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In recent years, equipment with lower operating costs has been appearing successively as a result of 

technological advances, and the need has increased for an effective replacement decision system in management. 

In order to design a practical decision system applicable to a dynamic situation with technological advances, we treat 

a replacement problem with a fmite planning horizon. In such a situation, it is important to devise a policy using 

forecast and adaptive re-estimation for taking into consideration changes in circumstances. 

In this paper, we propose a method of determining an economical replacement times of equipment for a finite 

planning horizon using the Control Limit Policy, and clarify the sufficient condition that the control limit policy 

is optimal. We analyze a special case where cash flow functions are exponential, and discuss two case studies related 

to the investigation of a certain bolt manufacturing firm. Further, by comparing with Kusaka's results [4], we 

show that this study can be interpreted as an essential extension of the former. Finally, we present a method for 

dealing with changes in circumstances. The method can easily give not only the ordinary optimal policy, but also 

a n~w revised optimal policy even when the replacement time is altered for strategic or other reasons. 

1. Introduction 

Recently. equipment with low operating costs has been appearing one after 

another as a result of advances in technology. One of the most important 

subjects for management now is to detennine the timing for economical equip­

ment replacement. In dealing with this problem. it is necessary to realize 

that "there exists an infinite chain of replacements". that is. "the present 

decision is affected by the subsequent sets of decisions". Since it is impos­

sible to forecast technological advances over an infinite time horizon. it is 

consequently difficult to determine rationally a sequence for replacements. 
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390 Y. KUSIlka & H. Suzuki 

Therein lies the fundamental problem in equipment replacement with considera­

tion of technological advances, and it has been an important aspect in con­

ventional research. 

Terborgh [10] studied a replacement problem with technological advances 

and developed the MAPI system. His study was epoch-making in introducing 

the consideration of technological advances into the replacement decision. 

However, there were some problems: he assumed the adverse minimum of future 

competing equipment (the minimum value of annual average expenses) to be 

equal to that of the present equipment, and did not consider the change in 

acquisition cost of equipment, and so on [8]. Since his study, various at­

tempts were made at replacement models with consideration of technological 

advances. Bellman [1] formulated a replacement problem in an infinite time 

horizon by Dynamic Programming (DP). Dreyfus [3] treated mUltiple replacement 

alternatives at each decision time in a finite time horizon and gave numerical 

examples. Nakamura [6] determined a sequence of replacement times for a 

problem in which the technological advances affect the equipment acquisition 

cost and annual profit, and clarified some problems in MAPI. His research is 

characterized by a new model different from MAPI, though the numerical solu­

tion is rather tedious. 

Sethi and Chand [9] have shown there is such a planning horizon T that 

the first replacement time in a finite planning horizon becomes optimal for a 

longer horizon (including an infinite planning horizon) and have presented a 

procedure for obtaining the optimal replacement time of the first equipment 

using DP. They have supposed a case where a single replacement alternative is 

available in each decision period and extended it to a problem with mUltiple 

possible alternatives, available at each decision time [2]. Their research is 

characterized by the possibility of obtaining the first replacement time in an 

infinite planning horizon based on the optimal policy for a finite planning 

horizon T, for which a forecast of technological advances is possible. How­

ever, the optimality of the subsequent replacement times remains a subject for 

future study. 

Lin et. al. [5] have given an approximate solution method for a problem 

with an infinite time horizon, in which technical progress affects both equip­

ment acquisition costs and annual operating costs, by making use of "two equal 

life models (like for like replacement models)" in which technical improvements 

stop at a certain time in the future. Their research is char."lcterized by its 

use of an approximate solution, but the numerical solution is rather laborious. 

The dynamic nature of the equipment replacement problem and the difficulty 

of its treatment are described above. It is important in the future to con-
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sider the following points in discussing equipment replacement with considera­

tion of technological advances: 

(1) It is.realistic to treat the problem with an infinite chain of replace­

ments as a problem with a foreseeable finite planning horizon and re­

estimate it according to changes in circumstances. Especially, we can 

positively consider a finite planning horizon T in the following cases: 

the overall replacement is expected at future time T, due to an occur­

rence of product change based on a new product development, or due to an 

appearance of novel equipment which can not be considered as the exten­

sion of conventional technological advances, based on a new technology 

deve lopment. 

(2) As equipment is always exposed to the danger of obsolescence due to 

technological advances, the decision to replace now or not becomes urgent 

in many cases. At the same time, we must consider the fact that the 

present decision will have an affect on subsequent decisions. 

(3) In considering the flexibility of equipment replacement, it is necessary 

to constantly ascertain its state of obsolescence due to technological 

advances by a simple method, and to reflect the result in future plans 

accordingly. 

From this standpoint, Kusaka [4] has derived a criterion representing the 

state of obsolescence. He has shown a method for determining whether to keep 

or to replace the existing equipment at the present time without determining 

the sequence of subsequent replacement times, and given the upper bound 0 f 

replacement times for a finite planning horizon. This system has a practical 

characteristic that the evaluation method is given in the form of an explicit 

function which enables us to quickly monitor the state of obsolescence, though 

it is restrictive in its application. 

This paper clarifies that: 

(1) the above problem is resolved under certain circumstances by introducing 

the concept of contra 1 Hmi t policy [7], formerly treated in the Markovian 

decision processes; 

(2) this policy can be interpreted as an essential extension of the above 

evaluation system; and 

(3) the control limit policy plays a practical role in replacement decision. 

Now we shall state a noteworthy difference in control limit policy 

between the Markovian decision processes and our study. The former treats the 

problem of replacing a part which deterLorates stochastically in a Markov chain 

with a new one of the same type, whereas the latter has a deterministic ap-
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proach and treats the problem of replacing deteriorated or obsolete equipment 

with a new one having technological advances. 

Equipment is replaced for various reasons, and this study discusses the 

replacement problem with regard to an economical and stable production volume. 

Therefore, it is difficult to apply the proposed method to replacement for 

increased capacity due to rapid growth of market or for strategic factors as 

seen in the semiconductor industry. 

2. Model Description 

2.1 Determination of replacement times for a finite planning horizon 
Equipment purchased in the x-th period (x=O,l, .•• ,t-l) is operating at 

the present period t. Here, we shall briefly denote these by "time x" and 

"time t" instead of "the x-th period" and "the t-th period" and express every 

period in terms of the beginning of the period. At each time of t, t+l, ••. 

and T-l, the existing equipment can be replaced by new equipment having tech­

nological advances during a planning horizon [t,T] and is disposed of at time 

T. The impact of technological advances appears in a decrease in initial 

operating costs and an increase in purchase price of new equipment. If the 

existing equipment is kept operating, the operating cost will increase and the 

disposal value will decrease. Moreover, the tendency of these changes lS 

predictable for the planning horizon [t,T]. It is supposed that the newest 

equipment is purchased in every replacement. The decision maker will deter­

mine the sequence of replacement times so as to minimize the present value of 

total cost for the planning horizon. 

2.2 Notation 
We introduce the following notations: 

H(x,n): operating cost at time n for the equipment purchased at time x. 

I(n) purchase price of new equipment at time n. 

V(x,n): salvage value at time n for the equipment purchased at time x. 

P(x,n): present value at time n of total cost for [n,T], starting at time n 

Ci 

with the equipment purchased at time x and following the optimal 

policy since time n. 

discount rate per period in discrete compounding interest factor 

(O<a<1). 

In order to simplify the notation, we denote the functions by g(x) +x, 

g(x) +x and g(x): convex(x), respectively when g(x) is non-decreasing, non-

increasing and convex with respect to x. 
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As stated in the section 2.1, it is considered that the initial operating 

cost H(n,n) of new equipment decreases, and its purchase price I(n) increases 

with respect to n due to technological advances. Also it is considered that 

operating cost H(x,n) increases and salvage value V(x,n) decreases with respect 

to n due to deterioration, wear, etc. There is no practical case where the 

equipment is disposed of inunediately after its purchase, but, in such a case, 

the salvage value v(n,n) will be smaller than purchase price I(n), that is, 

V(n,n)<I(n). From the above reasons, H(x,n), I(x) and V(x,n) may be repre­

sented as shown in Fig. 1. 

H(O,O) 

~
(X,X) I H(x,n) 

I I 
I H(x,n) 
I I 
I I • n o x n 

I(n) 

r.O~-------rx~-------rn~n 

V(x,n) 
I ------J. V(x,x) : 

----..... I 
... ..J 

Fig. 1 Relations between the change in x, nand 

H(x,n), I(x), V(x,n) 

2.3 Formulation 
The present value P(x,n) for the remaining periods [n,T] of the total 

cost of equipment which was purchased at time x, started at time nand 

followed the optimal policy for [n,T], is given by 

P(x,n) 
{ 

I(n) -

H(x,n) + aP(x,n+l) 

V(x,n) + H(n,n) + aP(n,n+l) 
min 

(2.1) 
for yn=l, 2, ••• , T-l ;yx=O, 1, •.. ,n 

P(x,T) = -V(x,T) for yx=O,I, ... ,T-l 

if A =R n 

i·f A =K n 

where An represents the decision at time n, and Rand K are "replace" and 

"keep" actions respectively. The optimal decision An at time n (n=1,2, .•. , 

T-l) can be determined by solving the recurrence equation (2.1). 

A decision using (2.1) ~s equivalent to 
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> 

(2.2) H(x,n) + V(x,n) + aP(x,n+1) H(n,n) + I(n) + aP(n,n+1) 

< 

Hereinafter to simplify the description, let the left and right hand 

sides of (2.2) denote respectively as follows: 

L(x,n) = H(x,n) + V(x,n) + aP(x,n+1) 
(2.3) 

LO(n) = H(n,n) + I(n) + aP(n,n+1) . 

3. Control Limit Policy 

3.1 Definition of the control limit policy and its role in replacement 

decision 
Generally in equipment replacement, the older the existing equipment is, 

the more economical R action is and, on the contrary, the newer it is, the 

more economical K action is. Therefore for economical replacement deci.sions, 

it is natural to suppose a rule to replace the equipment if it were purchased 

at time x before a certain critical time and to keep it otherwise. For this 

reason, we define the control limit xn as this critical time at time n as 

follows: 

Definition 1: When we adopt, with respect to the purchase time x of 

equipment, such a rule as An=R in the case of O~x~x and A =K in the case of 
n n 

xn <x~n, we call xn the "control limit at time n". 

(n=1,2, ... ,T-1) as the "control limit policy". 

Furthermore, we call {x } 
n 

In general, when the optimal replacement decision from (2.1) or (2.2) is 
* * gi ven by contro I limi t xn of the above Definition 1, we call xn the "optimal 

control limit". Fig. 2 represents some typical relations between L(x,n) IS and 

La (n). In each case of Fig. 2 (i), (ii), (Hi) and (iv), there exists control 

* limit xn ' In the case of Fig. 2 (ii), where L(x,n)=LO(n) holds for x such 

that x is greater than or equal to a certain value x', we can consider x, as 

* x • n 
We can also consider the two cases 

special cases where there exist control 

of Fig. 2 (iii) and Fig. 2 (iv) as 

l~m~ts x* b 1 . * d * 0 •• n y ett~ng Xn=T an xn= 

respectively. On the other hand, Fig. 2 (v) and (vi) show cases where there 

exists no control limit x* from its definition. In these cases, the optimal 
n 

replacement decision exists, but it lies out of control limit policy. 
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L(x,n) 

Fig. 2 Example of existing and non-existing patterns 

of control limit policy 

Definition 2: When the optimal replacement decision from (2.2) can be 

made at every time n (n=l,2, ••• ,T-1) based on the optimal control limit 

* we call {x } (11=1,2, •• . ,T-1) the "optimal control limit policy". 
n 

Hereinafter we shall abbreviate "optimal control limit" and "optimal 

* 

395 

control limit policy" as "control limit" and "control limit policy", respec­

tively. 

* Supposing the existence of {x
n

}, it follows 

* 
* that A =R for x:!ix and An'=K n n 

for x>x
n

. If we vary the value of n, the region of An=R is given by the 

shadowed portion of Fig. 3 (i), in which the vertical axis indicates the state 

of equipment. Therefore, potting the purchase time x of existing equipment on 

the vertical axis, An=R is selected when the purchase time x reaches the 

shadowed portion as the time n passes. Noticing this fact, we can easily 

determine the sequence of optimal replacement times n
1 

and n
2

, starting from 

an arbitrary time x, as illustrated in Fig. 3 (ii). 

Since it is realistic to consider that equipment replacement is deter-­

mined with respect to not only economical but also many other factors, espe­

cially strategic factors, therE; may be cas es where rep lacement is pos tporied 

even though it reaches the economically optimal time. In this case, the state 

of equipment remains at x as long as "keep" action has been taken. Therefore, 

* as shown in Fig. 3 (iii), if xn tn, then the height of state x remains within 

the region of R. Le •• the existing equipment remains in the state of replace­

* of xn tn, 

but some numerical examples reveal that there is a 

* tion of x +n as shown in Fig. 3 (iv). 
n 

Intuitively, we expect the case 

* {x
n

} that possesses a por-

Considering the equation (3.1) in the 

ment at every time beyond time n. 
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next section, this means that the reduction of operating cost by introducing 

new equipment becomes small compared with the increase of net invested cost. 

In these situations, it is economical to postpone replacement until time nil 

when more innovative equipment appears, that is, when the reduction of operat­

ing cost is relatively large compared with the increase of net invested cost. 

This circumstance is understood as representing an extremely symbolic aspect 

in equipment replacement with consideration of technological advances. If 

x 
T-l 

x 

0 

x 
T-l 

T-l 

(i) 

(iii) 

x 
T-l 

x 

0 

T-l 

(ii) 

x 

(iv) 

Fig. 3 Control limit policy and replacement decision 

T-l 

an arbitrary time n and the equipment state x at this time are given, the 

control limit can determine the optimal policy at all times since time n. 

The advantage of the control limit is that we can predict what policy is to 

be taken according to changes in the situation, compared with the method 

of determining either K or R action for a specific time n and state x. 

In the next section, we shall give the sufficient conditions for the 

* existence of the control limit policy {x }. 
n 
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3.2 Sufficient conditions for the control limit policy 
In this section, we derive the sufficient conditions for the optimal 

policy consti tuting control limit policy from (2.2). For convenience, we 

define an important function: 

397 

(3.1) C(x,n) := H(x,n) + V(x,n) - oV(x,n+1) foryn=I,2, •• ,T-l; yx=O,I, •• ,n. 

Here, the first term H(x,n) is the operating cost at time n 0l equipment pur­

chased at time x, and the second and third terms v(x,n)-oV(x,n+1) repreSE!nt 

the amount of decrease in salvage value when the above equipment is put i.nto 

operation at time n. The function C(x,n) can be interpreted as the cost at 

time n for operating the existing equipment purchased at time x. 

Using the function C(x,n), the following lemma holds with respect to 

L(x,n) of (2.3). 

Lemma: Foryn=I,2, ... ,T-l, L(x,n) +x on [O,n] if C(x,n) -I-x. 

Proof: We define the function R(x,n) as follows: 

(3.2) R(x,n) := P(x,n) + V(x,n) for Y n=I,2, ... ,T;yx=0,1, ... ,n. 

The function R(x,n) can be considered as the present value at time n of the 

total cost, assuming that at time n we purchase used equipment with age (n-x) 

at price V(x"n) and follow the optimal policy from that time. Rewriting (2.1) 

using (3.1) and (3.2), the decision using (2.1) is equivalent to 

(3.3) 

(3.4) 

R (x ,n) = min (c(n,n) + 

C(x,n) + 

aR(n,Tl+l) + I(n) - V(n,n) 

oR(x,n+l ) 

foryn=I,2, ... ,T-l; yx=O,I, ••• ,n 

R(x,T) = ° for yx=O,I, ••• ,T-l 

The function L(x,n), using the relations of (3.1) and (3.2), is rewritten as 

L(x,n) H(x,n) + V(x,n) + o1'(x,n+1) 

(3.5) H(x,n) + v(x,Tl) - ol'(x,n+l) + o{p(x,n+l)+V(x,n+l)} 

C(x,n) + aR(x,n+l) foryn=I,2, ••• ,T-l;yx=0,1, ... ,n. 

Under the assumption of e(x,n) +x and using (3.3)-(3.5), we next show the 

proof of L(x,n) -I-x by induction. 

From (3.4), R(x,n) +x holds as n=T. In general, assume R(x,n+l) +x 

(n=I,2, ... ,T-1). Then the lower part of the right hand side of (3.3) becomes 

non-increasing in x, i.e., e(x,n)+aR(x,n+1) +x from 0<0<1 and C(x,n) +x. 

The upper part of the right hand side of (3.3), e(n,n)+aR(n,n+l)+I(n)-v(n,n) 

is constant 'with respect to x. Thus R(x,n) +x (n=l, 2, ... , T-1) holds whether 

the left hand side of (3.3) takes the value of the upper or lower part in the 
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right hand side of (3.3). 

Applying this result and c(x,n) +x to (3.5) yields L(x,n) +x. o 

Combining (2.2) and (2.3) with the lemma, the following corollary holds. 

Corollary: If C(x,n) +x on [O,n] for \f n=l,2, .•• ,T-1, then there exists 

* an optimal control limit policy {x
n

}. 

4. Proper Functions in Equipment Replacement 

4.1 The case of bi-nonlinear functions 
It is natural to consider that both operating cost function H(x,n) and 

salvage value function v(x,n) are determined by the cost at time x when the 

equipment is purchased and by the cost of deterioration which depends on the 

use periods (n-x). Therefore we suppose that both H(x,n) and V(x,n) are bi­

non1inear functions which are represented by the product of a function of x 

and a function of (n-x). For convenience of analysis, we treat them as con­

tinuous variables, though x and n are discrete variables. The functions 

H(x,n), I (x) and v(x,n) are assumed to be continuous and differentiable l.ith 

respect to x and n. Under more practical assumptions, these functions are 

given as follows (see also Fig. 1): 

(1) Operating cost H(x,n) is determined by both the initial operating cost 

hex) at purchase time x which depends on technological advancements, and 

the deterioration rate 1Jih (n-x) which depends on the use periods (n-x) in 

the following way: 

(i) 

(ii) 

H(x,n) =h (x)1Jih (n-x) for \f n;;:;O; \f n;;:;x. 

The initial operating cost hex) decreases year by year due to 

technological advances, and the decreasing rate diminishes succes­

sively, That is, 

(a) h(x»O, (b) hex) +x, (c) hex): convex(x). 

(iii) 1Jih (Y) becomes higher at an increasing rate due to deterioration, and 

so forth as the use periods y=n-x becomes longer. That is, 

(a) 1Jih (Y) >0, (b) ~h(O)=l, (c) 1Jih (Y) ty, (d) 1Jih (Y): convex(y). 

(2) Equipment purchase price r(x) becomes higher year by year at an 

increasing rate. That is, we let 

(a) I(x»O, (b) I(x) tx, (c) I(x): convex(x). 

(3) Salvage value V(x,n) is determined by the value vex) at time x, i.e., 

the salvage value immediately after the equipment is purchased, and the 

rate 1Jiv (n-x) which depends on the use periods (n-x) as follows: 
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V(x.n)=v(x)1jJ (n-x) for V x;:;O; V n;:;x. 
v 

v(x) is considered less than the purchase price. That is. we let 

v(x)=sr(x). 

where S (O~S<l) is the decreasing rate of equipment salvage value 

immediately after the equipment is purchased at time x. 

399 

1jJ (y) is the rate which represents the decrease in salvage value as 
v 

the use periods y=n-x become longer and the decreasing rate diminishes 

successively. Further. the second derivative function is decreasing. 

That is. we let 

(a) 1jJ (y»O. (b) 1jJ (0)=1. (c) 1jJv(Y) +y, (d) 1jJ (y): convex(y), 
v v v 

d
2

1jJv(Y) 
(e) 2 +y. 

dy 

In discu.ssing the properties of C(x,n) under the above assumptions, we 

shall examine. some properties of the functions H(x,n) and V(x,n)-aV(x,n+1) 

which are terms of C(x,n). 

Under assumption (1), it is easily shown that the following properties 

hold with respect to H(x,n): 

(4.1) 

(i) H(x,n) >0, and is continuous and differentiable forV x;;:O. V n~x. 

(H) H(x,n) +x. 

(iii) H(x,n): convex (x) • 

(iv) H(x,n) tn. 

Similarly under assumptions (2) and (3). it is easily shown that the following 

properties hold with respect to the function V(x,n)-av(x,n+l): 

(4.2) 

(i) v(x,n)-av(x,n+1 »0, and is continuous and differentiabl(! 

for V x;:;O; V n;:;x. 

(ii) V(x,n)-aV(x.n+l) tx. 

(Hi) V(x,n)-aV(x,n+1): convex(x). 

(iv) V(x,n)-av(x,n+1) +n. 

The behavior of H(x.n) and V(x,n) with respect to n is shown in Fig. 4. 
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H(x,n) v(x,n) 

o~----------n'-1--n..L2-X o 

Fig. 4 Change in n and behaviour of H(x,n) and V(x,n) 

From (i) and (iii) of (4.1), and (i) and (iii) of (4.2). C(x,n) of (3.1) 

is convex and continuous for x. Therefore. the function R(x.n) is piece.wise 

convex with respect to x from (3.3) and (3.4), so that the function L(x,n) is 

also piecewise convex in x from (3.5). 

When L(x,n) is piecewise convex in x, there is a possibility of an optimal 

policy in the case of I(X»V(x,x)=v(x) (S<l). However, even in this case we 

can also give a simple numerical example where there is no control limit policy 

(when H(x,X). I(x) and V(x,n) are given by exponential functions and S is 

close to 1). In general, if L(x,n) ispiecewise convex with respect to x and 

L(x,n) +x does not necessarily hold, it is not easy to derive the necessary 

and sufficient conditions for the existence of the control limit. Hence, we 

will give a sufficient condition for the existence of the control limit policy 

if the functions H(x,n). I(x) and V(x.n) satisfy assumptions (1)-(3). 

Considering c(x,n): convex(x) under assumptions (1)-(3). the sufficient 

condition of the corollary in the section 3.2 is equivalent to 

(4.3) C(n-1,n) ~ C(n.n) for V n=-l,2, ••• ,T-1. 

Here, C(n-1,n) and C(n,n) have been defined in (3.1). Equation (4.3) implies 

that the cost per period of the newest equipment at an arbitrary time n is 

less than or equal to that of the newest at time n-1. 

4.2 The case of exponential functions 
In economic phenomena, there are many variables which change at a con­

stant rate according to the law of diminishing returns or the law of increasing 

returns. Moreover, there will be cases where the decision maker can estimate 

their rates from past experience and make a rough forecast of future tech­

nological advances. Here, as a special case of the section 4.1, we will 

discuss the case where the functions H(x,n), I(x) and v(x,n) are given in the 

form of exponential functions, that is, 
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H(x,n) x n-x 
= hO' P (hO"H(O,O»O, p>l, ,<1) 

(4.4) I(x) x 
(VO"I(O), Cl> 1) = vOO 

V(x"n) SI (xHn- x (O:>S<l, 0<<jJ<1 ) 

where , represents the decreasing rate of initial operating cost due to tech­

nological advances, p the increasing rate of operating cost due to deteriora­

tion and so forth, 0 the increasing rate of purchase price of equipment, $ 

the decreasing rate of salvage value, and 13 the falling rate of salvage value 

of new equipment immediately after its purchase. Equation (4.4) satisfies all 

the asstnnptions (1) through (3) with respect to the functions H(x.n). I (x) and 

V(x,n). and it is easily shown that the function C(x.n) of (3.1) has the form 

of 

(4.5) 

and is convex with respect to x. For 13=0. there holds the sufficient condi­

tion of the corollary in the section 3.2 from (4.5). On the other hand. for 

0<13<1. the value xO. which minimizes C(x.n) with respect to x. is formally 
n 

obtained as the root of equation aC(x.n)/ax = 0 as follows: 

(4.6) 0 n log(p/$) + lOgM n log(p!<P) + logM x log (0 7<P) + 10g(p/T5 log(p/$) + log(ol<) n 

where M = 
hO log(p/T) Hence. we can substitute S (l-$u)vO 10g(0/$) 

(4.7) 0 
!?; for Vn=1.2 ••••• T-l x n n 

for the suffi.cient condition (4.3). Noticing that X
O is a linear function 
n 

of n in (4.6). it can be seen that (4.7) holds in the case of 

(4.8) M ~ 1 + C(x.n) +x 

where 
.,. 

n " 10g(oIT) • 
logM 

for all 
.,. 

n~n 

Thus. the sufficient condition of the eorollary in the section 3.2 is re­

written as 

(4.9) 1. 13=0 

2. * 0<13<1. M~l. T-l~n 

Note that the relation O~S<l is necessitated by the asstnnption (3)(ii). 

With regard to the sufficient conditions of (4.9). the condition of M!?:1 and 

* the size of n in the second condition are brought into question. As shown in 

the ntnnerical examples stated later, the relation of (4.8) becomes realistic 
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* since M is greater than 1 and n becomes large for larger values of hO/{S(l-

* $a)v
O

}' This fact implies that M and n can be considered as reflecting the 

essential characteristics of equipment replacement. 

4.3 Comparison with the research by Kusaka 
In order to relate this study with Kusaka's, we quote the criterion 

derived by him in the case of p>$ (see [4], pp.139-141). Notice that the 

planning periods [O,T] and the operating cost H(x,n) of this paper are 

respectively represented by the planning periods [l,T+l] and h(x,n) in [4]. 

By using our notations. the criterion of [4] is written as 

(4.10) 

where 

(4.11) 

n (n) 
x 

n (n) 
x 

* El (n) 

* E
2

(n) 

* > E2 (n) -+ A =R 
n 

-

-

-

H(xzn) 
I (n) 

A =K n 

- H(n,n) 
- V(x,n) 

l_(~a)T-n 

T-l 
}: (pa)r-n 

r=n 

l-$a 

hO LX (pn-x _ L n- x ) 

Vo OX (on-x _ sq,n-x) 

The criterion of (4.10) and (4.11) constitutes a practical method which 

* * enables us to quickly calculate nx(n), El (n) and E2(n) and easily ascertain 

the state of obsolescence. However. a decision may be impossible in the case 

* * . * * of El (n)<nx (n)<E2 (n) because of the relat10n El (n)<E2 (n). That is to say, as 

shown in Fig. 5. we cannot determine whether a K or R action should be adopted 

at any time n such that nX<n<nR• where nx and nR are defined by the values of 

* * n such that nx (n)=E 1(n) and nx (n)=E2 (n). respectively. 

* Now in the case where there exists a control limit policy {x }. we will 
n 

relate the replacement method using the control limit policy to that of (4.10) 

and (4.11). 

* * We construct the monotonous non-decreasing progression {Yn+
1

• Yn+
Z

' ••• , 

* * * * YT} from the control limit policy {xn+1' xn+2' ••. , xT} by making use of a 

* * * * rule such that Yn=O and yi=max{xi'Yi -1} (i=n+l, ••.• T). Then the optimal 

replacement times on or after time n+l can be completely determined by this 

monotonous non-decreasing progression. That is, the optimal first replacement 

* time s for the present equipment purchased at time x is given by the smallest 
x 
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* * i such that y. 1 <x~y. U=n+1, n+2, ..• , T). From this, it can be seen that 
~.- ~ 

* *. * * the relation s'!($.sn holds Sl.nce x$.n, where Sx and sn (n+l $. s~,s~ $. T), which are 

respectively the optimal first replacement times on or after time n+1 of 

P(x,n+1) and P(n,n+1) in (2.2). Noticing that there occurs no replacement 

* * until time sx-1 for either case P(x,n+1) or p(n,n+1), and denoting Sx by j, 

then aP(x,n+1) and aP(n,n+1) in (2.2) can be expressed by 

I oj-np(x,j) for j=n+1 

aP(x,n+1) j-1 
(PCl)r-n j-n 

H(x,n) L + Cl p(x,j) for V j=n+2, ••• ,T 
r=n+1 

(4.12) 

( oj-np(n,j) for j=n+1 

aP(n,n+1 ) j-1 
(p Cl) r--n + ClJ-np(n,j) H(n,n) L for V j=n+2, .•• ,T 

r=n+1 

Substituting (4.12) into (2.2) and using the relations of (3.2) and (3.4), 

then (2.2) is rewritten as 

(4.13) 

where 

n (n) 
x 

> 1-($Cl)j-n 
j-1 

< L (PCl)r-n 
r=n 

+ t:. (n) 
x 

* _ E (n) 
x 

t:. (n) _ 
x 

(1-a)(~Cl)j-noI(n)-{R(x.j)-R(n.j)}Clj-n 
n-x j-1 r-n 

{1-a(~/o) } L (pCl) oI(n) 
r=n 

Therefore, the first replacement time s* on or after time n+1 for the present 
x 

equipment purchased at time x can be considered as being the value of n at the 

* intersection of n (n) and E (n) (minimum value of n in the case of mUltiple 
x x 

intersections) as shown in Fig. 5. This implies that the decision 

be rewritten as n<s; ~ An=K and 

Adding Kusaka's result to this fact, 

of x>x* ~ A =K and x$.x* ~ An=R can 
n n n 

when we vary n at a fixed x. 

that 

(4.14) 

criterion 

n'?s* ~ A =R 
x n 

it is shown 

holds as shown in Fig. 5. Relation (4.14) implies that the situation where 

* * the replacement decision is impossible (i.e •• El (n)<nx(n)<E2 (n) or equivalently 

nK<n<nR) will cancel itself out. 
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5. Case Studies 

Y. Kusakll cl: H. Suzu1ci 

I 
I 
I 
I --------------- ---~ 

I ,/' 
'" I , 

Ex(n) ,,( 
~--"-.",,.,,, I 

Et< (Il) _~... I 

'--- .... : : 
I I 
I I 
I I 
I I 
I I 
I I 
I : 

~----'--"""':_----'---...... il 
x+1 n K s* T-1 

x 

Fig. 5 Relation between n (n) and X 
x n 

For case studies, we shall consider investigations made for a certain 

bolt manufacturing firm. We discuss the problem of modernizing a cold forging 

machine and of replacing a continuous heat treatment furnace (hardening and 

annealing) as follows: 

Case 1: With regard to cold forging machines, it is expected that produc­

tion capacity and availability will increase due to advances in automation 

technology. Therefore, by introducing such technological advances, an im­

provement of the existing equipment would reduce labor costs and electricity 

costs as a result of shorter operating hours. Considering the sum of labor 

costs and electricity costs as those concerned with improvement decision, we 

should like to examine whether the improvement is economical or not and, if 

so, when it should be made. The existing equipment was purchased in 1981 and 

was planned to produce six hundred thousand bolts per month for 10 years. 

Expressed in terms of 3-month periods, the equipment was purchased in the O-th 

period and expected to be salvaged in the 40-th period, the planning borizon 

totaling 40 periods. The man-hours required to achieve the planned production 

were calculated based on the production capaci ty and avai labi li ty of equipment 

updated with the new technology. Further, the annual changes in initial 

operating costs were estimated with consideration for annual increase of labor 

costs. Annual changes in operating costs considering changes in labor costs 

were also estimated for the existing equipment. Parameters, and p were 

estimated based on these data. The values of 0, ~ and S were estimated based 

on the experience of the user in consideration of the characteristics of the 
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equipment and market. For the value of Cl, the user's data were adopted. The 

set of estimated parameters is given in Table 1. Notice that in sensitivity 

analysis these values, with the exception of parameters to be varied, are 

assumed to be standard parameters. 

Table 1 Parameter Values 

hO = 960 thousand yen/period (3.84 million yen/year), Vo = 3.5 million yen 

T = 0.989846/period (0.96/year), 

1.00496/period (1.02/year), 

Cl = 0.974004/period (0.90/year), 

p 1.00496/period (1.02/year) 

O.927842/period (0.05/10 years) 

o 

With respect to M in condition (4.9), the greater hO/{a(l~CI)vO} and 

log(p/T)/log(o/~) are (i.e., operating costs are higher in relation to the 

decrease in equipment value) greater the possibility for existence of the 

control limit policy becomes. Table 2 shows the relation between the two 

* quantities M and n related to the sufficient conditions for the existence of 

control limit policy, and the two rates hO/vO and a(the decreasing rate of sal­

vage value immediately after replacement). The greater hO/vO and the smaller 

a, the greater the possibility of existence of the control limit policy. Even 

in the case of a=0.9, which has the least possibility of existence of a con-

* trol limit policy, n is about 32 periods (8 years) or longer when hO/vO~0.75. 

Thus, for the case of hO/v
O

"?'0.75, it can be assumed that there exists a con­

trol limit policy for a planning horizon of 8 years. Note that the control 

limit policy always exists from condition 1 of (4.9) in the case of depreciat­

ing equipment completely (a=O). 

Fig. 6 and Fig. 7 show two control limit policies at (i) a=0.9 and (ii) 

a=0.5 respectively, and with hO=960 and hO=1280 (monetary unit represents ten 

thousand yen). Here the cases of hO=960 and hO=1280 are equivalent to produc­

tion volumes of 600 thousand and 800 thousand bolts per month, respectively. 

We denote the optimal time of the j-th replacement for the planning horizon as 

tj" Then, it i.s optimal to replace once at tl=17 and t 1=19 in the cases of 

a=0.9 and a=0.5 respectively, as in Fig. 6. On the other hand, replacement at 

tl=ll and t2=24 becomes optimal in the case of a=0.9, at t 1=18 in the case of 

a=O.5 as in Fig. 7. 

Fig. 8 shows that the optimal replacement times in this study for a=O are 

given by t 1=20 and t 1=19 in the cases of hO=960 and hO=1280, respectively. 
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* Table 2 Relations between (5, hO/vO and M, n 

h
O

/v
O

=0.25 h
O

/v
O

=0.50 h
O

/v
O

=0.75 hO/vO=1.00 hO/VO=1.25 

* * * * * M n M n M n M n M n 

(5=0.9 0.55 - 1.10 5 "1.64 32 2.19 51 2.74 66 

13=0.5 0.99 - 1.97 44 2.96 71 3.94 90 4.93 105 

(5=0.1 4.93 105 9.86 150 111.78 177 19.71 196 24.94 211 

x x 

(i) (5=0.9 (ii) 13=0.5 

Fig. 6 Control limit policy at hO=960 

x x 

(i) 13=0.9 (ii) 13=0.5 

Fig. 7 Control limit policy at hO=1280 
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x 

(i) hO=960 (ii) hO=1280 

Fig. 8 Control limit policy at 6=0 

For the case of h
O

=960, the decision becomes At=K at present time t=30 if 

replacement has not been made until t=29. On the other hand, for the case of 

h
O

=1280, replacement at present time t=30 remains advantageous even when no 

replacement has been previously made. 

As stated in the section 3.1, the fact that the control limit policy 

possesses a decreasing region with time has an important meaning in the re­

placement decision. It is by far more flexible and practical to examine 

replacement times with this figure as compared to the method of determining 

only the sequence of an optimal policy. 

Case 2: For continuous heat treatment furnaces, energy saving has been a 

major motive fo~ replacement in an era of low economic growth. In order to 

reduce heat losses in the furnace, such technologies as utilizaticn of waste 

gas, change in heating method, computerized control of operating conditions, 

and so forth have been developed. The existing equipment was purchased in 

1984 and was planned to operate for 10 years. Denoting 3 months as one period, 

the equipment was purchased in the O-th period and is planned to be used up to 

the 39-th period, the planning horizon totaling 40 periods. We should like to 

examine whether the replacement is needed or not in this horizon with the 

above-mentioned technological advances taken into consideration. 

A set of estimated parameters, based on the investigations of both the 

user and maker, is given in Table 3. Here, the decreasing rate T of initial 

operating costs due to technological advances was estimated by the maker. 

Since the salvage value of equipment can be considerecd as 0 (6=0), the con­

trol limit policy exists from condition 1 of (4.9). Fig. 9 shows the control 

limit policies .In the cases of hO/vO=0.20i+4 and 0.30, respectively. The case 

of vO=58.95 in Table 3 corresponds to Fig. 9 (i). Each of the cases (i) and 
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(ii) of Fig. 9 shows that i..t is economical to rE;!place the equipment once. 

Heat treatment furnaces are replaced after 6-7 years since purchase in most 

cAses, and this is considered to be due to factors such as the shortened usage 

periods under technological advances, and a leasing term of 6 years. 

Table 3 Parameter Values 

hO = 12.05 million yen/period (48.2 million yen/year), Vo = 58.95 million yen 

T = 0.98465/period (0.94/year), p 1.00742/period (1.03/year) 

1.01227/period (1.0S/year), 0.927842/period (0.05/10 YE~ars) 

a = 0.974004/period (0.90/year), f3 .. 0 

x 

Fig. 9 Control limit policy and hO/vO 

6. Method for Revised Forecast 

If the parameters forecasted in the past are applicable in the future, 

the replacement decision can be made based on a control limit policy obtained 

by extrapolating the parameters into the future. However, if the environment 

has changed, it may lead to incorrect decisions, and we need new forecasts. 

We shall briefly mention a fundamental method for dealing with such cases based 

on the results analyzed in this paper. 

To simplify the description, let the present time be the O-th period. 

We adopt the same notations for cost functions and parameters as in the case 

of new equipment starting at present time O. However, for existing equipment 
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that is to be kept, we express the newly re-forecasted cost functions and 

parameters using an apostrophe "," as follows: , 
H (O,m): operating cost at time m;;;O for the existing equipment re-

estimated at present time o. 
V' (O,m) : salvage value at time rni::0 for the existing equipment re-

estimated at present time o. , , , , , 

409 

p , ~ , a , hO' vO: newly re-estimated values for the existing equipment 

in the case of exponential funcitons. 

Suppose that there exists an optimal control limit policy {x*} when 
n 

starting with new equipment at time 0, and that it has been obtained. If we 

replace the existing equipment at time m (m=O,l, ••• ,T), we can make replace-
* . ment decisions after m according to the {x } obta1ned under a new environment. 
n 

Thus, we can utilize all the method as proposed up to this point. When m=O, 

this implies that R action should be taken at present time, and m=T means that 

K action should be taken for the duration of the planning horizon. Let Q(m) 

be the present value of the total cost for [O,T] when starting with the existing 

equipment at present time 0, replace it at the first replacement time m (m=O, 

1, ..• ,T) and follow the optimal policy. Then Q(m) is given by 

(6.1) Q(m) = 

I(O) - V' (0,0) + H(O,O) + aP(O,l) for m=O 

m-1 
L arH' (O,r) + am{I(m)-v' (O,m)+H(m,m)+aP(m,m+1)} 

r=O 

T-1 T , 
L ar 

H' (O,r) - a V (O,T) 
r=O 

for V ~=1 ,2, ••• , T-1 

for m=T . 

, , 'r 
If the cost functions are given in the exponential forms of H (O,r)=hOp , 

r, , , 'r r 
H(r,r)=hOT , V (O,r)=S vO~ and I(r)=vOo , then (6.1) is rewritten as 

Vo - S'v~ + hO + aP(O,l) for m=O 

(6.2) Q (m) = 

m-1 rn-1 
h~ L (p'a)r + a'v~{(l-~'a) L (~'a)r-1} 

r=O r=O 

for V m=l ,2, ••• , T-1 

for m=T 

Here, p(x,n) (n=l ,2, .•• ,T-1; x=O,l, ..• ,n) is known since the control limit 

policy has been already determined. 
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Hence the minimal total cost under the optimal policy is given by 

min Q(m) 
(6.3) mE {O,l, ••• ,T} 

* and let m satisfying (6.3) be m , which represents the next replacement time 
* . under the new environment. Assume that the control limit policy {x } 1.S 
n 

determined under the new environment as shown in Fig. 10. Since the existing 
. * equipment is replaced at t~me m , we can determine the replacement timE!s on or 

* * after m based on the new control limit policy {x } as illustrated by t.he 
n 

arrow line in the figure. 

x 

IL-___ .L..--'~-------_=. n 
o 

Fig. 10 

7. Conclusion 

Use of {x*} in revised forecast 
n 

In this paper, we have discussed the problem of determining economical 

replacement times of equipment using "control limit policy" and clarified the 

sufficient conditions that the optimal policy is given by the control limit 

policy. Next, we have shown the relation between the control limit policy and 

the conventional research [4], and discussed the role that the control limit 

policy plays in replacement decisions. Further, we have applied the method to 

some practical cases. The results show that the method is convenient and 

practical for evaluating replacement with consideration of technological 

advances. 

In general, since technological advances have a tendency to shorten the 

economic life of equipment, we need to constantly forecast replacement times 

of equipment for the planning horizon. The proposed method is proven to be 

effective in meeting this need. 
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