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Abstract The Nash bargaining problem is considered as a one-shot decision problem by two expected-utility 

maximizers with beliefs in the form of probability distributions over the opponent's strategy choices. Assuming 

three conditions as axioms on the formation of beliefs of both players, we derive the Nash solution as the optimal 

decisions of the mutual maximization problems. 

1. Introduction 

The Nash bargaining solution, characterized as the utility-product maxi­

mization, can be derived in several ways; the well-established axiomatic 

approach and the noncooperative-game approach due originally to Nash [1950, 

1953], Bayesian negotiation models due to Harsanyi [1956, 1977], the proba­

bilistic model of Anbar and Kalai [1978], and a more recent, new axiomatiza­

tion by Binmore [1984] from a viewpoint of convention of the bargaining. 

Among these models, the one-shot probabilistic model of Anbar and Kalai 

[1978] derives the Nash solution as an optimal outcome of mutual expected­

utility maximization. In their model, the two players are assumed to have 

beliefs over the opponents' strategy sets in the form of cumulative proba­

bility distribution functions, and choose the strategies that maximize the 

expected utilities. Their main result is a complete characterization of the 

pairs of beliefs that generate Pareto optimal outcomes for all feasible sets 

of utilities. The Nash solution is obtained for each feasible set of utilities 
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Nash Bargaining Solution 323 

if the pair of beliefs is given by the uniform distribution. 

The question to be raised here is that what is the rationale for the 

players to have particular beliefs in the one-shot bargaining situation, 

without which the justification of the Nash solution through such a proba­

bilistic modelltlOuld not be complete. There is a critical discussion that 

such a probabilistic model lacks a theory of how players come to draw parti­

cular beliefs (see, Roth [1979]). 

In this paper, we shall try to justify a particular formation of beliefs 

in the one-shot bargaining situation, and derive the Nash solution thereby. 

In doing so, we do not assume the beliefs to be invariant for all feasible 

sets of utilities. This would be a desirable prerequisite, since the forma­

tion of beliefs will in general depend on the given feasible set of utilities. 

Instead, we assume that the beliefs are invariant only for all feasible sets 

which are near-enough to a given one. This assumption may be justified as a 

slight imperfection or insensitivity inherent in the mechanism of forming 

beliefs; namely, small-enough differences in the feasible sets cannot be 

reflected in the formation of beliefs, so that players may continue to hold 

the same beliefs if such a perturbation of the Pareto surface should occur. 

The perfect mechanism is the one that can be reached only through imperfect 

ones by reducing tlie degree of imperfectness (insensitivity). 

A correspondence that associates to each bargaining game a nonempty set 

of pairs of beliefs will be called a mechanism of forming beliefs. Three 

requirements will be imposed, as axioms, on the mechanism. The first axiom 

states that the mechanism should generate those pairs of beliefs which are 

optimality-consistent; namely, each pair should generate a unique Pareto 

optimal payoff vector as a result of mutual expected-utility maximization. 

Secondly, we require that the resulting Pareto optimal payoff vector should 

be belief-compatible in the sense that it is most probable as an outcome of 

the game under the pair of beliefs. We call this property the outcome belief­

compatibility. The third axiom is a formal statement of the above mentioned 

imperfectness property that the mechanism is insensitive to small-enough 

-differences i.n the feasible sets. The treatment of beliefs due to Anbar and 

Kalai [1978] corresponds to the case where the insensitivity is global; that 

is, the mechanism is insensitive to any variation of the feasible set in the 

uni t square. 

With these conditions on the mechanism, we derive a necessary condit:ion 

for a pair (E',G) of beliefs to satisfy. It will be shown that (F,G) must be 

linear in a neighborhood of the Nash solution, and the outcome of the mutual 

maximization coincides with the Nash solution. 
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324 M.Nakayama 

The basic bargaining game and the maximization problem of each player are 

stated in the next section. In Section 3, we give the motivation and defini­

tions of the requirements, and state the theorem. Finally, in Section 4, we 

give the proof of the theorem. 

2. The Model 

The bargaining game considered in this paper is a pair (S,c), where S ~s 

the set of feasible payoff vectors and c is the conflict payoff vector. 

We assume: 

(a) S is a compact, convex subset of the unit square, 

(b) c=(O,O)ES, (O,1)ES .md (l,O)ES. 

The payoffs are given by the normalized von Neumann-Morgenstern utilities. 

The rule of the game is as follows: players and 2 independently choose x in 

A and y in B, respectively, where A and B are the same closed unit interval 

[0,1]. If the chosen strategy pair (x,y) is in S, then they each receive x 

and y. Otherwise, the conflict payoffs c=(O,O) result. The Nash solution 

( 0 0) . .. . h h x ,y ~s a po~nt ~n S w~t t e property: 

xOyO = max {xy I (x,y) ES}. 

Consider, hereafter, the bargaining game (s,c) as one played by expected­

utility maximizers. That is, each player is assumed to have a belief about 

the opponent's choices in the form of a probability distribution over the 

strategy set of the opponent. So, let F and G be cumulative probability 

distributLm functions over Band A. respectively. By F(y), we express the 

belief of player 1 that player 2 's strategy choice is less than or equal to y, 

and G(x), the belief of player 2 that player 1 's strategy choice is less than 

or equal to x. 

By choosing suitably two continuous, concave non-increasing functions 

1)!(x) and ~(y) on A and B, respectively, S can be represented by 

2 
S {(X,y)EE+ yS;1)!(x), xEA} 

2 
{ (x, y) E E + x5Hy), yE B}. 

Let (x,y) be a pair of strategy choices of player 1 and 2. Then, under 

the rule of the game, player 1 obtains the payoff x if Y51)!(x) and obtains 0 

otherwise. Similarly, player 2 obtains y if x~~(y) and 0 otherwise. Thus, 

the expected payoff to each p layer when they each choose x and y are given 

respectively by 
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xF(~(x» + O(I-F(~(x») 

yG(~(y» + O(I-G(~(y») 

XF(~(x», 

yG(Hy». 
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Each player then tries to maximize his own expected payoff. Thus, following 

Anbar and Kalai [1978], we define as follows: 

Definition 1. A point (x,y) EAx B is called (F,G;S)-optimal, or simply 

(F,G)-optimal if 

xF(~J(x» = max {X'F(~(x'» x'EA}, 

yG(~(y» = max {y'G(~(y'» y' E B}. 

Note that there always exists an (F,G)-optimal point. We say a point 

(x,y)ES is Pare to optimal if there is no other point (X',y')ES such that 

x'~x and y'~y. 

even feasible. 

An (F,G)-optimal point (x,y) may not be Pare to optimal, nor 

This depends on the pair of beliefs (F,G). 

Definition 2. A pair of beliefs (F,G) is said to be optimality-consi.stent 

if every (F,G)-optimal point (x,y) is Pare to optimal. 

An immediate example of an optimality-consistent pair is one such that 

F and G are uniform. Another example would be, say, the pair (F,G) such that 

F(y) =y2 and G(x) =)/2 . 

Notice that the optimality-consistency is defined relative to the given 

bargaining game (S,c). The globally optimal pair (F,G) defined by Anbar and 

Kalai [1978] corersponds to the case where (F,G) is optimali ty-consistent for 

every (S,c) satisfying (a) and (b). We do not need such a strong requirement. 

Finally, we state a preliminary result which follows immediately from 

Lemma 1 in Anbar and Kalai [1978]. 

Lemma 1. Let (S,c) be given, and let (F,G) be an optimality-consistent 

pair of beliefs. Then, there is a unique (F,G)-optimal point (x,y). Moreover, 

xF(~(x»>O and yG(~(y»>O. 

3. Plausible Beliefs 

As assumed in the previous section, each player is an expected-utility 

maximizer. They know each other that the opponent is also an expected-utility 

maximizer. To be consistent with this knowledge, therefore, each player must 

take into account the belief which the opponent might have over his choice of 

strategies. Thus, each player must assume a pair of beliefs; one for his 

opponent's choices, and the other for his own choices which he thinks the 
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opponent might have over his own choices. With this pair of beliefs in mind, 

each player then tries to infer what is a probable outcome of the game. 

To consider the game in thi,s scenario, we need criteria on what are 

plausible pairs of beliefs to each player. We shall formulate three condi­

tions on the formation of such pairs of beliefs. 

Let E be the class of all feasible sets satisfying condition (a) and (b) 

in Section 2. Given SEE, let f(S) be a nonempty set of pairs of beliefs 

(F,G). We call f the mechanism of forming beliefs and interpret (F,G) to be 

plausible if (F,G) E f(S). The first requirement of f is the following. 

Axiom 1. (Optimality-Consistency). Let SEE and let (F,G)Ef(S). Then 

(F,G) is optimality-consistent. 

This axiom simply requires that a plausible pair of beliefs should be one 

that generates a Pareto optimal outcome. Each player must consider which pair 

of beliefs is plausible. But, whatever it may be, it would be irrational for 

each player to assume a pair that does not generate a Pare to optimal outcome. 

For each SEE, denote by p(S) the Pareto optimal surface of s. Also, 

denote by (xS,yS) any (F,Gjs)-optimal point which may be Pare to optimal or not 

(see the remark of Definition 1). Then, the second condition on f can be 

stated as follows: 

Axi om 2. (Outcome Belief-Compatibility). Let SE l: and let (F,G) E f(S). 

If (XS,yS)EP(S), then there exists no point (x,y)EP(S) such that 

F(y)G(x) > F(yS)G(xS ). 

To motivate this axiom, consider any point (x,y)E p(S). Then, under the 

rule of the game, we have 

Prob [(x,y) E p(S) is the outcome of the game] 

Prob [player obtains x and player 2 obtains y] 

Prob [player thinks player 2's choice y' to be y'~y 

and player 2 thinks player 1 's choice x' to be x'~x] 

F(y)G(x). 

Thus, Axiom 2 requires that a plausible pair (F,G) should be one with the 

property that the (F,G)-optimal point (xS,yS) is compatible with the maximal 

probability of obtaining the point (xS,yS) as the outcome of the game. In 

this case, we say the (F,GjS)-optimal point is belief-compatible. 

The outcome belief-compatibility may be justified in our scenario, because 

in the one-shot situation any player cannot revise the belief at all so that 

he must rely on the belief the outcome by which he thinks is most probable. 
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To state the last condition, we need some notations. Let SEl: be given 

fixed, and let £>0 be a sufficiently small number. Consider, then, the sub­

class l:(£) of l: with the Hausdorff distance I) from S less than £, Le., 

l:(E) = {TEl: I O(S,T) < £ } .. 

l:(£) is an expression of possible small variations of the given feasible set 

S, Then: 

Axiom 3. (£-insensitivity). Let SEl: be fixed, and let (F,G)Ef(S). 

Then, there exists £>0 such that for any TEl: (£), (F,G) Ef(T). 

Axiom 3 states that the mechanism of forming beliefs may have a slight 

imperfection or inertia such that once a particular belief is formed, it 

cannot be sensitive to small-enough differences from the given feasible set S. 

As we mentioned in the Introduction, it would be a realistic characterization 

to assume the imperfectness as an inherent nature of the mechanism. The 

perfect mechanism is the one corresponding to the limit when the degree of 

the imperfectness, i.e., £>0, tends to :~ero. 

We can now state our theorem. 

Theorem 1. Given SEl:, let (F,G) E;f(S). Then, under axioms 1,2 and 3, 

we have: 

(i) The (F,G;S)-optimal point coincides with the Nash solution for 

(S, c) • 

(ii) Let (xo ,yO) be the Nash solution for (S,c). Then there are 

. I d( 0) .. ° d (0) A .. ° h h ~nterva s y cB conta~n~ng y , an d x c conta~n~ng x suc t at 

F(y) 

G(X) 

[F(YO) /yO]y 

[G(xO)/xO]x 

° for all YEd(y ), and 

for all xEd(xO). 

The proof will be given in the next section. In Figure 1, we illustrate 

Theorem 1. This theorem implies in particular that any pair (F,G) such that 

F(y)=yh, G(x)=x
1

/
h 

with h>l is not in £(S), though it satisfies Axiom 1. 

Theorem 1 gives a necessary condition for a pair (F,G) to be in f(S). 

It imposes no restriction on the beliefs away from the neighborhood of the 

Nash solution. The pair of uniform distributions is a typical example that 

satisfies the condition, but, of course, the theorem does not say that it: 

necessarily belongs to f(S). In fact, there are cases in which the pair of 

uniform distributions does not a priori appear plausible. This occurs when 

there exists y'>O with (1 ,y') ES, in which case player 1 may expect F(y)"O for 

all y with OSy<y'. 
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An example of the class of pairs of beliefs satisfying axioms 1 and 2 

would be one consisting of all (F,G) such that for all TEl:(e:), the Nash 

1 · (0 0) . f' so ut~on x ,Y for T satls ~es, 

° ° F(y )/y ~ F(y)/y for all yE B, and 

° ° G(x )/x ~ G(x)/x for all x EA. 

The proof is straightforward, and it can be seen that any pair in this class 

has the necessary linear portion around the Nash solution. The pair of 

uniform distributions is in this class, but, in a sense, it is the least 

plausible one in this class. A more plausible pair in this class would be 

one that approximates the degenerate pair of beliefs with all the mass at the 

Nash solution. Such an approximation can be considered consistent with the 

whole of the optimal pairs of choices (xO ,yO) for all TEl: (E:). 

4. Proofs 

Proposition 1. Given SE l:, let (F,G) E f(S) with axioms 1 and 2. Assume 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Nash Bargaining Solution 

that the (F,G;s)-optimal point (x*,1jJ(x*) satisfies x*<l and y*<l, and that 

G and 1jJ are differentiable at x=x*, and F is differentiable at y=1jJ(x*). 

Then, the point (x*,1jJ(x*» is the Nash solution for (S,c). 

329 

Proof: Let us denote the differentiation by the prime. Then, by differ­

entiating at )(=x*, it follows from Axiom 1 that 

(1) F(1jJ(X» + XF'(1jJ(x»1jJ'(x) o 

(2) 1jJ' (x)G(x) + 1jJ(x)G' (x) = 0 

Also, by differentiating at x=x*, it follows from Axiom 2 that 

(3) F'(~(X»1jJ'(x)G(x) + F(1jJ(x»G'(x) o 

Note that, by Lemma 1, we have 

F(1jJ(X» = -XF'(1jJ(x»1jJ'(x) ~ 0 at x=x*. 

Then (1) and (3) imply 

(4) G(x) - xG'(x) = 0 

By Lemma 1 we have G(x*»O, so that (4) and (2) imply 

x1jJ' (x) + 1jJ(x) = 0 at x=x*. 

But, this imp lies that the point (x*,1jJ (x*» is the Nash so lut ion. 

Proposition 1 shows that with the differentiability, axioms 1 and 2 are 

enough to obtain the result. 

The next lennna is a variant of Lemma 2 in Anbar and Kalai [1978], but we 

give the proof for completeness. 

Lemma 2. Given SEL, let (F,G) Ef(S) with axioms 1 and 3. AsstnDe that 

the (F,G;s)-optimal point (p,q) satisfies p<l and q<l. Then, there is a 

ntnDber t >1 such that t q<l and for any t with l<t<t , q q - - q 

(i) StE;L(e:), where St = {(x,ty) I (x.y)ES} n(AxB), and 

(H) (p, t
q

) ~s (F.G;St)-optimal. 

Similarly, there is a ntnDber t >1 such that t p$l and for any t with lst<t , 
p P p 

(Hi) RtE:L(e:), where R
t 

= {(tx,y)l(x.y)ES} n(AxB), and 

(iv) (tp,q) ~s (F,G;Rt)-optimal. 

Proof: Let e:>0 be chosen by Axiom 3. Define t by 
q 

t= sup {t1(p,tq)EP(T), TEl:(e;)}. 
q 

Then (i) follows. To show (ii), let St be given by 
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St = {(x,z)lxsCPt(z), zEB}. 

that CPt(z) = CP(z/t) if z<1, and 

max {ZG(CPt(z»lzEB} tomax 

that q<1/t because 1st<t 0 

q 

{YG(CP(Y»10~y~1/t} 

tqG(cP(q» = (tq)G(CPt(tq». 

Then, 

By axioms 3 and 1, it follows that (F,G)Ef{J;t) and (F,G) is optimality con­

sistent for St. Then, by the uniqueness of the (F,G;St)-optimal point (Lemma 

1), the above equality implies that (p,tq) is the (F,G;St)-optimal point. 

The proofs for (iii) and (iv) are analogous. 

Lemma 3. Given SE 2:, let (F,G) Ef(S) with axioms 1 and 3. Asstune that 

the (F,G;S)-optimal point (p,q) satisfies p<1 and q<1. Then, there are 
+ + intervals [q,y ) and ~,x ) such that F and G are respectively continuous. 

Moreover, if the function ~(and CP) is differentiable at x~p (at y=q), then 

F and G are differentiable in (q,y+) and (p,x+), respectively, and 

(i) 

(ii) 

F' (y) 

G' (x) 

[F(y)/y][q/p](-cp'(y)ly=q)' for all YE(q,y+), 

[G(x)/x] [p/q](-~'(x)lx=p)' for all XE(p,X+). 

Proof: Let £>0 be chosen by Axiom 3. For any t, (1St<t~, consider 

the feasible set St E 2: (d defined in Lemma 2. By Lemma 2, the point (p, tq) 

is (F,G;St)-optimal. Hence, 

pF(tq) ~ xF(t~(x» cP (y/t)F(y) for 0s:ys:1. 

Also, for any s (1s:s<t , s;zOt), 
q 

Since t 

(5) 

and 

(6) 

It then 

(7) 

pF(sq) ~ xF(S~(X» = CP(y/s)F(y) for 0~y~1. 

and s are arbitrary with 1 st, s<t , we have q 

pF(tq) ::: CP(sq/t)F(sq) for 1 ss<t q 

pF(sq) ::: cP ( tq / s ) F ( tq ) for 1st<t q 

follows from (5) that 

F(sq) - F(tq) S F(sq)(-1/p)[CP(sq/t)-CP(q)] 

F(sq)(-1/tp)(sq-tq)[cP(sq/t)-cP(q)]/[sq/t - q] 

Also, from (6), 

F(sq) - F(tq) ::: F(tq) (-1/p) [CP(q)-CP(tq/s)] 
(8) 

F(tq) (-1/sp) (sq-tq) [CP(tq/s)-cp(q)]/[tq/s - q] 
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Combining (7) and (8), and letting s+t, we see that F is continuous at y=tq 

(l~t<tq) because t is continuous by assumption. If t is differentiable at 

y=q, then F is differentiable at y=tq, (l<t<t). Hence, (i) follows with 
q 

y+=t q. For (ii), the proof is analogous. 
q 

Proof of Theorem 1: Let (F, G) E f(S) • By Axiom 1, (F ,G) is optimali ty 

consistent, so that there is a unique (F .• G;S)-optimal point (p,q). 

331 

Case 1: p<1 and q<l. Assume first that ~ (and t) is differentiable at 

x=p (at y=q). Choose t>l such that tp<l, tq<1 and St,Stt E [Cd where 

St = {(x,ty)I(X,y)Es}n(AxB), 

Stt = {(tx,ty)I(X,y)ES} n(AxB). 

By axioms 1, 3 and Lemma 2, (p,tq) is (F,G;St)-optimal, and (tp,tq) is 

(F,G;Stt)-optimal. Then, by Lemma 3, F and G are differentiable, respectively, 

at y=tq and x=tp. Hence, by Axiom 2 and Proposition 1, (tp,tq) is the Nash 

solution for Stt' that is, 

(tp) (tq) = max {( tx) (ty) I (x, y) E s} • 

This implies that (p,q) is the Nash solution for S. 

Next, by differentiating x~(x) and yt(y) at x=p and y=q, respectively, 

we obtain 

(9) x~ I (x) + ~ (x) 0 at x=p 

(10) yt' (y) + t(y) 0 at y=q 

Then, it follows from (9), ( 1 0) and ( i) , (ii) of Lemma 3 that 

F' (y) = F(y)/y for all 
+ 

Y E (q, y ), 

G ' (x) = G(x)/x for all XE(p,X+). 

Hence, we obtain 

(11) F(y) [F(q) /q]y for all 
+ 

yE[q,y] 

(12) G(x) [G(p)/p]x for all 
+ x E[p,x ] 

When ~ is not differentiable at x=p, we approximate S by a smooth T E [(0:) 

such that 

Then, by Axiom 3, (F,G)Ef(T). By Axiom 1 and Lemma 1, there exists a unique 

(F,G;T)-optimal point, which we denote by (Pt,qt). Then, we may assume that 

(Pt,qt) is in the interior of AxB, which can be seen as follows: Since q>'I, 

we have 
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But, we may choose ~t which is near-enough to ~ so that 

Hence qt~l, that is qt<l. That pt<l is similarly verified. 

Thus, we have a sequence of smooth approximations T with each (F,G;T)­

optimal point being the interior Nash solution for T. This proves that (p,q) 

is the limit of the sequence of the Nash solutions, so that (p,q) is also the 

Nash solution for S. 

The linearity of F and G can be proved by choosing a smooth TEl:(e:) with 

the (F,G;T)-optimal point being equal to (p,q). 

Case 2: p=l or q=l. Let q<l and assume that the curve x=~(y) is kinked 

at the (F,G;s)-optimal point (l,q). But, this case is essentially the same 

as the above non-differentiable case by considering the approximations such 

that 1/!t(l)=O. 

Assume, next, that x~~(y) is differentiable at y=q, so that ~'(y)=O at 

y;q. We can show, however, that this case cannot occur. By (i) of Lemma 3, 

it must be true that 

(13) F' (y) = 0 for all y with q<y<y + 

Consider the feasible set T = {(x,Y)lx::;~t(y)}El:(E:) such that 

for all y with q<y::;l, 

~ (y) for all y with O::;y::;q, and 

lim ~'(y) ~ 0. 
y-+q t 

Then, clearly, (1,q)ETC8 and the curve x=~(y) is kinked at (l,q). Moreover, 

the point (l,q) is (F,G;T)-optimal as shown below: 

IF(1/!t(1)) ~(q)F(q) ~ ~(Y)F(y) 

~ ~t (y)F(y) = XF(1/!t(x» for all x E A, and 

qG(~t(q» qG(~(q» 

~ yG(4)(y)) ~ YG(<pt(y» for all YEB. 

Hence, approximating T by a smooth REl:(E:) such that RCT and 

(l,y)r/=R for all y>O, 

we obt~in, by axioms 1 and 3, the (F,G;R)-optimal point (Pr,qr) satisfying 

Pr<l and qr<l. Then, sinee ~;(y)~O for all YE(O,l), it follows from (0 of 
+ 

Lemma 3 that for some Yr>qr' 
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for all y E(q ,y+). 
r r 

Hence, letting 8(T,R) + 0, we can find y E(q,y+) that satisfies F'(y);zOQ. 

This contradicts (13). 

Thus we have proved that (F,G;S)-optimal point coincides with the Nash 

solution for (S,c), and that F and G satisfy (11) and (12). 
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