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Abstract A non·preemptive M/GI/l queue with several job classes is considered. At the completion of the 

service time the multiple feedback occurs. The objective is to maximize the expected discounted reward with the 

infInite horizon. Using the Harrison's method, the model is formulated as a bandit problem and its optimal policy 

is characterized by the index rule. Next it is considered that the service time is decomposed into quantum of the 

unit span. This model is a queueing system of a single feedback. Using the index rule, three type of optimal job 

schedulings are discussed. 

1. Introduction 

We consider an M/GIlt queue with several job classes. A single job is 

served at a time and the served job is not interrupted by the other job, that 

is, nonpreemptive. When the service is completed, the multiple feedback will 

occur. The cost structure is a pure expected reward received at a decision 

epoch. Our problem is to obtain the optimal job scheduling which maximizes 

the expected discounted reward with the infinite horizon. Our model is formu­

lated as a bandit problem with Poisson inputs and the multiple feedback. 

In a single server queueing system the optimal job scheduling which mini­

mi~es the expected holding cost has been studied. The optimal policy is 

characterized by a priority service discipline. When the service time is 

known in a nonpreemptive queue "the shortest-processing-time-first" discipline 

(SPTF) is optimal. When the expectation of the .service time is known in a 

nonpreemptive queue "the shortest-expected-processing-time-first" discipli.ne 

(SEPTF) is optimal. When the service time is known in a preemptive queue, 
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372 S. Nishimura 

"the shortes t-remaining-processing-time-fi rst" di scip line is optimal [16]. 

When the distributions of several job classes are known, the optimal 

priority is obtained by the index rule. For an average criterion Sevcik [17] 

studies no arrival case and Klimov [10, 11] studies an arrival case with the 

sengle feedback. A multiple feedback job scheduling is studied by Meilijson 

and Weiss [12]. For a discounted criterion Harrison [6, 7] studies a non­

preemptive M/G/l queue without the feedback. 

A bandit problem is constructed by independent projects. We decide to 

work on one of these projects, we receive a reward and the next state of the 

project is determined by the transition probability. Gittins [4] proves that 

the optimal policy is given by a dynamic allocation index (DAI) and shows the 

several applications including job scheduling. Whittle [20, 21, 22] obtains 

the integral expression of the expected discounted reward and proves the 

optimality in both no arrival and arrival cases. Many applications of the 

bandit problem are discussed in [2, 5, 8, 13, 14, 19J. 

In Section 2, we introduce our model. In Section 3, the transform for­

mula of the holding cost to the immediate reward is obtained. From this 

formula holding cost feedback problems can be represented by a bandit problem. 

In Section 4 for a fixed ordering set, the expected discounted reward is 

obtained. In Section 5, if the index is monotone decreasing with respect to 

the ordering set the integral representation of the expected reward is obtained 

and the optimality of DAr is proved. In Section 6, it is considered that the 

service time is decomposed into quantum of the unit span. This model is a 

queueing system of a single feedback. Using the index rule, three types of 

optimal job schedulings are discussed. For example. if the exiti.ng probability 

is unimodal, the optimal policy is one of the multi level processor-sharing 

scheduling algorithm. 

2. Model 

We consider an M/GI/l queue whose arrival jobs are distinguished into 

several classes. These job classes are numbered as k=l,2 •••• and the set of 

all job classes is denoted as K. The set K is finite or countably infinite. 

Let n
k 

be the number of class k jobs waiting in the queue including th,~ job 

being served. The state of the system is represented by s=(n
1 
•••• ,n

k
, ••• ) and 

the state space is S = {s=(n
1 
•••• ,n

k
, ••• ): I nk<oo}. Suppose that arrivals of 

kEK 
several class jobs are independent Poisson processes and the arrival rate of 

class k jobs is Ak(A
K
= I Ak<OO). Let Fk(t) be the distribution function of the 

kEK 
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service time X
k 

for class k jobs with the Laplace-Stieltjes transform (LST) 

J
QO -Si" 

'l'k (S) = 0 e 'dFk (t). We assume infkExk>O. For a fixed a, we simply denote 

it as 'l'k' 

We assume that one job is served at a time and its service duration is 

not interrupted by the other job, that is, the non-preemptive discipline. 

For the state s, the set of available actions is {O} U {k : nk>O}, where the 

action k(>O) is to serve a class k job and ° represents the idle action. At 

the completion of the service, a multiple feedback occurs immediately. L'~t b. 
1-

be the number of class i jobs being added to waiting jobs by feedback and 

b=(b
1

, ... b
i

, .... ) be the multiple feedback vector. Denote by P(bik,x) the 

probability of b under the condition that a class k job is served and its 

service time is x. Assume that the 

formly bounded, i.e. I(Ib.)P(b/k,x) 
b i 1-

expected number of feedback jobs is uni­

;:;;; B. If Ib. = 0 or 1, this is a single 
. 1-

1-

feedback case discussed in Section 6. We formulate our model as a semi-Markov 

decision process. Assume that the decision epoch is the completion of the 

service time, or the arrival time of a Ilew job only when the idle action is 

chosen. Let us put that for k>O, 0k=(O" ... , 0, 1, 0 ... ) is the kth ullit 

vector and 00=(0, ... , 0, ..• ) is the zero vector. If a class k job is served 

and during this service time, the arrival job vector according to Poisson 

processes is a=(a
1

, ••• , a
k

, ••• ), then the state of next decision epoch is 

s-ok+a+b. If the idle action is chosen and the first arrival job is in class 

i, then the next state is s+oi' 

The cost structure in our model is a pure reward I
k

, which is immediately 

received at a decision epoch when a class k job is chosen to be served. In 

Section 3, we discuss the reduction of a both reward and holding cost problem 

to a pure reward problem. To simplify the notation we put rO=O. Let VN(s) 

denote the expected S-discounted reward of an infinite horizon with the initial 

state s, when a policy 7T is employed. Let T(n) and k(n) (n=1,2, • •• ) be the nth 

decision epoch and the nth action at T(n), respectively. Then we have 

(2.1) v (s) 
N 

Our problem is to obtain an optimal policy which maximizes V (s). We will 
N 

prove that an optimal policy is characterized by the priority service rule 

whose order i.s determined by an index. 

Our model is a bandit problem whose job classes are countably infini.te 

or finite. Jobs arrive according to independent Poisson streams and at the 

completion of process time the multiple feedback occurs. The criterion i.s to 

maximize the expected discounted reward. 
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3. Reward and Holding Cost Case 

In this section we prove the reduction of a both reward and holding cost 

problem to a pure reward problem. Such an approach to a stochastic job 

scheduling without the feedback is proved in Bell [1], Stidham and Prabhu [18] 

and Harrison [6]. Using the Harrison's argument we prove this in feedback 

case. 

Suppose that rk* be the reward when the service of class k job is com­

pleted and hk* be the holding cost for each unit of time when a class k job 

stays in the system. As a natural assumption we put that both sUPkirk*i and 

SUPkihk*i are finite. The reduction of a general problem (rk* and hk *) to a 

pure reward problem (r
k

) is proved. 

We define right continuous step functions as follows. 

the number of class k jobs in a queue waiting or being served at time 

t. 

the number of class k jobs that arrive by a Poisson stream with the 

rate Ak before time t, not including initial jobs N
k

• 

the number of class k jobs that arrive by the mUltiple feedback before 

t. 

Dk(t) = the number of class k jobs whose service is completed before time t. 

From these definitions 

(3.1) 

From the renewal theorem it follows that for sufficiently large t, 

(3.2) 

and 

(3.3) t EIBk(t) s [suPk{l/EXk }+l] sup I(?bi)P(bik, x) < 00. 

k k.x b ~ 

where x
k 

is the service time of a class k job. These inequalities imply that 

EIDk (t) and EIBk (t) are bounded by a linear function of time t. Under Cl 

k k 
policy n. the total expected discounted reward of infinite horizon with the 

initial state 5 in a general problem is given by 

(3.4) v *(5) 
n 

From the partial integration we have, 
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NklS + E[('e -13tAk (t)dt - 13- 1 [e -StBk(t)]; 

(3.5) 
+ /3-1 ('e -StdBk (1;) + 13- 1 [e -StDk(t)]: - /3-1 fo"'e -StdDk(t)]. 

From (3.2) and (3.3), the third and the fifth terms in the right-hand side are 
r'" -St 2 zero and the second term is EJo e Ak(t)dt "kIS. Substituting (3.5) into 

(3.4) we get that 

(3.6) 

where 

v *(5) 
71 

We transform the reward r k * at the completion of service and the holding cost 

hk * to the pure immediate reward r k at the decision epoch such that 

(3.7) 
r = 

k 

where the last term in (3.7) is the expected discounted holding cost of multi­

ple feedback jobs incurred in advance. In a bandit problem a pure reward is 

assumed and the frozen projects contribute no reward. From this transformation 

the job scheduling which minimizes the expected linear holding cost, is formu­

lated as a bandit problem. As a tax problem, similar discussion is given in 

[19] . 

(3.8) 

v *(5) 
TI 

E [ ~ e-/3T(n)r ] - H 
TI n=l k (n) 

Since H is independent of the policy TI, using (3.7) the general problem and 

the pure reward problem are equivalent and the reduction is completed. 

4. Ordering Set and Index 

First we consider the priority service discipline whose order is deter­

mined by an ordering set r. For any i and j(i"'j) in K, one of (i,j) and Uti) 

~s ~n r. If U,j) £ r then we interpret that job i should be served before job 

j. Therefore r has a transitive property such that (i,j) £ rand U,k) £ r 

imply (i,k) £ I'. Let Yk={i: (i,k) Er} be the set of higher priority jobs i 

than k. And also we put Zk=Y
k 

U{k}. If the set JCK satisfies that k£ J and 
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(i ,k) E r imply i E J, we say that J is a cut-off set of r. If J H a cut-off 

set, there is a cut-off point of ording r and any job whose priority is higher 

than the cut-off point is contained in J. It is trivial that both Y
k 

and Zk 

are cut-off sets. In this section we fix the ordering r and obtain the job 

index. 

Denote by B(s,J) the first epoch when all jobs in J are cleared under the 

initial state s. Put s(S,J)=E[e-SB(s,J)] and in particular a(i,J)=s(o.,J) . 
.1 

n. 
Since each service time is independent we get s(s,J)= IT a(i,J).1. Let U(s,J) 

iEJ 
be the expected discounted reward during B(s,J). For the empty set ~ we put 

s(s,~)=l and U(s.~)=O. For any SES we introduces s'=(n
l

, .•.• nk - 1, 00, nk +1, 

.•• ) and 5=(0, •.. , 0. co. O ••.. ). Let us define the index of the class k job as 

(4.1) 

From the assumption infkEXk>O. we have that C = sUPklrkl/(I-suPk~k) ~ sUPklckl 

or C
k 

is uniformly bounded. Using the index C
k

• Harrison [6, 7] represents 

the discounted expected reward of an M/GI/l job scheduling problem without 

feedback. His method can be applied to an multiple feedback problem. Suppose 

that the initial state is 5'. First all jobs whose priority is higher than k 

including arrival jobs from Poisson streams and mUltiple feedback, are served. 

During this time interval B(s', Y
k

), the expected discounted reward is lJ(s', 

Yk ) = u(s. Yk ) and the LST of the busy period is s(s, Yk ) = s(s', Yk ). The 

next reward is C
k

. Then the total expected discounted reward with the initial 

state 5' is 

Using the same discussion we also have 

Finally we get 

(4.2) 

(4.3) 

Lemma 1. For any cut-off set J. we have 

U(s, J) = L (s(s, Yi ) - s(s. z)Ci 
iEJ 

Proof: First we assume that J is finite. Put J = {i(l), ... , i(l)} .such 

that for all u=l, ...• 1. J = U(1) • •..• i(u)} are cut-off sets. that is. 
u 
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i(u) (u=1, ... , 1) is the service order according to r. Then we have 

1 
U(s, ,7) I (~(s, J u- 1) - I; (5, J » C '( ) 

u=1 u ~ u 

I (1;(5, Y) - 1;(5, Z,»C, 
ir:;J .L ~ 

Next suppose that J = U(u); u=I,2, .•• } is an infinite cut-off set. But i(u) 

(u=1,2, ... ) is not necessarily the same as the order of r. For any cut-off 

set J' we define N(J') as the number of decisions during B(s, J'). For each 

sample path. 
1 
I (N(Z,( »'-N(Y,( ») +N(J) (as 1--) 

u=1 ~ u ~ u 

Since icki is uniformly bounded by C, the right hand side in (4.3) is abso­

lutely convergent. It follows from the dominated convergence theorem we have 

U(s, J) 

Thus the desired result is obtained. 

Fix a cut-off set L and let 7f be a priority policy such that for any i r:; L 

the service order is determined by r and any job in class i r:; K-L is never 

served. Let U*(O,L) denote the expected discounted reward under a policy 7f 

during the initial busy cycle when the initial state is empty. 

be the Poisson arrival rate of the set L. Then 

U*(O,L) = AL/(AL+S) x I AkU(ok' L)/AL kr:;L 

I AkU(ok' L)/(A +S) . 
kr:;L L 

We define a(L) _ I Aka(k,L) lA as the LST of the busy period with the dummy 
kr:;L L 

variable S. Then the LST of the busy cycle is ALa(L)/(AL+S) and 

v (0) 
7f 
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Theorem 2. We have 

v (s) = U(s, L) + ~(s, L)V (a) , 
n n 

where U(s, L) = L (~(s, Y.)-~(s, z.»C. and . ~ ~ ~ 

v (a) 
n 

~E:L 

L AkU(ok' L)/(~+AL-ALa(L» . 
kE:L 

Using the policy improvement technique, the optimality is proved. For 

the initial state s=(n 1 ' 
... , nk , ... ) , fix an action k such that k=O or nk 

positive. Let n' be a policy such that if k E:K then one job in class k ~s 

served and if k=O than the idle action is chosen until a new arrival of any 

is 

job in K occurs and thereafter according to the policy n all jobs in a cut-off 

set L are served and all jobs in K-L are never served. As was defined under 

the policy n, for the policy n' we put 

and 

the initial busy period until the first class k job and all 

jobs in J are served. 
E[e-~Bk(S,J)] 

the expected discounted reward during Bk(s,J) under the policy 

n' , 

where Ba(S,J) is equal to the first arrival time of any job in K plus the 

initial all jobs in J are cleared. Especially we put 

(4.4) 

and 

(4.5) 

(k E: K) 

aa(J) = sa(oa' J) = {.1 Aiai(J)+AK-AJ}/(~+AK) . 
~E:J 

If J=~, then ak(~)= ~k(k~O) and aa(~)=~a=AK/(~+AK)' From these difinitions 

we have 

kE:J 
(4.6) 

k E: K-J or k=a 

Let a and b be a Poisson arrival vector and a multiple feedback vector, 

respectively. For y=a+b, let p(yik,x) be the probability of y under the con­

dition that the service time of a class k job is x. Then we get that for k E K 
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Ik + iooe -Sx L P(ylk,X)U(S-Ok+Y' L)dFk(X) 
o Y 

(4.7) 
Ik + fooe-sx[L p(ylk,x) L {~(s-Ok+Y' Y

i
) 

o Y i£L 

- F,; (S-Ok +Y, z) }C)dF k (x) 

It is easily proved that for k=O the above equation is also satisfied. More­

over, we define Vk(s) as the expected discounted reward for the infinite 

horizon problem under the policy n' . 

Theorem 3. We have 

where 

Another expression of C
k 

defined by (4.1) is 

(4.8) 
L {ak(Y,)-ak(z ,)}C,]/(1-a

k
(Y

k
» 

, y ~ ~ ~ 
~£ k 

In this expression C
k 

is represented by higher indices of i than k. 

5. Optimality 

In this section we obtain an optimal policy, which is characterized by an 

index rule. At first we assume that the index C, is monotone nonincreasing 
~ 

with respect to the ordering r. That is, (i,j) £ r implies C ,i1;C " Next, 
~ ] 

suppose that L is the largest cut-off set with the lowest index M (M=inf C, 
j£L ] 

and L = {j: C,~M}). 
] 

For an infinite cut-off set J we prove the following Lemma. 

Lemma 4. Suppose that the sequence of cut-off sets {J
1

} (1=1,2, ... ) ~s 

monotone increasing (or decreasing) and lim J1=J. Then we have 
1 .... 00 

(5. 1) lim I;(s, J
1

) = I;(s, J) • 
1 .... 00 

Proof: For an increasing sequence we prove this lemma. In the decreasing 

case the proof is the same as this. Since U {w: B(s, J1)~t} = {w: B(s, J)$t}, 
1=1 
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we have lim P{B(s, J1)~t} = P{B(s, J)~t}. It follows from the continuity of 
1-+00 

LST that lim s(s, J
1

) = s(s, J). 
1-+00 

If C
i 

is monotone nonincreasing with respect to r, instead of a cut-off 

set J, we define*-function of the value m as 

and 

s*(s, m) = inf .;;(s, Zj)' o.*(k, m) 
C .ii:;m 

] 

inf o.(k, Zj) 
C .ii:;m 

] 

inf o.k(Z .) 
C.ii:;m ] 

] 

For any m (supjCj , C), s*(s, m)=o.*(k, m)=l and sk*(s, m)=o.k *(m)='I'k' These 

four functions are left continuous nondecreasing step functions. For example, 

a jump of s*(s, m) at m LS 

s*(s, m+)-s*(s, m) sup s(s, Y.)-inf s(s, Zj) 
C .=m ] C .=m 

] ] 

In Theorem 2 U(s, L) is represented by the Stieltjes integral of the monotone 

function u*(s, m) and from partial integration we have 

(5.2) 

C 
u(s, L) = f m ds*(s, m) 

M 
C 

= C - s*(s, M)M - J s*(s, m)dm • 
M 

Whittle [21] modifies the bandit problem so as to allow the additional option 

of retiring with the reward M. If in our model the retiring option is employed 

with the reward M when all jobs in L is cleared, the expected discounted re­

ward of the modified process is 
r' n. 

U(s, L) + s*(s, M)M C - f- IT o.*(s, m) ~dm 
M i£L 

which is equivalent to (14) in [21]. 

For the policy 

and from (4.6) 

TT' , a jump at m is 

{ 

s*(s, m) 

o.k*(m)s*(s, m) 

If k £ L, then Cii:;Ckii:;M and from Theorem 3. 

ck<m or k=O 
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(5.3) Ck 
m)dm - I ~*(s, m)dm • 

M 

If k X-L or k=O, then we also get 

Lemma 5. If nk>O and k e: L then 

(5.5) 

and if nk>O and k e: X-L, or k=O then 

V
7T

(S) - Vk(s) = -r
k 

+ (l-'I'k)C·· (l-ak*(M»~*(S, M)(M-V
7T

(O» 

C -J (l-a *(m»~*(s m)dm. 
M k ' 

Proof: From Theorem 2 and 3, we have 

Since for ke:L, ~(s, L) = ~k(s, L) then it follow from (5.2) and (5.3) that 

(5.5) is obtained. Also if k X-L or k=O, then from (5.2) and (5.4) (5.6) is 

obtained. 

Generalizing the index C
k 

in (4.8), for k e: X-L or k==O, we define C
k 

(L) as 

(5.7) 

J
.C 

= {r + 'I' C - a *(M)M - a *(m)dm}/(l-a *(M» 
k k k Mk k 

Since from the definition VO(oO' L) = L AkV(ok' L)/(S+hx ) and l-a
O

(L) 
kED 

(S+hL-hLa(L»/(S+h
X

) , then 

(5.8) 
CO(L) = L AkV(ok' L)/(S+hL-hL(l(L» 

ke:L 

= V (0) • 
7T 

Theorem 6. Suppose that 7T is a priority policy with the ordering set r 

and the cut-off set L such that for k e: L, C
k 

is monotone nonincreasing with 

respect to rand 

M == inf C
k 

kEL 
sup C

k 
(L) 

ke:X-L 
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Then n is optimal. 

Proof: We use the policy improvement technique. To prove this it is 

sufficient to show that for any fixed s;<\00 and any k(nk>O or k=O), Vn (s)-Vk(s) 

GO. Since for nk>O, ~*(s, m)~~*(ok' m) in Lemma 5, we have that for k e: L, 

vn(s)-Vk(S)GVn(Ok)-Vk(Ok) =0. And since for k e: K-L or k=O, ~*(ok' m)=l (CGmGM) , 

then 

C 
-r

k 
+ (l-'f

k
)C - (l-a

k
*(M»(M-V

n
(O» - fM (l-a

k
*(m»dm 

(l-a
k
*(M»(C

O
(L)-C

k
(L» GO. 

where the third equality is derived from (5.7) and (5.8). This completes the 

proof. 

In order to contruct the optimal ordering set r and cut-off set L, the 

generalized index Ci(L) is useful. 

(5.9) 

and 

Proposition 7. Suppose that i and j e: (K-L) U {O} and C. (L) <C. (L) • 
] - ~ 

C . (L) ;;! C. (L U i) ;;! c. (L) 
] ] ~ 

(5.10) 

Proof: For i;t!O and j;t!O we get 

(l-a.(LUi»C.(LUi) = U.(o., L) + (a.(L)-a.(Lui»C.(L) 
] ] ] ] ] ] ~ 

(l-a. (L»C. (L) + (a. (L)-a. (L Ui»C. (L) 
] ] ] ] ~ 

(l-a.(Lui»C.(L) - (l-a.(L»(C.(L)-C.(L» 
] ~ ] ~ ] 

or 

C.(L) - C.(LUi) = (C.(L)-C.(L»(l-a.(L»/(l-a.(LUi» • 
~ ] ~ ] ] ] 

Then 

Since O:.>(l-a.(L»/(l-a.(Lui»);;!l we get (5.9). Exchanging the role of i and 
] ] 

j we also have (5.10). If one of i and j is 0, we can prove this using the 

same discussion. 

The optimal ordering r is constructed by a successive addition of the 

highest generalized index job until k=O is chosen. For a finite set K the 

algorithm to obtain the optimal policy is shown [7]. In the next section we 

apply Prop. 7 to an M/GI/l queue. 
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6. Application to M/Gz/1 Queue with Decomposable Quantum Service Times 

In this section we consider the following M/GI/l queue. Customers arrive 

at a single-server station as a Poisson stream with the rate A. Each arriving 

customer has a discrete service time k=l, 2, •.. with the probability 
00 

gk( L gk=1)· \ve asstmle that the service time is decomposed into quanttml of 
k=l 

the unit span. Let a class k job be a customer who has served k-l quanta and 

is waiting for kth quanttml. The probability of a class k job to exit is P
k 

= 

gkl L g. and its probability of the single feedback as a class k+l job is l-P
k

• 
i=k ~ 

For example, the CPU serves customers according to a round-robin discipline 

with the fixed quanttml size 1. The problem is to obtain the optimal quanttml 

to be served in the waiting customers. 
-s_ 

The LST of the service time of a class k job is 'I'k=e ='1'. As a cost 

structure we aSStmle that, yk*=O and the holding cost for each unit time is 

constant. To simplify the notation we put hk*=se S• Then the immediate reward 

in (3, 7) is 

Our problem is to obtain the optimal job scheduling which minimizes the ex'­

pected discounted holding cost. 

At first lye consider no arrival case and next we consider a Poisson 

arrival case. For i<j let '1' .. be the LST of the service time from ith 
~,] 

quanttml to j. We recursively define as '¥ . . ='1' and 
~,~ 

'1'. . = p. 'I' + (1-p.) '1"1'. 1 . 
~,] ~ ~ ~+,] 

During this interval the expected discounted reward is y . . =p. and 
~,~ ~ 

y .. =p. + (l-p.)'I'y. 1 . 
~,] ~ ~ ~+.] 

The service index from i to j is defined as 

C. . = y. .1 (1-1jJ. .) • 
~,] ~,] ~,] 

The index of a class i job without arrival is 

(6.1) sup C .. 
i~j ~,] 

Gittins [4] shows the following results: If the exiting probability Pk is 

nonincreasing, then C
k

' is nonincreasing and this is the deteriorating case. 

If P
k 

is nondeereasing, then C
k

' is nondecreasing and this is the improving 
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case. Glazebrook [5] also prove this result when a single machine sometimes 

breaks down. In the case of a Poisson arrival we will obtain the optimal 

policy when P
k 

is monotone nonincreasing, nondecreasing or unimodal. 

Case 1. Suppose that P
k 

is nonincreasing. Let r
1
={(i,j): i<j} be the 

deteriorating ordering set and Y
k
={l, ••• , k-1} be its cut-off set. Under the 

initial condition s=ol' a(l, Y
k

) is the LST of the busy period B(ol' Y
k

) and 

u(ol' Y
k

) is its expected discounted reward. Next for the initial condition 

s=oi (iEYk ), ai(Yk ) is the LST of the busy period Bi(oi' Y
k

). During the unit 

interval, e-\\a/a! is the probability that the number of arriving class 1 jobs 

is a. And 

\' -\ a a 
'¥ L e \ a (1, Y k) / a! 

a=O 

is independent of i. We also have 

where the second term of the last equation is independent of i. Then t.he 

generalized index 

1.S a nonincreasing function of i E {k, k+1, ••• }. From Prop. 7, C
k 

is recur­

sively determined as Ck=Ck(Yk ). Therefore C
k 

is nonincreasing and from Theorem 

6, r 1 is the optimal ordering set. This ordeded round-robin is said to feed­

back-to-lower-priority-queue-discipline (see Schrage [16] and Brown [3]) or 

this is the foreground-background (FB) scheduling algorithm with unit quantum 

(Kleinrock [9] p.172). 

and 

Applying Prop. 7 to C .. we obtain the following. 
~,J 

Proposition 8. For any i-;;j<k we have that 

if C. . '" 
~,J 

if C .. ~ 
~,J 

c. 1 k then C. . ~ C. k ~ J+, ~,J~, 
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Case 2. Suppose that Pk is nondecreasing. From Prop. 8, we have that 

Ck=Ck'=Ck •
co 

which is the monotone nondecreasing function of k and r 2={U.j): 

i>j} is the optimal ordering set. Using the queueing terminology the FCFS 

discipline is optimal. 

Case 3. Suppose that Pk is unimodal and the peak of Pk LS PiO = m~x Pk . 

In other words P
k 

is nondecreasing in k E: {1 •... , iO} and nonincreasing in 

k £ {iO' iO+l • .•• }. From Prop. 8. for any fixed i. Cij is an unimodal func­

tion of j and then C
k

' is also unimodal such that C
k

' is increasing in k £ {1 • 

•••• iO} and decreasing in k £ {iO' iO+l • ••• }. In no arrival case r 3 = {(i,j): 

C.'>C.' or (c.'=C.' and i<j)} is an optimal ordering set. Next we consider an 
~ ] ~ ] 

arrival case. From (4.8) the index of class 1 jobs is not effected by an 

arrival and lE:t j (1) be such that Cl' =C
1

•
j 

(1) then for 1 ~k~j (1) the optimal 

index C
k 

is independent of Poisson arrival as Ck=C
k
'. From (4.1) and (4.8) we 

have c
1
=u(ol' Zl)/(l-a(l. Zl» where Zl={l • •••• j(1)}. For k~j(1)+l we put 

Y
k
={l • •••• k--l} and as was shown in Case 1 we get 

and 

Using the same discussion in Case 1. for k~j(l )+1 C
k 

is nonincreasing. It 

follows that for k=l • •••• j(l) Ck=C
k

' is the unimodal index without arrival 

and for k=j(1)+l • •••• Ck=Ck(Y
k

) is the nonincreasing index of Case 1. As a 

whole the order of C
k 

is the same as thE: order of C
k

' and an optimal ordering 

set is the SWle as r
3

. For any initial state s there exists only one job from 

class 2 to j(l) after sufficiently long time spent when r3 is employed. At 

this situation from 1 to j (1) the FCFS discipline is employed and if there is 

no job from 1 to j(l). then from j(l)+l unit quantum the FB discipline is 

employed. This mixed scheduling algorithm is one of the multilevel processor 

sharing algorithm discussed in Kleinrock [9] p.177. 
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