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Abstract This paper deals with an optimal search problem in which a target moves in a target space stochastically 

and the amount of search cost being continuously divisible is restricted in certain rate at each time. The optimal 

allocation of search effort and the stopping time of the search, which minimize the expected risk, are sought. 

Necessary and sufficient conditions for the optimal search plan are derived and physical meanings of the conditions 

are elucidated. An algorithm for numerical calculation of the optimal search plan and examples are also discussed. 

1. Introduction 

A problem of optimal search and stop for a moving target is dealt with in 

this paper. Suppose a target moves in a target space and a searcher wishes to 

find it efficiently. The target is assumed to move as ~ stochastic process 

with parameters known to the searcher. It is assumed that the search is 

started at to' and to be ended by T at the latest. His available search cost 

is limited to m(t) per unit time at each time t E [to,T]. The total search 

cost rate m(t) is assumed to be divisible in any way and a regular detection 

function, the definition of which will be given later in the next section, is 

also assumed. The search cost is proportional to the search effort applied 

to the target space and the searcher earns a reward R(t) when he successfully 

detects the target at t. It is assumed that the searcher wishes to minimize 

the expected risk of the search (the expected search cost minus the expected 

reward). The search plan which minimizes the expected risk of the search is 

called optimal. 

The optimal search problems for a moving target have been studied by many 

authors. In Dobbie's paper [3] published in 1963, he discussed some unsolved 

problems in search theory and pointed out the necessity of studies of the 
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Optimal Search jar a Moving Target 295 

moving target problems. There came to existence a number of papers on thE! 

optimal search problems for a moving target in the 1970's. In 1970, Pollock 

[10] formulatE!d a search model for a target which moved between two regions in 

a Markovian fashion. He gave an optimal search plan that maximized the dE!tec­

tion probability with a given number of looks and an optimal plan that mini­

mized the expected number of looks to find the target. Later Dobbie [4] dealt 

with a time continuous version of Pollock's model, but the study was restricted 

to the two-box model as yet. In 1972, Hellman [6] studied a maximization 

problem of the detection probability for a target moving according to a diffu­

sion process and found necessary conditions for the optimal search. Iida [7] 

derived necessary and sufficient conditions for the optimal search plan for 

the target moving along a path selected among a given set of paths with a 

known probability. Saretsalo [12] dealt with a search model in which the 

target motion belonged to a large class of Markov process. Stone and 

Richardson [13] investigated a search problem for a moving target of a special 

class called eonditionally deterministic motion. Later Stone [14] generalized 

their model to include the above-mentioned Iida model. Kan [9] generalized 

the Pollock model to n-box problem and he also considered a problem with a 

stop option under the criterion of the expected net return (Le. expected 

reward minus expected searching cost). Brown [1] considered an optimal search 

maximizing the detection probability with continuously divisible search effort 

and proposed an efficient algorithm for calculating the optimal search plan. 

The algorithm was essentially the same a.s that employed by Iida in computi.ng 

his numerical example, and was later named FAB algorithm by Washburn. 

Washburn [19] dealt with a discrete search problem in which all search effort 

had to be placed in a single cell at each t and gave an upper bound on thE! 

detection probability [20]. He also investigated a search model with a 

penalty when the target was not detected and proposed a generalized FAB 

algorithm [21]. A whereabouts search model for a moving target was investi­

gated by Stone and Kadane [16] and a surveillance search model for a moving 

target by Tierney and Kadane [18]. Eagle [5] investigated the optimal search 

that maximized the probability of detecting a moving target, in which the 

search path was constrained. 

The theorems of the maximization problem of detection probability for 

moving targets were generalized by StOnE! [15] who derived necessary and suffi­

cient conditions for the optimal search plan assuming a concave detection 

function and practically no restrictions on the stochastic process used to 

model the target motion. In 1981, Stromquist and Stone [17] generalized the 

theory to include a wide class of non-li.near, non-separable functional and 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



296 K. Iida & R. Hozaki 

separable constraints. Their theorem can be applied not only to the maximiza­

tion problem of the detection probability for a moving target, but also to a 

large variety of optimal search problems such as minimizing the expected 

search effort or the like. 

As for the optimal search problem for a stationary target, many authors 

have dealt with the problem under various measures of effectiveness of the 

search operation such as the detection probability, the whereabouts probabil­

ity, the expected time or cost until detection, and the expected risk or 

reward of the search. One of the authors, Iida [8], investigated the optimal 

search plan minimizing the expected risk of the search for a stationary target. 

We think similar models are worth investigating for a moving target. In this 

paper, applying the theorems given by Stromquist and Stone [17], we derive 

necessary and sufficient conditions for the optimal search plan which mini­

mizes the expected risk of the search for a moving target. 

In the next section, describing the assumptions of the model precisely, 

we formulate it as a minimizing problem of a functional. In Section 3, we 

derive necessary and sufficient conditions for the optimal search plan when 

the search time is limited to [to,T] and then we give the conditions for the 

optimal stopping time when the search time is not restricted, namely T ~ 00. 

Section 4 is devoted to discuss FAB algorithm to calculate the optimal search 

plan and two examples are presented. Finally, various discussions are given 

in Section 5. 

2. Formulation of the Problem 

In this section, defining system parameters of the search precisely, we 

formulate the problem mentioned above as a variational problem. The detailed 

descriptions of the search problem are as follows. 

1. We consider a target space Y with a-finite measurer n and a continuous 

time interval T [O,T] of the search time. Let ~ be the product measure on 

Y x T and Z be a ~- measurable subset of Y x T. Denote its t-section by 

Zt = {ye:YI (y,t) e:Z}. 

2. Suppose the target's motion is given by a stochastic process X = {Xt E Zt}' 

where X
t 

is the position of the target at t. We assume that X
t 

has a proba­

bility density function qt(Xt = y) defined on Zt' 

3. We assume that the search is started at to and the searcher may stop the 

search at any time whenever the search does not pay. m: T ~ (0,00) is assumed 

to be given, where m(t) is a total search cost rate being available to the 

searcher at t and is assumed to be continuously divisible in the target space. 
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4. A search plan is a Borel measurable function ~T: Z ~ [0,00) which specifies 

a density of search effort in both time and space. The set of ~T(y,t) is 

denoted by ~T(= {~T(y,t), (y,t)e:z}). (Sometimes, the suffix T of ~T or 

~T(y,t) is omitted if no confusion is expected.) 

5. Let <Y.: Z -> (0,00) be ',l""'!lleasurable. for each sample path of the process x, 

the probability of detecting the target given it follows that path is a func­

tion of the weighted total search effort density ~ (= Jt <Y.(x ,T)~ (x ,T)dT) to T T T 

which is the cumulative search effort density on the target over the path 

until t. The weight <Y.(y,t) represents the relative detectability to the 

target if it stays at point y at time t. There is a function b: [0,00) ~ 

[0,1], such that b(~) is the probability of detecting the target by t given it 

follows the given path and effort density ~ is applied. We assume that b(~) 

is a continuous, differentiable and strictly concave function of ~ > ° with 

b(O) = ° and b(oo) = 1, and the derivative is positive, continuous and bounded, 

0< b ' (~) < 00. (The function satisfying these properties is called a regular 

detection function.) 

6. R: T ~ [0,00) is assumed to be given. R(t) is a reward earned by the 

searcher if the target is detected at t. R(t) is assumed to be a non-negative, 

non-increasing and differentiable function of t. 

7. Let cO: Z ~ (0,00) be ',l""'!lleasurable. cO(y,t) is the cost of unit search 

effort density allocated to y at t. 

8. The measure of effectiveness for a search plan is assumed to be the ex­

pected risk of the search, i.e., the expected search cost until detection or 

stopping, whichever comes first, minus the expected reward. (This measure of 

effectiveness was first employed by Ross [11] to investigate the optimal 

search and stop and later by many authors.) 

Under the assumptions described above, conditions for the optimal search 

plan are derived in the following two steps. As the first step, we deal with 

a problem with a finite T (T is called the limit time of the search) and the 

optimal distribution ~; of search effort is sought. Then, as the second step, 

we consider a problem with no restriction on the limit of the search time and 

* the condition for the optimal stopping time T is obtained. It is obvious 

* that the search plan ~T* is optimal when the search time is not limited. 

Suppose a limit time T of the search is given. The expected risk of the 

search in which a search plan ~ is employed is obtained as follows. The 

search plan ~ {~(y,t), (y,t) e:z} must satisfy the next conditions from 

Assumption 3. 
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cP (y, t) ~ 0, 
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Iz cO(y,t)CP(y,t)dn(y) s m(t), 
t 

(y, t) E: Z , 

for a.e. t E: T. The search plan cP which satisfies the above conditions for all 

t is called a feasible plan and the set of the feasible plan is denoted by \jI. 

\jIO is defined as the set of cP E: 1jJ such that 

(2) Iz cO(y,t)cp(y,t)dn(Y) = m(t). 
t 

Our attention is concentrated on the plan cP E: \jI or \jIO hereafter. The detection 

probability pt(CP) with plan cP E: \jI by time t is given by 

(3) pt(CP) = E[b(J t
t a.(x ,T)CP(X ,T)dT)] , 
OTT 

where E[-] is the expectation over the sample paths of X. 

The cumulative search cost C(t,cp) by t is given by 

and 

Using Pt(CP) and c(t,cp) presented above, we obtain the expected risk f(CP) as 

Since b(-) is a regular detection function. pt(CP) is continuous and is a 

function of bounded variation. Integration by parts yields 

(7) f(CP) = I~ (R' (T)-C' (T,CP»P (CP)dT + C(T,CP) - R(T)PT(CP). 
o T 

Therefore, the problem with a finite limit time T is formulated as a varia­

tional problem to find a function cP; = {CP;(y,t), (y,t) E: z} which minimizes the 

functional f(CPT) subject to the restriction (1). 

(8) 

cp* is called T-optimal allocation of search effort. 
T 

In the second stage of our investigation. the limit time T is considered 

as a variable in [to'oo). The earliest T which minimizes f(CP;). f(CP;*) = 

inf inf f(CPT) , is defined as the optimal stopping time T* of the search. 
T CPT 

(9) T* = min {T I inf f(CP;)} 
T 
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Optimal Search for a Moving Target 

The optimal search plan is obviously given by cp;* = {cj>;*(y,t), (y,t) £ z}, 

if the search time is not limited. 

3. Optimal Search Plan 

299 

In this section, we derive necessary and sufficient conditions for the 

T-optimal allocation of search effort and for the optimal stopping time of the 

search in which search time is not limited. 

3.1 The T-optimal allocation of search effort 
The derivation of necessary and sufficient conditions for the optimal 

search plan given a limit time T is similar to the pattern of reasoning by 

Stromquist and Stone [17]. They consider a maximization problem for a real­

valued functional p(CP) under the constraint (1) and derive necessary and 

sufficient conditoins for cp to be optimal. Before presenting their theorem, 

we define the Gateaux differential of a real-valued functional g(1jJ) at 1jJ in 

a direction h by 

(10) dg(l/J,h) lim k(g(1jJ+8h) - g(1jJ») 
8-+-0+ 

for 1jJ £ '1' and l/J+8"h £ '1' for all sufficiently small positive 8. Suppose that 

there exists a function d(1jJ,y,t) defined on Z such that for every h, l/J+8h £ '1', 

the Gateaux differential is given by 

(11) dg(l/J,h) = Jzd(l/J,y,t)h(y,t)d].l(y"t). 

Then d(1jJ,·,·) is called a kernel of the Gateaux differential at 1jJ. 

The necessary and sufficient conditions for cp* to be optimal given by 

Theorems 1 and 2 in Stromquist and Stone [17] are quoted as the following 

lemmas. 

Lemma 1. Let '1' be the set of measurable function cp: Z -+- [0,00) satisfying 

(1), let cp * £ '1', and let P be a real-valued functional on '1'. Assume that P 

has a Gateaux differential at cp* with kernel d(CP*,·,·). Then a necessary 

condition for cp* to be optimal is that there exists a measurable function 

A: T-+- (-00,00) such that for a.e. (y,t) 

(A) d(CP*,y,t) $ A(t)CO(y,t). and 

d(CP*,y,t) A(t)CO(y,t), if cp*(y,t) > o. 

Lemma 2. In addition to the hypotheses of Lemma 1, assume that p(cp) is 

concave and that cp* £ '1'0. Then the necessary conditions of Lemma 1 are also 

sufficient for cp* to be optimal. 
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Letting p(~) ~ -f(~) given by (7), we can apply Lemmas 1 and 2 to our 

problem. The following theorem provides necessary and sufficient conditions 

for ~* to be optimal. 

Theorem 1. * . A necessary conditoin for the T-optimal search plan ~T 1S 

that there exists a non-negative function A(t), {A(t), t E: T} ~ {O}, such that 

for a.e. y and t 

(12) 

where 

(14) 

A(t)co(y,t) for ~*(y,t) > 0, 

_AT (~*) :> A(t)cO(y, t) for ~*(y, t) 0, yt 

and E [x] denotes the expectation over the sample paths of X conditional on yt 
X

t 
~ y. 

If A(t) > 0, t E: T, then 

(15) fz cO(y,t)Hy,t)dn(y) met). 
t 

If f(~) is convex and ~* E: ~O' the necessary conditoins mentioned above 

are also sufficient for ~* to be optimal. 

Proof: The functional f(~T) given by (7) has a Gateaux differential at 

~ in any direction with a kernel A~t(~) given by (13). To derive it, we 

calculate the Gateaux differential of each term of (7). Since the detection 

function b(~) is regular by the assumption, b(~) is differentiable and has 

a bounded positive derivative b' (~). Hence the Gateaux differential of Pt(~) 

exists and obtained as 

(16) 

dPt(~,h) = I~OJzTa(Y'T)EYT[b'(J~oa(xs,s)~(Xs,S)ds)]qT(Y)h(Y'T)dn(y)dT 

= I~oIzTD~T(~)h(Y'T)dn(Y)dT. 

Since C(t,~) and C'(t,~) are linear with respect to ~, we have 

(17) dC(t,~,h) = I~ fz CO(y,T)h(y,T)dn(y)dT, 
o T 

(18) de' (t,~,h) = Jz co(y,t)h(y,t)dn(y). 
t 
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Therefore, the Gateaux differential of f(<j» is obtained from (16), (17), (18) 

and (7) as 

(19) 

If we set p(<j» = -f(<j» , Lemma 1 is applicable to our problem since the 

objective functional -f(<j» has the Gateaux differential which is a linear 

functional defined by integration with the kernel function -A~t(<j» given by 

(13). Letting d(<j>*,y,t) = _AT (<j>*) in (A), the relation (12) is derived. 
yt * 

The non-negativity of A(t) is proved as follows. We assume <j> (y,t) > 0 

and A(t) < 0 in the neighborhood of (Yl,t
1
). Consider a search plan ~ which 

differs from the optimal plan <j>* only in the neighborhood of (Yl,t 1), 

Then it is 

= 1 
<j>*(y, t) - 0, in 6Z-neighborhood of (y l' t 1), 

~ (y, t) 
<j>*(y,t), otherwise. 

easily proved that {~(y,t)} 1-S feasible, and we have 

f(~) - f(<j>*) _AT (<j>*)ollZ 
Yl t l 

for sufficiently small 0 (> 0). Since <j>*(y,t) > 0, the right-hand side of the 

above equation is denoted as A(t
1

) ollz and is negative by the assumption. 

Hence we have f(~) < f(<j>*). This result contradicts the optimality of <j>*, and 

therefore, we can conclude A(t) ~ o. 
Equation (15) is proved similarly. Here we assume 

* o < Jz cO(y,t)<j> (y,t)dn(y) < met) for A(t) > O. 
t 

* Then there exists (Yl,t 1) such that <j> (y,t) > 0 in the neighborhood of (Yl,t
1
). 

We consider a search plan ~, 

~ (y, t) I <j> * (y, t) 

<j>*(y,t), 

+ 0, in llZ-neighborhood of (Yl' t 1), 

othe rwise. 

Then ~(y,t) IS '!' is also proved and the following is derived. 

f(~) - f(<j>*) = AT (<j>*)ollZ = -A(t)ollZ < 0 
Yl t l 

for a sufficiently small 0(> 0). This contradicts the optimality of <j>*, and 

therefore, Equation (15) is obtained. 
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As stated in Lemma 2, if p(~) is concave (in their maximization problem) 

and ~* ~ ~o' the necessary condition is also sufficient. However, in this 

statement, the concavity of the objective functional must be changed to the 

convexity of the expected risk function f(~T) in our minimization problem. 

(Q.E.D. ) 

The following lemma gives a sufficient condition for f(~T) to be convex. 

Lemma 3. The expected risk function f(~T) given by (7) is convex, if 

for ~1 2 
(A sufficient condi tion. ) any and ~ ~ ~. 

Proof: Let 8~ {8~(y,t), 

~1 and 

(21) 

~2 ~ ~. ~ ~ ~ is easily 

fz cO(y,t)~(y,t)dn(y) 
t 

(y, t) ~ z} and ~ = 
comfirmed by 

(1_8)~1+8~2, 0 ~ 8 ~ 1 , 

2 
+ 8fz cO(y,t)~ (y,t)dn(y) ~ m(t). 

t 

By substituting ~ = (1-8)4 1 + 8~2 into (7), we have 

because of the concavity of b(~). Hence, if the last term of the right-hand 

side of the above inequality is non-positive, f(~) is a convex function of 

~ ~ '¥. 

(Q.E.D.) 

3.2 Optimal stopping time 

In this section, we derive necessary and sufficient conditions for the 

optimal stopping time T* defined by (9) when the. search time is not restricted. 

For the derivation of the conditions, hereafter we deal with T as a variable 

defined on [to'oo) instead of the definition as the limit time of the search 

in the previous section. T is called stopping time of the search hereafter. 

Lemma 4. 
1. If T > T*, the T-optimal search plan~; which is obtained from Theorem 1 

is identical with the (unconditional) optimal search plan ~;*. 

(23) = ( 
0, 

if 

if 
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2. The expected risk 

f(.;*) for T > T*. 

f(.;) is a non-inereasing function of T and is a constant 

Proof: 1. * * From the definition of .T*' .T* is not influenced by the 

* * limit time T of the search if T ~ T. Therefore, .T* is identical with the 

* * conditionally optimal search plan .T for T C~ T ). 

2. In order to prove 2 of the lemma, we consider two arbitrary stopping times 

T1 and T
2

, to ~ T1 < T
2

, and a search plan.T e: '¥ as follows, 
2 

(24) ( 
.;1 (y,t), 

0, 

Then, since.T does not necessary be optimal for T
2

, fC.; ) = fC.
T 

) ~ fC.; ) 
2 1 2 2 

holds. Therefore, f(.;) is a non-increasing function of T through 4>;, to ~ T 

~ T*. The statement, fC4>;) f(4);*) for T ~ T*, is obvious from (23). 

Theorem 2. A necessary and suffici.ent condi tion for T* to be optimal is 

(25) 
for T* -::; T, 

for a sufficiently small ~T > o. 

Proof: From Lemma 4, the optimal stopping time T* is given an alter-­

native definition irrespective of (9): 

The optimal stopping time T* is the time such that 

U(,p;) 
T*-~T < T < * -aT- < 0 for T , 

(26) 
df(,P;) 

0 for T* ---- ::; T, aT 

for a sufficiently small ~T. 

* * By considering the variations of • (y,t) and ptC.
T

) when the stopping 

time T is prolonged to T+~T, the followi.ng expression is obtained. 

(27) 

where 

(28) 
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(29) 

It ~s easily derived by Theorem 1 that the second term of the right-hand side 

of (27) is rewritten as -~.TAT(T)m(T) and the third term is zero. Hence we 

have 

Theorem is directly obtained from the definition of T*, (26), and (30). 

(Q.E.D. ) 

It is important to distinguish the limit time T of the search in Section 

3.1 and the stopping time T* in Theorem 2. As mentioned in Theorem 2, the 

stopping time T* implies that the search is conducted at T*-~T and is stopped 

at T* eventually. On the other hand, the limit time T means merely an upper 

limit of the available 

ducted in the interval 

(y,t), t E (T*,Tj if T 

search time and if T > T* the search is not to be con-

* * (T ,Tj. Therefore, the result, ~T(y,t) = 0 for all 

> '1,*, is also obtained from Theorem 1; Theorem 1 in-

eludes Theorem 2 in this case, notwithstanding we discuss Theorem 2 assuming 

We define SeT) by 

(31) SeT) 

SeT) is called a search region at T. The following corollary states a property 

of the search region S(T*) at T*. 

Corollary 1. A necessary condition for S(T*) to be optimal is 

(l-p T* (~;*» J S ('1,*) Co (y, T*)dn (y) 

JT* * 
= R(T*)ES(T*)[b'( toa(XT·T)~T*(XT'T)dT)]. 

(32) 

If the stopping time T is less than T*, we have 

(33) 

AT(T)JS(T)CO(y,T)dn(y) + (l-PT(~;»JS(T)CO(y,T)dn(Y) 

R(T)ES(T) [b'(J~oa(XT'T)~;(XT'T)dT)j. 

Proof: On SeT), the next relation is obvious by (12) and the difinition 
T (*). () of A ~ g~ven by 13. yT T 
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Integrating AT(T) over SeT), we have 

J f T * AT(T) S(T)cO(y,T)dn(y) = R(T) S(T)DYT(~T)dn(Y) 

- (l-PT(~;»JS(T)cO(y,T)dn(Y). 

The first term of the right-hand side of the above equation is rewritten as 

R(T)ES(T) [b'(J~oa(XT'T)~(XT'T)dT)] from the definition of D~t(~;) given by 

(14), and therefore, (33) is proved. If we substitute T* for T in (33), 

* Equation (32) is derived since AT*(T ) = 0 by Theorem 2. 
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(Q.E.D.) 

4. FAB Algorithm and Examples 

The T-optimal allocation of search effort given by Theorem 1 usually 

cannot be obtained in an analytical form; often we must calculate it numeri­

cally. An algorithm for an iterative approximation called FAB algorithm (the 

forward and backward algorithm), proposed by Iida [6], Brown [1] and later by 

Washburn [21] in a more general form, can be applied to our model. 

4.1 FAB algorithm 
In this section, we consider the case where the time space T and the 

target space Y are ~oth discrete, T = {t., i=l,"',n} and Y = {j, j=l,"',m}, 
~ 

and n is counting measure. 

We shall give another expression of the condition (12) for the convenience 

of numerical c:alculation. When T and Y are discrete, qt(Y) is defined as 

probability mass function and A:t(~) given by (13) is rewritten as follows. 

(34) 

where 

T-l 
I (llR(T)-llC(T,~»D\(~) + co(y,t)(l-Pt_l(~» - R(T)DTYt(~)' 

T=t Y 

T 

DT (~) = a(y,t)E t[b'( I a(x,,~)~(x~,~»]qt(Y)' 
yt Y ~=t s. c, 

o 
t.R(t) =R(t+l) -R(t), 

llC(t,~) = C(t+1,~) - c(t,~) = Ico (y,t+1)Hy,t+1), 
Zt 

t 
E[b( I a(X ,T)~(X ,T»]. 

T=t T T 
o 
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Suppose the T-optimal allocation of search effort ~* is given except for 

the allocation at t. In (34), ~(y,t) is related to D~t(~)' T ~ t, and D~t(4) 
is a continuous and strictly decreasing function of ~(y,t) by Assumption 5. 

Since (~R(t)-~C(t,~» < 0, A~t(~) is a continuous and strictly increasing 

function of ~(y,t), and therefore, the left-hand side of (12), -A~t(~*)' is a 

continuous and strictly decreasing function of ~*(y,t). We denote the function 

_AT (~*) by P t(~*(y,t» in order to emphasize the argument 4*(y,t). Then yt y _ 
there exists an inverse function Py~(x) of pyt(o) which is defined on a domain 

(35) Pyt(O) ~ x > lim P t(~) 
~+'" Y 

Here we define a function [p~!(x)]+ as 

(36) 
* -cO(y,t)(l-Pt(~ » < x ~ Pyt(O), 

Pyt(O) < x. 

-1 + \' -1 + 
The summation of c (y,t) [p t(x)] over Zt. L cO(y.t) [p t(x)] • gives the total 

o y Zt y 

search cost at t when .*(y,t) is determined by (12) for x = cO(y,t)A(t). 

Since the total cost at t, met), is given, the situation is either of the two, 
\' -1 + \' -1 + Lco(y,t) [p t(O)] >'m(t) or LcO(y,t) [p t(O}] ::; met). For the former case, 

Z y Z y 
t: -1 ( ) . . t. 1 d . . d \' ( ) s~nce PtO ~s a cont~nu()us str~ct y ecreas~ng funct~on an L Co y, t x 

y Z 
-1 - + t 

[p t(AcO(y,t»] = 0 for:\ maxp t(O), there exists a positive constant 
y YEZt y 

A(t)E(O,X) which satisfies 
\' -1 + 

(37) LCO(y,t) [p t(A(t)CO(y,t»] = met). 
Z y 

t 

Then, the optimal allocation of search effort at t is given by 

(38) 

The optimality of ~*(y,t) given by (38) is easily proved as follows. If 

$*(y,t) is positive, $*(y,t) = P~~(A(t)cO(y,t» from (38) and definition of 

-1 + * T * [Pt/A(t)cO(y,t»]. Hence equation A(t)cO(y,t) = Pyt ($ (y,t» = -Ayt ($ ) 

is derived. Similarly, Pyt(O) = -A~t(.*) ::; A(t)cO(y,t) hold for .*(y,t) = O. 

Therefore relation (12) is satisfied and Equation (15) is obvious from (37). 

I -1 + 
For the latter case, cO(y,t) [pyt(O)] ::; met), the optimal allocation at t is 

. Zt 
g~ven by 

(39) 
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* * * Since Pyt(CP (y,t» = 0 for cp (y,t) > 0 and Pyt(O) ~ 0 for cp (y,t) = 0, A(t) =0 

is concluded and the allocation cp*(y,t) given by (39) is proved to be optimal 

from Theorem 1. The results mentioned above are summarized as the following 

corollary. 

Corollary 2. aCt) is defined by 

'\ -1 + 
(40) aCt) = L. co(y,t) [pyt(O)] •• 

Zt 

The optimal allocation of search effort cp*(y,t) is given by 

* cp (y, t) 

(41) 

[ -1(0)]+ Pyt 

for aCt) > m(t), 

for aCt) ::: m(t), 

where A(t) is a positive number which is uniquely determined by Equation 
'\ -1 + 
L. Co (y , t) [p t (A (t ) Co (y , t) ) ] = m ( t) . 

Z Y 
t 

The above corollary states the relation between the positivity of A(t) 

and the exhaustive employment of the search cost met) as well as the way how 

to obtain the. optimal allocation. Corollary 2 implies that if the total 

search cost lll(t) at t is relatively small and aCt) > m(t), A(t) > 0 hold and 

the whole met) is to be allocated in the target space exhaustively. If EI(t) 

< met), then A(t) = 0 and we must save some met) to avoid overemployment of 

search cost at t. We shall call the former case the complete search and the 

latter case the partial search. When aCt) = met), the situation lies just 

between them, namely A(t) = 0 and the complete search is optimal. 

Applying Corollary 2, the FAB algorithm to obtain the T-optimal alloca­

tion of search effort is described as follows: 

1. 

2. 

3. 

4. 

5. 

6. 

Let 0 be a small positive number and set k O. 

Set cpO(j,ti ) = 0 for all j and t i • 

Perform Step 4 and 5 for all ti from to to t sequentially. 
n k 

Caleulate cp * (j, t) for all j by Coro llary 2 and set cp (j, t) 
= CP*(j,t.). 

~ 

Go to the next t .• 
~ 

If [f(cpk)_f(cpk-1)! > 0, increase k by 1 and go back to Step 3. 

7. If [f(cpk)_f(cpk-1)! ~ 0, stop. {cpk(j,ti)} is an approximation of the 

T-optimal allocation wi thin error o. 
That the algorithm mentioned above gives a T-optimal allocation of search 

effort if f«p) is convex is verified as. follows. Consider the improvement of 
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f(~) at t. in some iteration k of Step 4. 
k-1 ~ k 

According to the FAB algorithm, 

~ (j,t.) is replaced by ~ given 
~ 

by Corollary 2 at the iteration (k,t.) 
~ 

k k-1 
the search plan ~ = {~ (j,t), t1 ~ t ~ t. l' ~ (j,t), t. < t ~ t } is 

~- ~ - n 
renewed to 

(42) {~(j,t)} 
=( l(j,t), 

~k-1 (j, t) , t s; t 
n 

and 

- k k 
We denote the above transformation by ~ = At.~. If At~ = ~ for all t, t1 ~ t 

~ 

S tn' ~ is a T-optimal search plan, because ~ satisfies the condition of 

Theorem 1 for all t and j. Suppose ~(j,t) ~ ~(j,t) for some (j,t). Then, it 

is easily proved that the transformation A~~ improves f(~) as follows. When 

f(~) is a convex function of (y,t), the following is deduced. 

(43) 

t m 
n 

L L 
T=t

1 
j=l 

m 
L A~t(~k(j,t»{~(j,t)_~k(j,t)} 

j=l 
m m 

~ -A(t) L cO(j,t)~(j,t) + A(t) L co(j,t)~k(j,t) O. 
j=l j=l 

k 
Therefore, f(~) > f(At~) is concluded and this means that the transformation 

A~~ improves f(~). In FAB algorithm, since this operation Ak is applied se-
k k t 

quentially for t and k, fO ) decreases strictly. (~ is the solution of the 

kth iteration, ~k = {~k(j,t)}.) This also implies that f(~k) 
f(~**) by the sequential application of A~, since f(~) > f(~~ 

approaches 
k 

) and f(At~) 

;:: f(~*). Therefore, we have f(~**) = f(A~~**). Furthermore, f(CP**) = f(A~~**) 

** k ** . ** k ** ( k **) ( **) . means ~ = At~ • because 1f ~ ~ At~ ,then f At~ < f ~ 1S deduced 

from the above discussion and it contradicts f(~**) = f(A~~**). When ~** = 

,k,.** ,.**. . . (). ,.* __ ,.** by Ht 'I' for all t, 'I' sat1s.f1es Theorem 1 and 1f f ~ 1S convex, 'I' 'I' 

the theorem. 

(44) 

When f(~) is ~onvex, the next inequality is derived 

t m 
n 

L L A~T(~){~*(j'T)-~(j'T)} 
T=t 1 j=l 

A~ (~)~(j,T)} 
JT 
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where 

inf { A~ (~) 
j£Y JT 

(45) ess A~ (~) ::; 0 }. 
JT 

Therefore, an upper bound of the difference between the expected risk of 4k 
and that of the optimal plan ~* is evaluated by 

t m 
n 

(46) L [L 
T=t

1 
j=1 

4.2 A numerical example 

309 

Suppose the target space consists of discrete regions named cells, 

numbered j = 1,2,"',5 from the left to the right, and the time space is 

discrete time points t, t = 1,2,·····. We assume that if the target is in 

Cell j (j :s 4) at t, he selects either j or j+1 with probability (0.5, 0.5) 

for his next position and if he enters CellS, he stays there forever. Namely 

the transition probability matrix [p(j,k)] is given by 

(47) [p(j ,k)] 

0.5 0.5 0 

o 0.5 0.5 

o 
o 

o 
o 
o 

o 
o 
o 

0.5 0.5 

o 
o 
o 

o 
o 

0.5 0.5 

o 

The initial distribution of the target is assumed to be uniform over j, i.e., 

q1 (j) = 0.2, j = 1," ',5. It is also assumed that the search time is limi.ted 

to T = 10 and a total search cost m(t) = 7.S is available to the searcher at 

each time. The conditional detection function b(1jJ) is assumed to be an ex­

ponential function, b(1jJ) = 1 - exp(-1jJ). The unit cost of the search effort is 

cO(j,t) = 5 and the reward given when the target is detected successfully is 

R(t) = 100. For simplicity, these values, p(j,k), m(t), cO(j,t) and R(t), are 

assumed to be constant during the whole search time. 

Applying the FAB algorithm, we obtain the T-optimal allocation of search 

effort as shown in Table 1. 
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~t 1 2 3 

1 0.415 0 0 

2 0 0 0 

3 0 0 0 

4 0 0 0 

5 0 0 0 

Total 0.415 0 0 

A(t) 0 0 0 

* f(~10) 

K. lido & R. HOzaki 

* Table 1. ~10(j,t) 

4 5 6 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0.165 0.420 

0 0.165 0.420 

0 0 0 

-82.822 

7 8 9 

0 0 0 

0 0 0 

0 0.212 0.027 

0 0.290 0.454 

0.776 0.998 1.018 

0.776 1.500 1.500 

0 0.071 0.716 

In Table 1, we observe that the T-optimal search plan is started with a 

10 

0 

0 

0 

0.265 

1.235 

1.500 

1. 270 

partial search, followed by breaks at t 2, 3 and 4. After that the partial 

search resumes, and finally at t = 8, 9 and 10 the complete search in which 

the effort is concentrated to the right-most cells takes place. This result 

is explained intuitively as follows. Because of the Markov chain-like motion 

of the target, the target is more and more likely in the right-most cell as 

time passes by. Therefore if the limit time of the search is long enough, 

the searcher would wait all the time, and put his full effort onto Cell 5 at 

the last time points. If the limit time of the search is shortened a little, 

its effect might be as this: First, even at the last time point, there is 

some probability that the target is still in Cell 4 or 3, and thus the 

searcher has to divide his effort to these cells besides the most probable 

CellS. The effort distribution at t = 8, 9 and 10 in Table 1 is the case. 

The second effect is on the starting partial search. Calculation shows that 

if the target was in Cell 1 at t = 1, the probability of being still in Cell 

1 through 4 at t = 10 is about 0.254 (= 1_p(10) (1,5), where p(n)(i,j) is the 

n-step transition probability given by [p(n)(i,j)] = [p(i,j)]n.) To reduce 

the probability, search in Cell 1 at the beginning might be effective, which 

explains the partial search at t = 1. If the limit time of the search is 

shortened further, the two effect grow and the break of search shrinks and 

disappears as is seen in Table 2 and 3. 
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j~ 1 2 3 4 5 6 j~ 1 2 3 

1 0.995 0 0 0 0 0 1 0.769 0 0 

2 0.364 0.327 0.233 0.144 0 0 2 0.475 0.378 0 

3 0.144 0.332 0.258 0.353 0.329 0 3 0.256 0.514 0 

4 0 0.090 0.197 0.291 0.362 0.265 4 0 0.292 0.265 

5 0 0.229 0.667 0.712 0.809 1.235 5 0 0.316 1.235 

Total 1.463 0.978 1.355 1.500 1.500 1.500 Total 1.500 1.500 1.500 

A (t) 0 0 0 0.522 1.085 1.712 A (t) 4.089 4.142 5.508 

f(<P~) -69.689 f(<P~) -49.725 

It is interesting to note that the allocation of search effort at the end of 

* * the search is identical irrespective of T; <P T(4,T) = 0.265, <P T(5,T) 1.235 

for T = 3, 6 and 10. 

* The expected risk f(<P
T

) of the T-optimal search plan is shown in Fig. 1. 

As mentioned before, f(<P;) is a strictly decreasing function of T since the 

target density concentrates to Cell 5 as time goes by. Therefore, no stopping 

is optimal in this case. This is also suggested by the fact that AT(t)'S in 

Table 1 ~ 3 increase with t. 

-40 

-60 

-80 

·-100 L----L_--'-_-'-_L------' __ --'-_.....L-_-'-----'~____' 

o 2 4 6 8 10 
T 

Fig. The optimal expected risk f(<P;) 
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[ 
-+2 exp(-J~ ~ ~T ,T )dT), 
'lTVot 0 

o , 
T From (13) and (50), the kernel Art(~) of the Gateaux differential of f(~) is 

(51 ) 

1 {'T r 
x --:r:2 exp(-Jt ~(t~.~)d~)dT 

'lTVot 0 

Vo t 
- cofo exp(-ft ~(VT,T)dT)g(v)dv, 

o 

Vo t 
-coIo exp(-It ~(VT,T)dT)g(v)dv, 

o 

* Therefore, if r > vot, ~T(r,t) 0 is obvious and the following allocation of 

search effort is easily verified to satisfy the conditions of Theorem 1. 

(52) 

otherwise. 

Then A(t) is calculated by 

A(t) '" 
~ 1 1 exp(- -(- - -» 

2 to t 
'lTVO 

(53) 
1 IT ~ 1 1 + --- exp(- -(---»dT 2 2 t 2 tT' 

'lTVot 'lTVO 0 

if the right-hand side of (53) is non-negative; otherwise A (t) = A(T) = O. 

From (53) , it is obvious that A(T) 1.S strictly decreasing and positive func-

tion of T, if R / 
2 2 

'lTCOVOT > 1. Hence the following is concluded. 

A(T) > 0 

(54) 

A (T) o 
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4.3 Optimal search for a target with a conditionally deterministic motion 
We consider a search problem in which the target space is a continuous 

2-dimensional space and the time space is also continuous. A target is 

assumed to move straight from the origin of the target space with (e,v) 

selected randomly, where the course e is chosen from the uniform probability 

distribution in [0,27T] and the speed v is selected according to the proba·' 

bility density function g(v), 

(48) g(v) 

1 

2; , 0 ~ v ~ vO' Vo > 0, 
Vo 

= 0, otherwise. 

(This target motion belongs to the conditionally deterministic motion which 

was investigated by Stone [13,14].) An amount of total search effort cjl is 

available to the searcher at any time t, t £ [to'oo), to > O. The exponential 

function b(1jJ) = l-exp(-1jJ) is assumed for the conditional detection function 

and a constant reward R is given when the target is detected. A constant unit 

cost Co (> 0) of the search effort is also assumed. (Similar problem was 

investigated by Danskin [2] from the standpoint of game theory. In his 

paper, the detection probability of the target was assumed as the measure of 

effectiveness of the search and g(v) given by (48) was considered as the 

strategy of the target instead of a given function.) 

Since the distribution of e is uniform in [0,27T]. the distribution of the 

target and the search effort are both circularly symmetric about the origin of 

the target space and these are denoted by qt(r) and (j>(r.t), where r is the 

distance from the origin. It is easily derived that the density function 

qt(r) of the target position at t is a uniform distribution in the circular 

area with a radius vot, 

1 1 

0 vot. 22' < r ~ 

(49) qt (r) 
1Tvot 

o , vot < r. 

T Then pt«(j» and Drt«(j» in (3) and (14) are calculated as. 

(50) 
Vo 

5 5t 2v 
1 - exp (- t (j> (VT , T) ch )=-zav , 

o 0 Vo 
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Therefore, T* / R / 'TTV~Co is the optimal s topping time by Theorem 2 if 

to < / R / 1TV~CO and T* = 0 if to ~ / R / 'TTV~Co This result is also 

* obtained from Corollary 1. If ~T given by (52) and b'(~) = exp(-~) are sub-

* 2 *2 stituted into (32), the equation for T ,'TTCOVOT = R, is easily derived. 

* Hence T 

(55) * ~ (r, t) 

* * for to S t S T , where T 

be begun. 

5. Discussions 

Summarizing the above, we have 

otherwise , 

* If to > T the search should not 

In this section, discussions on the results obtained in the previous 

sections are presented. 

(1) The physical interpretation of the main theorem 

Let us consider the physical meaning of Theorem 1. According to the 

theorem, the T-optimal search plan is to allocate the search effort by, 
T * * -Ayt(~ )=(s)A(t)CO(y,t), if ~ (y,t»(=)O, for a.e. (y,t) t: Z. Integrating 

(13) by parts, we obtain 

(56) 

f * T * * T * 
+ Tt:[t,T](R(T)-C(T,~ »dDyt(~ ) + C(T,~ )Dyt(~ ). 

T * * Dyt(~ ), the kernel of the Gateaux differential of Pt(~ ) given by (14), is 

the increment of detection probability density when unit search effort density 

is added to ~*(y,t) at (y,t). Therefore, the first term in the right-hand 

* t * side of (56), (R(t) - C(t,~ »Dyt(~ ), is interpreted as the expected net 

reward gained by the additional unit search effort at (y,t). The second 

* term, -cO(y,t)(l-Pt(~ », is the expected cost of the additional unit search 

f * T * effort and the third term, Tt:[t,T](R(T)-C(T,~ »dDyt(~ ), represents the 

variation of the net reward in the interval [t,T] caused by the additional 

unit search effort at (y,t). The last term, C(T,~*)DT (~*), is the expected yt 
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search cost in [to,T] which is saved by the increment of detection probability 

density at (y,t). One should note that the sign of the last term is positive 

since the saved cost is considered as profit instead of cost. Therefore, 

-A~t(<P) means the expected net reward which is earned by the searcher when he 

allocates additional unit search effort to <jJ*(y,t) at (y,t). We shall call it 

* the marginal expected net reward of <P at (y,t) hereafter. By this reasoning, 

Equation (12) of Theorem 1 is interpreted as follows. If search effort is to 

be allocated to the neighborhood of (y,t) £ z, the amount of search effort 

should be balanced in such a way that the marginal expected net reward versus 
T * . cost ratio, -A t(<jJ )/cO(y,t), l.S equal to A(t) in the region of the target 
y 

space being searched at t. If search effort should not be allocated to (y, t), 

the point does not have a larger marginal expected net reward versus cost 

ratio than A(t). 

As stated above, since -A~t (<jJ) is the marginal expected net reward at t, 

if A (t) > 0 in Equation (12), the expected reward increases (namely, the ex­

pected risk decreases) as the search effort increases. Therefore, if A(t) > 0, 

the search cost rate met) should be used exhaustively; hence, the complete 

search is optimal in this case. This is the meaning of Equation (15). 

Theorem 2 is also explained by the meaning of A (T*) mentioned above. 
. * By the definition, the optimal stopping tl.me T is such a time that the search 

. * * * is conducted l.n [T -f:"t, T ] and is stopped eventually in (T ,oo). If the 

marginal expected reward at T is positivE!, the search should be continued 

because the search is motivated by the positive increment of the expected 

net reward, and the reverse is also true. Therefore, if the search should be 

stopped at T, A(T) must not be positive. But since A(t), t E T, is non-

* negati ve from Theorem 1, A (T) = 0 for T 2: T 

(2) Generalization of the reward function 

If the reward earned by the searcher when he detects the target success­

fully depends on the position y of the target as well as the time t, the 

problem is considerably complicated. We assume the searcher earns reward 

R(y, t) ~ 0 when the target is detected at (y,t) and other system parameters 

are identical with the model of Section 2. The conditional detection proba­

bility at t is defined by 

The conditional expected risk at t is given by (c(t,<P)-R(Xt,t»llb(t,<jJ). 

Hence the expected risk f(<P) is obtained as follows. 
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(57) 
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f(~) = I~ E[(C(t,~)-R(Xt,t»~b(t,~)]dt + C(T,~)(1-PT(~» 
o 

= I~ E[(R' (Xt,t)-CI(t.~»b(It a(X ,T)~(X ,T)dT)]dt o to T T 

The theorem for the optimal search plan minimizing f(~) given by (57) is 

presented as follows. 

Theorem 3. A necessary condition for the T-optimal allocation of search 

effort is that there exists a non-negative function A(t) such that 

(58) 

where 

(59) 

(60) 

* for ~ (y, t) > (=) 0, 

x qt(y)a(y,t)dT + cO(y,t)(1-Pt(~» 

- Eyt[R(XT,T)b' (I~oa(XT'T)~(XT'T)dT)]a(y,t)qt(Y)' 

If A(t) > 0, t £ T, then 

* If f(~) is convex and ~ 

met) • 

* condi tion for ~ 

£ ~o' the above condition is also a sufficient 

to be optimal. 

Proof: The kernel of the Gateaux differential of f(~) is calculated as 

A~t(~) given by (59). Applying Lemma 1, we have the necessary condition. 

The sufficiency is derived directly from Lemma 2. (Q.E.D.) 

(3) Relations between our model and the previous studies 

~. Stromquist and Stone discussed in their paper [17] five examples which 

were solved by their theorems. The fourth example is the case of minimizing 

the expected return for a moving target and our model mentioned in this paper 

corresponds to a modefication of this example. Neglecting the search cost, 

they adopted the expected return as the measure of effectiveness, on the other 

hand, we employ the expected risk by considering the reward and the search 

cost. The crucial difference between their model and our model is that they 

limit the search plan to ~o and deal with the T-optimal search plan, on the 

other hand, we investigate the optimal plan in ~ and derive the optimal 
. . * stopp~ng t~me T as well as the optimal distribution of search effort. 
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ii. Tierney and Kadane [18] investigated an optimal surveillanse search for 

a moving target. They consider a finite set of discete time points for search 

time and finite cells for the target space. They assume that a target moves 

from cell to cell according to a Markov transition probability (not necessarily 

time-homogeneous) and the search terminates at a time and location (called the 

stopping set) that satisfy certain specified conditions. The objective is to 

maximize the expected value of a payoff received during and the end of the 

search. In this model, if we define an appropreate payoff and a stopping set, 

we can derive a similar detection search model for a moving target to our 

model. However, this model is not identical with our model at the next points. 

(i) In our model, the target space and the time space are not necessary 

discrete. 

(ii) Tierney and kadane limit their model to a Markovian motion target, 

however we deal with a more general moving target. The example shown 

in Section 4.2 is the case of the Harkovian motion target and the ex'­

ample in Section 4.3 is the target with the conditionally deterministic 

motion. 

(ill) Tierney and Kadane deal with the model in a finite time points and under 

a stopping set. Therefore, the stopping of the search is definitely 

prescribeq. This problem is same as the problem dealt with in Section 

3.1; the T-optimal allocation of search effort. However in our model, 

we consider a case in which the search time is not limited in advance, 

and therefore, when to stop the search is an important problem to be 

investigated. The optimal stopping time such as T* IR/1TV5co for the 

target with the conditionallY deterministic motion is a main result of 

our model as well as the T-optimal allocation of search effort. 

(iv) Tierney and Kadane concider a general payoff function and propose an 

improved FAB algorithm which avoids the trouble when the objective 

function has any flat spots. Meanwhile, our algorithm described in 

Section LI.l is identical with the F'AB algorithm proposed by Brown [1:1 

and later by Washburn [21] in principle. 

ill. In Section 4.3, we derive the optimal search plan for a target with the 

conditionally deterministic motion. As mentioned before, Stone [14] investi­

gated the optiDlal search for a target of this type which maxiDlized the detec­

tion probability. In spite of the difference between the Dleasure of effec-' 

tiveness, the optimal search plan obtained by (52) is identical with the 

uniformly p-optiDlal search plan given by Stone. However, this agreement is 

not surprising because of the homogeneity of both the reward and the search 
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cost for all (y,t) ~ z. If the reward or the search cost varies in the target 

space, the optimal search plan of our model is not the uniformly P-optimal 

plan. 

iv. Let us apply the theorems obtained in Section 3 to a stationary target. 

The discrete target space and the continuous time are assumed. Here we 

specify the system parameters as follows, 

(61) 
R(y,t) = R 

y' 
a(y,t) 

In this case, A~t(~) is given by the next equation 

m(t) m, 

-P a {R exp(-a ~(y,T» + mfTexp(-a ~(y,T»dT} 
YY Y Y t Y 

(62) 
+c Lpexp(-a~(y,t», 

YZ
t 

y y 

where ~(y,t) = f~ a $(y,T)dT. 
o y 

* Therefore, a necessary condition for $ is 

derived from Theorem 1; 

(63) 

a?y 
c y 

{R exp(-a ~*(y,T» + mfTtexp(-a ~*(y,T»dT} 
y y y 

* =($) A(t) + Q(t) for $ (y,t) >(=) 0 

where Q(t) '" LP exp(-a ~(y,t». 
Zt y y 

Since ~* can be restricted to ~O by the 

assumption of the stationary target, f(~) is convex and the necessary condi-

tion mentioned above is also sufficient. * Since AT(T ) = 0 by Theorem 2, 

from (63), we have 

* 
(64) 

a p (T )R 
Y Y Y 

c 
y 

* ~f * * at t = T ,L ~T*(y,T) > 0, where 

* * bution of the target at T , P (T ) 
y 

P (T*) is the posterior probability distri-
y * * * p exp(-a ~ (y,T »!Q(T). The conditions 

y y 
(63) and (64) are identical with the conditions which was derived by Iida [8]. 
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