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Abstract The purpose of this paper is to make up for lacks of the past researches with respect to basic search 

models with continuous effort. We suppose a discrete search space composed of n boxes and an exponential·type 

detection function in each box. First an explicit solution is derived for a detection search game. Secondly we con­

sider an information search problem and propose a sequential method of constructing the optimal policy. Thirdly 

we consider a certainty search game in which the payoff function is given by the posterior uncertainty with respect 

to the position of player I (hider) and obtain the solution in the form of a solution of a certain simultaneous equa­

tions. Finally we consider a whereabouts search model and derive the same result as the discrete effort case. 

1. Introduction 

The research area of the search theo:ry is divided broadly into two : One 

is the one-sided search model in which decision is made only by the searcher, 

and another is the two-sided model in which decisions are made by both the 

searcher and the object (or hider). For example, a search model for a sta­

tionary object or a target moving according to a given rule is the former 

case and the case that the object can evade (or hide) of his own free will is 

the latter. Mathematical treatments of models are different as the search 

effort is discrete or continuous. If the search effort is discrete, most of 

one-sided search models can be formulated by non-linear programming or dynam­

ic programming, on the other hand, if the search effort is continuous, they 

become variational problems. For the two-sided search model, the game theory 

is generally used. Moreover various cri"teria for decision making have been 

considered in each case, that is, 

(i) Maximizing the detection probability under a given search effort (the 
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336 T. Nakai 

detection search problem). 

(ji) Minimizing the expected search effort until detection of the object. 

(in) Maximizing the expected amount of information about the location of the 

object obtained by allocating a given search effort (the information 

search problem). 

(iv) Maximizing the probability of collectly guessing the whereabouts of the 

object after allocating a given search effort (the whereabouts search 

problem) • 

Usually it is assumed t.hat the objective of the search is detection of object 

and therefore criteria (i) and (ii) are used broadly. But other possible 

objectives can be obtianed by considering the contemplated post-search action. 

For example, in a reconnaissance problem the main duty of a scout is not to 

discover but to locate the enemy correctly. Therefore his true objective is 

to maximize the expected information gain about the position of the enemy or 

the probability of correct guess for its position. In such a case the cri­

terion (iii) or (iv) is used. For example, Danskin [4] used the expected 

information gain as a measure of the effectiveness of a reconnaissance sche­

me. By simple examples, Mela [10] and Pollock [11] show that the optimal 

policies for detection search, information search and wh~reabouts search need 

not coincide with each other. Since each optimal policy is based on a diffe­

rent criterion, it cannot be considered that one is an improvement for ano­

ther. The above examples seem to show that the connection between information 

theory and search theory is at best tenuous. Nevertheless in the case of an 

exponential detection function Barker [1] shows that the search that maximizes 

the probability of detection also maximizes the entropy of the posterior 

distribution of the object. The first paper concerning whereabouts search 

problem is Tognetti [17J. In the case of discrete search effort Kadane [9J 

shows that the optimal whereabouts search policy allQcates the given search 

effort according to the optimal detection search policy among all boxes except 

the box to be guessed at the end of an unsuccessful search. Stone and Kadane 

[16] treats a whereabouts search problem for a moving target. 

Another well-known criterion is to minimize the expected risk, that is, the 

expected search cost minus the expected reward for detecting the object. In 

this case we need to consider the stop of search when the expected future 

reward is smaller than the expected search cost. The first paper which intro­

duces this criterion and considers the problem of search and stop is Ross 

[13]. He derives many important results for the discrete search model. This 

criterion containes the above-mentioned criteria (i) and (ii) as special 
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cases. That is to say, letting c. be a search cost 
-~ 

ward for the detection in box i, when c:. = 0 and R. 
~ ~ 
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in box i and R. be a re­
~ 

= 1 (i =1 , ••• ,n ), the risk 

criterion coincides the detection seareh criterion and when R. = 0 (i=1, •.. , 
~ 

n), it coincides the minimum cost (effort) criterion. In this sense, the 

risk criterion seems to be more complieated than the above-mentioned criteria. 

Therefore we exclude the risk criterion from basic (simple) criteria. Con­

sidering the combination of decision, effort and criterion, various cases are 

possible whi,~h are classified in Table 1. In each case of Table 1 the follow­

ing basic search problem is considered: In the one-sided search model, we 

consider that the object is in one of the n boxes with the prior distribution 

P==<P1' ••• , Pn> and therefore the problem is formulated as a maximizing (or 

minimizing) problem with constraints. In the two-sided search model, we 

suppose that the object (or the hider) hides in one of the n boxes of his own 

free will and does not move during search periods by the searcher. The prob­

lem is formulated as a zero-sum two-person game. We assume that the condi­

tional probability of detection is given, that is, in a discrete search effort 

case, the conditional detection probability S.(the probability that the object 
~ 

is detected by one look in box i, given that it is in box i) is given, and in 

a continuous search effort case, the exponential detection function 1-exp(-A. 
~ 

z)(the probability that the searcher detects the object by allocating search 

effort z into box i) is given where A. is a known positive constant. Further-
~ 

more in the cases of criteria (i), (iil) and (iv), the total search effort E 
is supposed to be given. 

Table 1 summarizes the present status of research of each basic model, that 

is, the symbol "0" in Table 1 indicates that the model has been already sol­

ved, the symbol 1t1" indicates that the model is unsolved but has relevant 

papers and the symbol "X" indicates that no relevant paper exists. Papers 

related to each basic model are as follows: 

model ill 
model rn 
model DJ 
model rn 
model rn 
model [1] 

model [ID 
model [2] 
model IT::TI 

Kadane (8) 

Charnes and Cooper (3) 

Suberman (17) 

Blackwell (2) 

Dobbie (5) 

Sakaguchi (14), Roberts and Gittins (12), Gittins and 

Roberts (7) 

Gittins (6) 

Sakaguchi (15) 

Kadane (9). 
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Table 1. Classification of the basic search models 

~decision one-sided two-sided 

effort 
criterion 

------
discrete continuous discrete continuous 

detection search DJ 0 OJ 0 [}1 0 GJ X 

expo effort-+min DJ 0 ITl 0 [1] f1 []] 0 

information search [3J !:::. ITQJ x. [IT] X [ill X 

whereabouts search @] t::. tTIJ X ITIJ X [ill X. 

In this paper we intend to supplement lacks of the past researches. In Sec­

tion 2 a solution of the detection search game (model ~) is given explicit­

ly. In Section 3 we propose a sequential method of constructing an optimal 

policy for the information search problem (model 010). In Section 4 we 

consider a certainty search game in connection with the information search 

game (model O}U) and obtain its solution in the form of a solution of certain 

simultaneous equations. .Finally in Section 5 we consider a whereabouts search 

problem (model ~) and derive a similar result to the discrete search effort 

case. 

2. Detection Search Game 

Player I (hider) selects one of n boxes of his own free will, hides in 

it and never moves during the search by player 11. Player 11 (searcher) 

searches player I by dividing the given total continuous search effort E and 

allocating it in each box. For each box i the exponential detection function 

1-exp (-A'Z) is given and known to both players (which is defined in the pre-
1. 

vious section). The strategies for player I and 11 can be represented by p=< 
P1"'" Pn> and x=(x1,···, xn) respectively where Pi is the probability that 

player I hides in box i and x; is the amount of effort allocated in box i 
1. 

n 
(.k

1x . 
1- 1 

E ; xi20, i=1, ••• , n) by player 11. The payoff function for player 

I is given by 

n 
.f;1 p. exp( - A.X J , 
1- 1 1 1 

that is, the probability that player I is not detected given that strategies 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Search Models with Continuous Effort 339 

P and x are used. Solve this zero-sum two-person search game. 

Theorem 1. The optimal strategies for player I and 11 are given by 
* * * * * * P =<P

1 
, ••• , P

n 
> and x =(x1' ••• , xn ) respectively where 

* -1 n -1 * -1 n_1 
(2.2) Pi = >.. lE>'., x. =>.. El E A. (i=1,···, n). 

~ j=1 J ~ ~ j=1 J 

n -1 
The game va.lue is v=exp(-EI E >.. ) • 

.1=1 J 

Proof: It is sufficient to show 
* * (2.3) M(p,x) ~ v ~ M(p , x) for all x, all p. 

The left-si.de of the relation (2.3) is obvious because 

* n n 1 
M(p,x ) = L Pi exp(-EI L >.-: ). = v for all p. 

i=1 j=1 J 

To show the right-side of the relation (2.3), we consider the following con-

cave programming: 

* (2.5) M(p ,x) 

subject to 

n 
. LXi = E 
~=1 

n n 
( ~ '-.1)-1 ~ ,-1 (' ) t.. 1\ t.. 1\ exp -I\.X. 
j=1 ~ i=1 ~ ~ 

Xi ~() (1=1, ···,n). 

+ min 
x 

The Kuhn-Tllcker theorem gives the necessary and sufficient condition for 

xO=(x~, ••• , x~) to be optimal as follows: For a Lagrangian multiplier u, 

( 6) ( n -1 )-1 (0 ( ) 2. LA. exp -A.X.) < u i=1, ••• , n 
j=1 J ~ ~ = 

nOn 1 1 ° (2.7) L x.( L >..-:)- exp(->...x.)-uJ = ° 
i=1 ~ j=1 J ~ ~ 

n ° (2.8) E - L x. = 0. 
i=1 ~ 

° Because E~), there is such a box k that xk>O and hence by the relations (2.6) 

and(2.7), we obtain 

u = ( ~ A~1)-1 exp(->"kxkO) < ( ;, >..-1)-1 
j=1 J j=1 j • 

Therefore by the relation (2.6), xO > ° for all i. Then by the relations 
i 

(2.6) and (2.7), 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



340 T. Nakai 

n -1 -1 0 
( L A.) exp(-A.X.) = U 
j=1 J ~ ~ 

(i =1 , • •• , n) 

which 

A -:-1. 

denotes that A.X~ is 
~ ~ 

constant in i. Therefore x~ is proportional to 
o * ~ 

~ 
From the relation (2.8) , we obtain x = x and hence the relation 

(2.3) is proved. (q.e.d.) 

Theorem 1 states that player I (II) should hide (allocate the total effort) 

in each box with ratio in proportion to the inverse of the conditional detec­

tion rate. In other words, player I should hide in such a manner that t.he 

detection ratep. A. becomes constant for all boxes to confuse the searcher 
~ ~ 

and player II should search in such a manner that the conditional probability 

of no detection exp(-A.X.) becomes constant for all boxes. 
~ ~ 

3. Information Search Problem 

A stationary object exists in one of n boxes with the prior distribution 

P =<P" ••• , Pn>and the searcher 

possible concerning the location 

search effort E. We assume the 

wants to obtain as much information gain as 

of the object by allocating the given total 

exponential detection function 1-exp(-A.Z). 
~ 

The expected amount of information concerning the location of the object under 

the search policy x=(x1 ' ••• , xn) is given by 

(3.1 ) I (p) == H(p) - [D (p).O + {1-D (p)}H(T p)] 
x x x x 

where 
n 

(3.2) H(P) - -.L Pi log Pi 
~=1 

n 

(3.4) TxP = «TxP)l' ••• , (TxP)n > 

n 
(TxP)i = p.exp(-A·X.)/ L {p. exp(-A.x .)} 

~ ~ ~ j=l J J J 

(i=" ••• , n) 

H(p) is a well-known entropy function used tu Shannon in communications work. 

Dx(P) is the probability of detecting the object by the policy x given that 

the prior distribution of the object is p. TxP is the posterior distribution 

of the position of the object given that the prior distribution is P and that 

it is not detected by the policy x. If the object is (is not) detected, then 

the entropy of its positin is zero (H(TxP» and hence the right-hand side of 
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the relation (3.1) represents the difference between the prior entropy and 

the posterior entropy, that is, the expected amount of information obtained 
* by the policy x. The objective is to obtain the optimal policy x maximi-

zing I (p). The problem becomes a nonlinear programming 
x 

n 
(3.5) f(x): L p. exp(-A.X.) 

i=1 ~ ~ ~ 

n 
x log [k:1 Pk ~xP(-Akxk)/{Pi exp(-Aixi)}) 

subject to 

(3.6) 
n 
L x. = E 

i=1 ~ 
x. > 0 
~ = (i=1, ••• , n). 

-+ min 
x 

Lemma 1. The function f(x) is convex in x. (~O) for all i (=1, .•• ,n). 
~ 

Proof: By a simple calculation, we can obtain 

and 

where 

Since 

Clf 
Clx. 

~ 

- p.A. exp( -A .x J log t 
~ .1 ~ ~ 

dx.) 
~ 

t ='1 + L Pk exp (-AkXk)/{P. exp(-A.X.)}, 
kli ~ ~ ~ 

t > 1 and t{ x .) is nondecreasing in x. (~O) • = ~ ~ -
Put get) ,= log t + t-1_1. Since g(1)=O and g'(t)=(t-1)/t

2 
f, 0 for any df,1), 

2 2 
we know that get) f 0 for any t(f,1). Therefore Cl f/Clx

i 
is nondecreasing in 

x.(~O). 
~ -

(q.e.d.) 

* * Theorem 2. A necessary and sufficient condition for a policy x :=(x1 '··· 

* , x ) to be optimal is given as follows : There exists a positive constant 
n 

such that 

where n 
(3.11) L.[x) - p.A. exp(-A.x.) log [ L Pk exp(-AkXk)/{p·exp(-A.X.)}). 

~ ~ ~ ~ ~ k=1 ~ ~ ~ 
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Proof: Because f(x) is convex by Lemma 1, the Kuhn-Tucker theorem gives 
* a necessary and sufficient condition for a policy x to be optimal, that is, 

(3.12) * L. [x ] < U 
~ = (i=1, ••• , n) 

(3.13) n * * LX. lL.[x ]-u} = 0 
i=1 ~ ~ 

where U is a Lagrangian multiplier. The result (3.10) cna be derived directly 
* from the relations (3.12), (3.13) and xi~O(i=1, ••• , n). Moreover it is clear 

* that U>L.[x ]>0. If U=O, then by the relation (3.10) and (3.11) we obtain 
= ~ = n 

that p;=O for all i, which is contradictory to L p.=1. Hence 
~ i=1 ~ 

Lemma 2. the function Li[x] is nonincreasing in xk (k=1, 

Proof: Put 

(3.14) Yi :: Pi exp(-A.X.) , 
~ ~ 

Then 

(3.15) Li[x] = AiYilog(1+z/Yi)· 

u>O. (q.e.d.) 

n) • 

Note that Yi is independent of xk (k4i) and nonincreasing in xi and that zi 

is independent of xi and nonincreasing in xk (~i). Therefore it is clear 

that Li[x] is nonincreasing in xk(k.i). In order to prove that Li[x] is 

nonincreasing in xi' it is sufficient to show that Li[x] is nondecreasing in 

Yi . By simple calculations, we obtain 

aL. z. \zi 
(3.16) ~ A. log(1+ -~-) aY

i 
= ~ Yi yi+zi 

a2L. 2 

(3.17) --~ 
Aizi 

a 2 - - 2 
Yi Yi(Yi+zi ) 

Since a2L./ay~ is nonpositive, aL./ay. is nonincreasing in Futhermore 
~ ~ ~ ~ Yi · 

aLilaYi converges to zero as Yi tends to infinity. 

negative. Hence Li[x] is nondecreasing in Yi • 

Therfore aL./ay. is non­
~ ~ 

(q.e.d.) 

Theorem 2 states that if the optimal amount of search effort allocated in box 
* i is positive (zero), then at the end of the optimal search x the value of 

* the function L.[x ] is equal to (is not larger than)a constant level U which 
~ 

depends on the total search effort. From this fact we think of such a sequ-

ential method for constructing an optimal policy that at each time next minute 
"-

effor is allocated into boxes having the maximum of L~lx] where X is the 

accumulated allocation until now. The realizability of this sequential method 
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is guaranteed by Lemma 2. Thus we can obtain the next theorem. 

Theorem 3. An optimal policy can be obtained by the following sequential 

method : Suppose that the effort E1 «E) has been already allocated optimally 

by now and that as a result the allocation 

* * * n * * x (E 1 )=(x1(E1 ),···, x n (E1» (E x.(E1 )=E1 ; xi(E1)fO i=1, ••• ,n) 
i=1 ~ 

has been obtained. Then the additional minute effort must be allocated in 

boxes of a set 

(3.19) 

where Y=(Y1""'Y
n

) is the aditional effort. The process of this additional 

allocation should be continued until the relation 

(3.20) 

n * 
is satisfied. At this time, regard E

1
+ E y. as new E1 and repeat the above 
i=1 ~ 

procedure until the total search effort E is completely allocated. 

Proof: * If x.(E»O, then box i should be searched at a certain time and 
~ 

hence by (3.18) there exists a certain accumulated effort E1(~) such that 

iEI(E1). From the sequential construction, if once iEI(E1) occurs, this 

'" '" '" property is kept until last time, that is iEI(E) for all E(E1~~)' Therefore 

* * (3.20) L.[x (E)J = max L.(x (E)]. 
~ 1<'<n J 

~= 
* '" If x. (E)=O, then box i is not searched at any time and hence it\'I(E) for all 
~ 

'" '" E(O~E~E). Therefore 

* (3.21) L. [x {.E)] < * max L.(x (E)]. 
~ 1~~ J 

Then by (3.20) and (3.21) the sufficient condition (3.10) for an optimal 
* policy in Theorem 2 is satisfied for 11= max L. [x (E)]. Hence the policy 

1~~ ~ 

obtained by the sequential method in Theorem 3 is optimal. (q.e.d.) 

The sequential method given in Theorem 3 is characterized by following pro-
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perties 

(i) At each time the optimal policy searches only in boxes having the maxi-
'\. '\. 

mum value of the function L.[x] where x is the accumulated alloeation 
1. 

until now. 

(ii) After an allocation ~ has been carried out, the additional minute effort 
'\. 

should be allocated with such rates as thE! values of Li[x+y] equal each 

other for all searched boxes where y is the new additional allocation. 

(ill) By Lemma 2, Li Gc) is nonincreasing in x
k 

and therefore as the allocation 

of search effort progresses, new boxes enter into the set of searched 

boxes one after another. 

Let us consider the meaning of the function Li[x]. Let p(x)=<P1(x), ••• , Pn 

(x» be the posterior distribution of the object's location given that the 

allocation x fails to detect it, that is, 

n 
(3.22) p.(x) = p.exp(-A.X.)/ L Pkexp(-).,kx~, 

1. 1. 1. 1. k=1 . 

Then L.(x) is represented as follows: 
1. n 

(3.23) L.(x) = [ L Pkexp(-Akxk)][-P.(x)log p.(X)]A. 
1. k=1 1. 1. 1. 

ooe[-p.(x)log p.(X)]A. 
1. 1. 1. 

Taking the information criterion into account, define the value of the fact 

that the object is in box i with probability p. by U(p.)= -p.log p. and hence 
1. 1. 1. 1. 

U[p.(x)]= -p.(x)log p.(x) denotes the value of the posterior existence pro-
1. 1. 1. 

bability of the object in box i. Therefore by means of the value of the exis­

tence probability, it is permitted to say roughly that L.[x] is proportional 
1. 

to the posterior detection rate, that is, 

(3.24) L . [x ]<>< u [p . (x) ]A .• 
1. 1. 1. 

4. Certainty Search Game 

Let us consider an information search game in which the payoff for the 

maximizing player I (hider) is given by the negative sign of the expected 

information gain Ix(p) in (3.1). In spite of the searcher's policy it is 

obviously optimal for the hider to hide in any box with probability one since 

H(p)=H(TxP)=O in (3.1). Of course the game value is zero. Then the infor­

mation search game is trivial. In connection with the information search game, 
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we consider a certainty search game which is the same as the detection search 

game in Section 2 except that the payoff for player I (hider) is the uncer­

tainty (entropy) of the posterior distribution of the hider's location. In 

other words, player 11 (searcher) intends to know the hider's location as 

certainly as possible. The payoff function is given by 

(4.1) M(p,.d:: D (p).Q + {1-D (p)}lH(T D) 
x x X' 

which is equal to f (x) given by (J. 5) • 

TheorE~m 4. A necessary and sufficient condition for a pair of strategies 

* * * * * * P =<P1 ' .'., Pn > and x = (x1 ' ···,x
n 

) to be optimal is given as follows: 

There exist two positive constants ~ and ~ such that 

(4.2) Ki [/, x*l{;l~ if p;{:}o 

(4.3) Pi * \Ki [p *, x *l{;}~ if Xi *{:~o 
where 

n 
K.[p,. xl :: exp(-A.x.) log[ E Pkexp(-). xk)/{p.exp(-A.x.)}l. 
~ ~ ~ k=1 . k ~ ~ ~ 

Proof:: It is sufficient to show that 

* * * * M(p,x ) ~ M(p , x ) ~ M(p , x) for any p,x. 

first we consider a maximizing problem 

* M(p,x ) 
max 
p 

* Since the function M(p,x ) is concave in p. U=1, ••• , n), the Kuhn-Tucker 
~ * 

theorem gives the necessary and sufficient condition for p to be optimal, 

that is, 

If * 
K. [p , x 1 - ~ ;; 0 
~ 

U=1, n) 

n If * * 
E p. {K. [p , x 1 - ~} = 0 

i=1 ~ ~ 

from which the relation (4.2) can be derived. Next we consider a minimizing 

problem 

* M(p , x) min 
x 

* By Lemma 1, the function M(p , x) is convex in x.(i=1, , n). 
~ 

Therefore the necessary and sufficient condtion for an optimal solution is 

given by Kuhn-Tucker theorem as follows: 

(4.10) * * A.K. [p , x 1 - 1J ~ 0 
~ ~ 

(i=1, ···,n ) 
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n * * * * Lp. {p. A.K. [p ,x ] - ll} = 0 
i =1 1 1 1 1 

from which the relation (4.3) can be derived. There exists at least one box 

* * * for which p. > 0 and therefore K. [p , x ] is posi ti ve for such a box i . 
1 1 

Hence ~ and II must be positive. (q.e.d.) 

Both the relations (4.2) and (4.3) have similar interpretations to the rela­

tion (3.10). 

* * * Lemma 3. If p. 
1 

* 0, then x. 
1 

O. ( ii) If p. > 0, then p . has 
1 1 

the following form: 

where a and a are constant in i. 

Proof: (i) The assertion is obvious from the relation (4.3). 

* * (ii) If p. > 0 and x. >0, the relations (4.2) and (4.3) hold in equality 
1 1 if * , -1 

from which we can derive p. Ai; = II • Hence p . is proportional to I\i • 
* * 1 1 

If p. > 0 and x. = 0, then the relation (4.2) becomes 
1 1 

n * * * log [ L Pk exp(-AkXk )/p. ] =~. 
k=1 1 

* Hence Pi is independent of i. (q.e.d.) 

Theorem 5. Without loss of generality, we can suppose that 

(4. 13) A1 ~ A2 ~ ••• ~ \. 

Then there is a sequence {Ei}~=O such that 

(4.14) (O=::) EO ~ E 1 ~E2 ~ ••• ~ En _1 ; En (=::00) 

and the solution of the certainty search game is given as follows 

* -1 
p = <a~ ,'" 

* * (x 1 , ••• x 

-1 
aA~ , a,'" . a> 

* ,xJL,O,.··, 0) 

are optimal strategies for players I and 11 respectively and the game value 

* * is given by ~, where a, a, x 1 ,'" , x JL and ~ are roots of the following 

simultaneous equations ; 

* * -1 * } exp(-a.x. )log[A(a, x )/{aA. exp(-A.X.) ] 
1 1 1 1 1 

(i=1,''',~) 
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* (4. 18) log [A (x, X ) /13] = £;, 

R-
( 4. 19) a l: A k - 1 + 13 (nJ.) = 1 

k=1 
£, * (4.20) l: x. = E . ~ 

1=1 
where 

R- R-
* A(a,x ) ,,-1 *) -1 = a t.. Ak exp(-Akxk +1-c( l: Ak 

k=1 k=1 

The value of E~ 
R-

is determined by ER- = l: xOk where 
k=1 

xO (k=1 ••• R-) 
k ' , 

are the solution of the simultaneous equations 

(4.22) a exp(-AixOi)log[A(a,xO)/{aAi-1exP(-AixiO)}] 

° = I3AR-+11og[A(a,x )/13] (i=1,··· ,R-). 

347 

Hence if we increase the amount of the allocated effort from zero to infinity, 

then the values of Ei (i=1, 2, ••• ,n-1) can be determined successively and at 

last we can obtain the solution for a given total search effort E. 
* * Proof: We sahll show that P and x given by (4.15) ""(4.20) satisfy 

* * the relations (4.2) and (4.3). Substituting (4.15) and (4.16) into Ki[P ,x ] 

and paying attention to (4.17) and (4.18), we can obtain that 

(i=1,··· ,n) 

and therefore the relation (4.2) holds in equality for any i. Next, substi­

tuting (4.15) and (4.16) into the left-hand side of (4.3) and using (4.17), 

we can obtain that 

(i=1, ••• ,R-) 

and therefore if we put ~ = aE;, then the relation (4.3) holds in equality for 

i=1, ••• ,R-. For i=R-+1,··· , n, 

* ] = SA.£;' 
1 

~ I3 AR-+1 E;, 

* * * = PR-+1 AR-+1KR-+1[P ,x ] 

* [* * 
; PR- AR-KR- P 'x ] 

= a£;, 

= ~ 
and therfore t.he relation (4.3) holds for i=R-+1, 

by (4.18) 

by (4.13) 

by (4.18) 

by ER-_1<E~ER-(See(4.22)) 

by (4.17) 

n. Hence by Theorem 4, 
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* * p and x in (4.15) and (4.16) are optimal. Finally, 

* * (4.26) M(p,x) 

JI, -1 * * -1 * 
= L aA. exp(-A.x. )log[A(a,x )/{aA. exp(-A.X. )}] 

i =1 
~ ~~ ~ ~~ 

n * 
+ L 6 log[A(a,x )/6] 

JI, 
= ~ [a LA. -

1 + B (n -R,) ] 
i=1 ~ 

= ~ 

i=R,+1 

Therefore the game value is given by~. 

by (4.19). 

(q.e.d. ) 

Theorem 5 gives the solution of the certainty search game in the form of the 

solution of a simultaneous equations. Moreover it shows some properties of 

the solution: 

(i) A box, which has higher conditional detection rate, has a larger possi­

bility that player I hides and 11 searches in it. 

(ii) The larger the total search effort is, the wider the range in which both 

players take actions becomes. 

(iii) The optimal hiding-rate for player I is proportional to the inverse 

of the conditional detection rate in searched box and in constant in 

unsearched box. 

5. Whereabouts Search Problem 

A stationary object is in one of n boxes according to the prior distri-

bution p = <P1'···' Pn>· 

1-exp(-A.Z) for each box. 
~ 

We assume an· exponential detection function 

The searcher allocates the total effort E and if 

he detects the object, then he obtains payoff unit, on the other hand, if he 

fails to detect it, then he guesses the whereabouts of the object and if his 

guess is correct (incorrect), his payoff is unit (zero). The objective of 

the searcher is to determine optimally the allocation of the seaTch effort 

and the guessed box in order to maximize his expected payoff. The searcher's 

policy is given by (x ,i) where x =(x
1

' ••• ,x
n

) is an allocation of total search 

effort E and i denotes a box guessed after the failure of detection. The 

maximum expected payoff W(p) is given by 

(5.1) W(p) = (max.) [D (p) + { l-D (p)} (T D).l 
x, ~ x x X 1 

where Dx(p) and T~ are given by (3.3) and (3.4) respectively. 
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We consider a relation between a detection search policy and a whereabout.s 

search policy. The expected payoff by a whereabouts search policy (x, i) 

is D (p) + {--D (p)} (T D) .. On the other hand, the expected payoff by a 
x x x ~ 

detection search policy x is D (p) since the payoff of det.ection is unit. 
x 

Since {1-D)p)} (T~)i~O, it seems that a whereabouts search policy (x, i) 

is an improvement for a detection search policy x. But this is based on the 

fact that the payoff of correct guess is positive (in this case, it is assumed 

to Qe unit). If we let a be the payoff of correct guess, then the expected 

payoff by a ,Thereabouts search policy (x, i) is given by D (p) + a{ 1-D {pJ} 
x x 

(T~)i. Under a detection search criterion, since a correct guess with no 

detection is entirely worthless (a=O), a whereabouts search policy is not an 

improvement for a detection search policy. Under a whereabouts search cri­

terion in a >Tide sense (a)O), a detection search policy is not worthy of note 

since no guefis is obviously nonsense under this criterion. Substituting (].]) 

and (].4) into (5.1), we can obtain 

If box i should be guessed, then by the right-hand side of (5.2), it is not 
* optimal to allocate the effort into box i, that is, x. =0. Moreover if we 

~ 
I L I 

put Pk=P/(1--Pi) , then kCH) Pk=1. Therefore if we fix a guessed box i, the 

problem 

min -- x 

becomes a detection search problem. Hence the optimal allocation policy for 

the whereabouts search problem is the same as the optimal detection search 

policy (model ~in Table 1) for n-1 boxes except the guessed box. Thus we 

can obtain the following theorem. 

Theorem 6. The optimal allocation of search effort is the same as the 

optimal detection search policy for all other boxes except the guessed box. 

The guessed box can be obtained as follows: 

Solve a detection search problems (5.]) for each box 

tute the results into (5.2) and find a box attaining 

i (=1, ... , n), substi-

1 m<~n< in (5.2). 
=~=n 

Theorem 6 is similar to the well-known result (Kadane[9]) in the case of 

discrete search effort. 
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6. Conclusion 

Under the detection search criterion, this paper has resolved a unique 

remained problem, that is, a detection search game with continuous search 

effort. In Sections 3 and 4, the information search problem has been dis­

cussed in both a one-sided case and a two-sided case. Their solution have 

been obtained in such a form that numerical problems can be solved with the 

help of a computer. Finally in the case of continuous search effort the 

fundamental theorem for the whereabouts search problem has been obtained. 

In Table 1, some basic search models are still unsolved. As a result of 

attacking the models, it seems that if an analytic and explicit solution for 

a one-sided model is not obtained, then it is difficult to solve the corres­

ponding two-sided model (game). For a moving target, we can consider the 

same basic search models as in Table 1. In fact, in recent fifteen years 

there has been a remarkable progress in the area of one-sided search models 

for a moving target. On the other hand, the two-sided search model becomes 

the evasion-search game jn which player I (evader) can move of his own free 

will among search, but there are few papers in this area. 
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