-optimal submodular flow is optimal. For 

a submodular flow cp we denote by g(cp) the minimum g such that cp is g-optimal, and by 
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JL(tp) the mean cost of a minimum-mean cycle in N",. The following theorem establishes a 

connection between the g-optimality and the minimum cycle mean. 

Theorem 4.2. For any submodular flow tp, c(tp) = max{O, -JL(tp)}. 

Proof: This theorem easily follows from the definition of JL( tp) and is a direct adaptation 

of a result in [71. 0 

Now, we analyze the primal algorithm with minimum-mean cycle selection rule (*). 
Let tp be an arbitrary submodular flow in network N, Q be a feasible minimum-mean cycle 

in G"" and tp' be the submodular flow after changing tp along Q by (3.1). Then we have 

the following lemma. 

Lemma 4.1. c( tp) 2:: c( <p') 

Proof: Let c = c( tp) and p be a potential with respect to which tp is c-optimal. Before cp 

is changed, every arc in G", satisfies (4.6) by the c-optimality and every arc a on Q satisfies 

"Y",p = -g by the definitions of c and Q. Consider any new arc ao created by changing flow 

tp along Q, i.e., ao fI. A", and ao E A"". IT ao fI. Aa"", then arc ao is the reorientation of an 

arc on Q and hence "Y""p(ao) = c. IT ao E Aa"", then there is an arc a E Aa", on Q such 

that (a+a,a-ao), (a+ao,a-a) E Aa", (cf. [8, p.184]). By the definition of c-optimality, 

we have p(a+a) - p(a-ao) 2:: -c, p(a+ao) - p(a-a) 2:: -c and p(a+a) - p(a--a) = -c, 

which implies p(a+ao) - p(a-ao) 2:: -c. It follows that every arc in G"" remains to satisfy 

(4.6) and hence c(tp) 2:: c(tp'). 0 

Let tp (tp') be the sub modular flow before (after) the execution of an iteration in 

the primal algorithm with minimum-mean cycle selection rule (*), JL(tp) (JL(tp')) be the 

minimum cycle mean in G", (G",,), and q", (q",,) be the function defined by (3.2). Then, 

we have 

Lemma 4.2. 

(1) JL(tp) ::; JL(tp'). 

(2) IT JL(tp) = JL(tp'), then q", ::; q",' and there exists a vertex v E V such that q",(v) < 
q",,(v). 

Proof: (1) is immediate from Theorem 4.2 and Lemma 4.1. We show (2). Let Q be 

the minimum-mean cycle selected by selection rule (*) in G", and p be a potential with 

respect to which tp is c(tp)-optimal. Suppose JL(tp) = JL(tp'). First we show that if there 

is no minimum-mean cycle containing vertex x E V in G"" then this is also true in G"". 

For, suppose that there exists a minimum-mean cycle Q* containing such a vertex x in 

G"," Then, Q* must contain at least one new arc (w,z) in Aa",' but not in A", which 

is created by changing tp along Q. Therefore, there exists an arc (u, v) of Q such that 
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arcs (u,z), (w,v) E AaV'. By e(cp)-optimality and the definitions of Q and Q*, we have 

p( w) - p(z) = Jt(cp), p( u) - p( v) = Jt(cp) , p( u) _. p(z) ~ Jt(cp) and p( w) - p( v) ~ Jt( cp), which 

implies p(u) - p(z) = Jt(cp) , p(w) - p(v) = Jt(cp). It is easy to see that 

(4.7) AV'(Q) U {(u,z), (w,v)} U (AV',(Q*) - {(w,z)}) 

contains the set of arcs of a minimum-mean cycle through x in GV'. This contradicts the 

fact that no minimum-mean cycle contains x in GV'. 
Next, we consider any minimum-mean cycle Q* containing some new arc (w, z) in 

GV',. Similarly as in the above argument there exists an arc (u,v) in Q such that (u,z), 

(w,v) E AaV' and it is easy to see that arcs (u,z) and (w,v) lie on minimum-mean cycles 

whose arcs belong to the arc set (4.7). The definitions of Q and qV' imply that 1r(v) < 1r(z) 

and hence qV'(w) ~ 1r(v) < 1r(z). Therefore, the appearance of any new arc does not make 

qV' decrease. We thus have qV' ~ qV". Because at least one arc in Q is deleted, there exists 

at least one vertex v such that qV' (v) < qV" (v). 0 

From Lemma 4.2, we have 

Theorem 4.3. The primal algorithm for the submodular flow problem with minimum­

mean selection rule (*) terminates after a finite number of steps. 0 
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