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A (s,S) inventory policy is studied for a continuous review inventory model in which backloggings 

are restricted at limited levels and stochastic lead times are allowed. The model assumes that at most one order is 

outstanding and demands occur in a Poisson process. The steady-state probability distributions of the inventory 

levels are derived so as to determine the long-run expected average cost. Then, an optimal solution is characterized 

and its computational procedure is presented. 

1. Introduction 

This paper considers a (s,s) inventory problem with limited backlogging 

levels and stochastic lead times in which demands occur in a Poisson process 

with parameter a, where s is the reorder point and S is the order-up-to level. 

Lead times, defined as the time from an order placement until its shipment and 

denoted by L, are exponentially distributed with parameter S. If a demand 

occurs when the system is out of stock, the demand is backlogged. However, 

if backlogging sales exceed a limited level b, the exceeding sales is lost. 

It is further assumed that at most one order is outstanding. 

If b=O, the limited backlogging model becomes the ordinary (s,S) inven­

tory model only with lost sales allowed, while it represents the backlogging 

case when b=oo (infinite backlogging). In fact, if the backlogging level is 0, 

the model represents a stoehastic extension of the work of Archibald [1] where 

lead time is constant and 8-s > s. However, if the backlogging level is in­

finite, the model is the same as that of Dirickx et al [4]. 
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(S, S) Inventory Model 253 

Many other authors (Montgomery et al. [8], Rosenberg [10] and Whitin [13]) 

have treated lot-size models with mixtur.~s of backlogging and lost sales 

allowed where a fixed partial fraction of whole stockout demand (Le., pro­

portion to backlogging demand) is backlogged. Nahmias [9] has studied a 

similar problem in a periodic review cas,~ where random lead time and propor­

tional backlogging are permitted, and searched an approximate solution. 

However, such a proportional backlogging allowance may cause impracticable 

backlogging burden to inventory systems due to uncertain huge demands. 

Aucamp and Fogaty [2] have examined a similar problem but with allowing 

a limited backlog delay. Doshi et al. [5) have worked on a production-inven­

tory problem with a given backlogging level for an optimal inventory decision 

so as to determine an optimal production rate. Dirickx and Koevoets [4] have 

applied the Markov renewal theory (referring to Cinlar [3]) to analyze an 

inventory model with complete backlogging and stochastic lead time allowed. 

The objective of this paper is to determine a limited (fixed) backlogging 

level along with sand S that minimize the long-run overall expected average 

cost. The backlogging level provides an information of whether each instanta­

neous demand will be backlogged or lost. 

The problem will be analyzed by applying the Markov renewal theory to 

derive the steady-state probabilities of inventory levels upon which the long­

run overall expected average inventory system cost function is determined. 

The cost function is further investigated to characterize the optimal solution, 

for which the computational procedure is exploited. 

2. Semi-Regenerative Inventory Process 

This section will show that some results from the Markov renewal theory 

can be applied to analyze the given inventory problem. For the rest of the 

paper, the followings are defined first. 

(1) Zt(t~O) denotes the random inventory level at time point t taking values 

on F={S,S-1.S-2, ... ,-b}, and 

(2) xn (n=0,1,2, ... ) denotes the random inventory level at time period 

Tn(TO=O)(i.e., Xn=ZT
n

)' where Tn (n=1.2,3, ... ) denotes the first ordering 

time point after T
n

_
1 

if X
n

_
1
=i for i>s, or the arrival time piont of an 

order placed at Tn- 1 if Xn_l~s. 

Lemma 1. The stochastic process (X,T) 

Markov renewal process with state space E, 
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where E 

c. S.Sung,S.Af. Yang 

{S,S-I, ... ,S-s-b,s} 

{S , S-1 , ••• , s } 

{S,S-l, ... ,s, ... ,S-s-b} 

for S-s-b > s, 

for S-s-b s, 

for S-s-b < s. 

Proof: Let D(T
n

+
1
-T

n
) be the cumulative demand during the time interval 

(Tn • Tn +
1

]. According to the definition of Xn and Tn' if Xn=i>s, Tn+l is the 

first ordering point after Tn and so X l=s where D(T l-T )=x -s; if X =i~s, n+ n+ n n n 
Tn+l is the arrival time 

for D(T l-T )~X +b, but 
n+ n n 

point of an order placed at T where X l=S-(X +b) 
n n+ n 

X =S-D(T -T) for D(T l-T )<X +b and the time 
n+l n+l n n+ n n 

interval T
n

+
1
-T

n 
is lead time. 

Since Poisson demand process is memoryless, the state transition from 

X =i to X l=j is Markovian where X (n=0,1.2, ... ) takes values on {S,S-l, ...• n n+ n 
S-s-b} U {s}. This result along with the D(T

n
+

1
-T

n
) function implies that the 

distribution of the time interval T
n

+
1
-T

n 
depends only on Xn ' Thus, 

Pr[xn +1=j, Tn +1-Tn ~ tlxo""'Xn ; TO,····Tn] 

This completes the proof. 

The following lemma is then immediate. 

Lemma 2. Z={Z t: t;;:;O} is a semi -regenerati ve proces s wi th respect to the 

Markov renewal process (X.T). 

Since the Markov renewal process CX,T) is time-homogeneous. the sem~­

Markov kernel of the Markov renewal process (X,T) is defined as the fami.ly of 

probabilities {Q(i,j,t); i,jEE, t~O} 

(3) Q(i,j,t) = Pr [x =j, T -T ~ tlx =i] 
n+l n+l n n 

Hence, for any i, j E E and t ;;:; 0, 

(4) Q(i,j,t) = I Pr[D(T1)=i-j, Tl ~ t], 

Pr[D(L)=S-j, L ~ t], 

Pr[D(L) ~ i+b, L ~ t], 

0, 

f t i-j-l -ax 
Oa(ax) e /(i-j-l)!dx, 

f t -ax S-j ., -8x 
Oe Cax) /(s-J).8e dx. 

00 

fot \ -ax £ -8x 
L e (ax) /£!8e dx, 

£=i+b 

0, 

for i>s and j=s, 

for i~s and j>S-i-b. 

for i~s and j=S-i-b, 

otherwise. 

for i>s and j=s, 

for i~s and j>S-i-b, 

for i~s and j=S-i-b, 

otherwise. 
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3. Steady-state Probability of Inventory Levels 

Using the properties of the Markov renewal process and the semi-regenera­

tive process described in the preceding section, the steady-state probability 

of inventory levels will be derived. In order to characterize the transition 

structure of the imbedded Markov chain X:,{X
n

: n=0,1,2, ••• }, let P
ij 

be the 

transition probability of moving from state i to j. Then, from the results of 

Cinlar [3], p .. = Pr[x l=j!X =i] 
~) n+ n 

lim (,l(i,j,t). 
t-+oo 

Hence, for any i,j E E, 

I 
1 , for i>s and j=s, 

S . 
(l-r)r -J, for i$s and j>S-i-b, 

(5 ) Pij S-j 
r , for i$s and j=S-i-b, 

0, ot.herwise, 

where r={a/(a+S)}. 

Lemma 3. If b is infinitely large, then the Markov chain X is irreduei­

ble, aperiodic and non-null recurrent. 

Proof: Aperiodicity and irreducibility follow from (5). In order to 

show re currency, let 1Ii be defined as follows: 

{ 

(l-r)rS-iA, 

(1_rs - s +1 )A, 

where A=(2_rs-s )-1. 

(6) 11. 
~ 

for i$S and i..es, 

for i=s, 

Then, 1I
i

's s&tisfy the following relations: 

11. 
~ 

I p .. Tf., 
j EE J~ J 

I .~. . ~ 
~EE 

11. ;;;; ° 
~ 

1, 

for any i E E. 

From Theorem (6.2.1) of Cinlar [3], the Harkov chain X is non-null recurrent. 

Lemma 4. If b is finite, then the Harkov chain X is irreducible and 

non-null recurrent. 

Proof: Irreducibility follows from (5). Since b is finite, the Markov 

chain X has a finite state space. Thus the Markov chain X is non-null recur­

rent according to Corollary (5.3.22) of Cinlar [3] and Lemma·III.2.1. of 

Isaacson and Madsen [7]. 
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256 c. S. Sung. S. M. Yang 

Now, let TT. be defined as fo llows: 
~ 

for S-s-b > s' , 

(l-r)r /2, I B-i 
for S-s-b+1 ;;; 

(7) TT. 
~ 

r s+b /2, for 

1/2, for 

for S-s-b s; ! B-i for 
(8) 

(l-r)r A, s+l 
TT. 
~ 

A, for 

for S-s-b < S; 

S-i 
(l-r)r A, 

A(1_rs-s+1)/(1_rS+b+1) , 

(9) TT. 
A (l_r)rS- i / (1_rS+b +1), ~ 

A( 1_rs - s + 1 )rs +b / (1_rS+b +1 ), 

Then, TT.'S satisfy the following relations: 
~ 

TT. 
~ 

I p .. TT., 
jEE J~ ] 

I TT. 
i EE ~ 

TT. ~ 0 
~ 

1 , 

for any i E E. 

;;; i ;;; 

i 

for 

for 

for 

for 

i ;;; S, 

i S-s-b, 

i s, 

S. 

s, 

s+l ;;; i ;;; S, 

i = s, 

S-s-b+1 ;;; i ;;; s-l, 

i = S-s-b. 

Hence, TT.'S are the invariant probability measure of the Markov chain x. 
~ 

Lemma 5. The Markov renewal process (X,T) is aperiodic. 

Proof: It has been shown that Markov chain X is irreducible. We can 

also see from (4) that Q(i,j,t) are not all step functions. Thus, it follows 

from Corollary (10.2.24) and Corollary (10.2.27) of Cinlar [3] that the Markov 

renewal process (X,T) is an aperiodic process. 

Lemmas 3, 4 and 5 lead to the next theorem. 

Theorem 1. The Markov renewal process (X,T) is irreducible, aperiodic 

and non-null recurrent. 

Now, we want to define a conditional probability function Kt ("'); 

Kt(i,j) = Pr[Zt=j, T1 > tIXO=i], for any i EE, jEF, t~O, so that 
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-at i-j 
e (at) / (i-j)!, for i>s and i~j>s , 

-St -at i-j 
e e (at) /(i-j)l, for i~s and -b<j~i, 

(10) 
-St \' -at J!, 

e L e (at) /U, for i~s and j=-b, 
J!,=i+b 

0, otherwise. 

The expected regeneration interval with initial state i is also defined, 

denoted by mCi) 

f~[l- ,I Q(i,j,t)]dt 
] EE 

(11 ) 

{ 

1/13, 

= Ci-s)/a, 

for i~s, 

for i>s. 

* Let p, be the steady-state probability of inventory level j under the 
] 

(s,S) inventory policy and given b. 

Theorem 2. For any j E F, 

(12) * p, 
] 

lim pr[Zt=j!XO=i] = {,L TIif~Kt(i,j)dt}/{ ,I TIim(i)}. 
t-+oo ~ El': ~ EE 

Proof: In view of Theorem (10.6.12) of Cinlar [3], it suffices to 

observe that (X,T) is an irreducible, aperiodic and recurrent process and 

that Kt(i,j) 1S Riemann-integrable. 

It follows from Theorem 2 that 

for S-s-b ~ s; 

(13) * p, 
] 

for S-s-b < S; 

( 14) p, 
] 
* 

S-j+l 
{(l-r )/a}/q(s,S,b), 

1 
(l/a)/q(s,S,b), 

{rS-j/(a+S)}/q(s,S,b), 

s+b 
(r /13) /q(s,S,b), 

S-'+l 
{(l-r ] )/a}/q(s,s), 

for 

for 

for 

for 

for 

S-s-b+l ~ j ~ S, 

s+l ~ j ~ S-s-1>, 

-1>+1 ~ j ~ s, 

j -b, 

s+l ~ j ~ S, 

s-j S-j+l S-j 
{r -r +(s-j)(l-r)r }/{(a+S)q(s,S)AA}, 

for S-s-b+l ~ j ~ s, 

{rs-j_r2S-s-j+l+(2s+b_S) (l-r)rS- j }/{(a+S)q(s,S)AA}, 

for -b+l ~ j ~ S-s-1>, 

{rs-j_r2S-S+b+l+(2s+b_S) (l-r)rS+b }/{Sq(S,S)AA}, 

for j -b, 
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258 C. S.Sung,S.Af. Yang 

where q(s,S,b) 
s+b 

(S-s) /0.+1' /S, 

S-'s q(s,S) = (5-s)/a.+r /S, 

AA = l_rS +b + 1. 

4. Cost Structure 

The fixed cost of ordering and the holding cost of on-hand inventory per 

unit per unit time are, respectively, denoted by Co and cl' The backlogging 

cost per unit backlogging sale per unit time is denoted by c
2 

and a fixed cost 

of lost sale is denoted by c
3

• 

The expected cost associated with the (s,S) inventory policy having 

limited backlogging levels depends on the steady-state probabilities of inven­

tory levels and the amount of lost sales. Therefore, it is necessary to 

figure out the expected amount of lost sales. Let Ei(LS) be the expected 

amount of lost sales during a regeneration interval with initial state i~s, 

where LS stands for lost sales. Then it holds that 

(15) 

E. (L5) 
~ 

L k Pr[ALS(T ,T l)=klx =i~s] 
k=l n n+ n 

L k pr[ALS(O,Tl)=klxo=i~s] 
k=l 

L k Pr[D(L)=i+k+b] 
k=l 

L k/~ e-a.x(a.x)i+k+b/(i+k+b)lSe-Sxdx 
k=l 

i +b 
(a./S)r , 

where ALS(Tn , Tn +
1

) is the amount of lost sales during (Tn , Tn+
1
). 

Let EC(S,S,b) be the overall expected average cost under the (s,s) 

inventory policy and given b. Fron the results of Ross [11] and Schellhaas 

[12 ], 

EC(S,S,b) 

(16) S 

+ cl L 
j=O 

jP. 
] 

:/, o 
- c 2 L 

j=-b 
* jP. 

] 

Then, equations (11), (13), (14) and (15) give the following EC(s,S,b) func­

tions specified over the distinct ranges of b. 
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For b ;:; S-2s, 

EC(s,S,b) 
( 17) 

s+b 
[C

O
+C

1 
{(S-s) (s+s+I)/2a-(S-s)/S+r (S-s-b)/S} 

s 2 s+b 2 s+b 
+(c

1
+c

2
)(ar /S -ar IS )+c

3
ar IS]/q(s,S,b). 

For s-2s < b < S-s, 

EC(S,S,b) 
2 S-s 2 

[CO+C
1
{(S-s) (S+s+I)/2a-(SS-a)/S +r (Ss-a)/S} 

S-s s 2S-s+1 +{c
1

(Ss-a)/S-ac
1
r IS+a(c

1
+c

2
)(r -r )/S 

( 18) 
s+b S+l +a(c1-c2+Sc

3
)r /S+(2s+b-S) (Cl +c

2
)r 

2S-s+b+l S+b+l +a(c2-Sc
3
)r /S+c

1
(a/S-S+b+s)r 

S+b+l 
+(SC

3
-C

2
) (2s+b-S)r }/(AAS)) /q(s ,s). 

For S-s ;:; b, 

EC(s,S,b) 
2 S-s 2 

[cO+c
1
{(S-s) (S+s+I)/2a-(SS-a)/S +r (Ss-a)/S} 

S-s s 
+{c 1(Ss-a)/S-ac

1
r IS+a(c

1
+c

2
)r /S 

(19) 
s+b s+l 

+a(c3-2c2 /S)r +(s+l+a/S) (c
1
+c

2
)r 

28-s +b+ 1 S +b+ 1 +a(c2-Sc
3
)r /S+S(2s+b-s)c

3
r 

S+b+l 
+ (2S-3s-b-a/ 13) c

2
r } I (AAS) ] /q (s ,S) . 

Now, a solution search procedure will be exploited for the optimal values 

of s, sand b wi.th which the overall expected average cost EC(S,S,b) is mlnl­

mized. In fact, the function EC(s,S,b) is too complicated to solve for the 

optimal values of s, sand b. However, EC(s,S,b) can be characterized to 

follow unimodal trends over each possible range of b. 

Lel1llla 6. For b<:;S-s, EC(s,S,·) is either unimodal or monotonic. 

Proof: Let g(b)=EC(s,S,b) for b<:;S'-s where sand S are fixed values. 

Then from equation (19), it can be written, 

(20) 

where Wo S+l 
r 

2c2 /S-c3, 

, 2 S-s 2 
[c

O
+c

1
{(S-s) (S+s+1)/2a-(SS-a)/S +r (Ss-a)/S }]Iq(s,s), 

s+l s-S-l 
{a(c2-Sc3-c1)+(Ss+S+a) (c

1
+c

2
)r +a(Sc3-2c2)r 

s 2 
+a(c

1
+c

2
)r +(Ss-a)c1-(313s-2Ss+a) }/s +(2s-S)c

3
• 
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It follows that 

b b+l b 
g(b+l)-g(b) = h(b)wOr /(l-WOr ) (l-W

O
r ), 

b 
where h(b) = w

1
r(w

O
r -1)+(1-r)(bW

1
-w

3
). 

Now we get 

b+l 
h(b+l)-h(b) = (l-r)w

1 
(l-W

O
r ). 

b b+l b 
Since 0 < Wo < 1 and 0 < r < 1, wor /(l-Wor )(I-Wor) > 0 and h(b) is 

monotonic. Thus there exists at most one finite b such that g(b+1)-g(b) = O. 

This completes the proof. 

Corollary 1. If 2c2 !S-c
3 

> 0, the optimal value of b ~s finite. 

Proof: It is seen from the proof of Lemma 6 that if w
1 

g(b+l)-g(b) > 0 for large b. Thus, the proof is completed. 

Likewise, Lemma 7 holds. 

lemma 7. For S-2s < b < S-s, EC(S,S,') is either unimodal or monotonic. 

Lemma 8. For b ~ S-2s, EC(S,S,') is either unimodal or monotonic. 

Proof: Let g(b) = EC(s,S,b) for b ~ s-2s where sand S are fixed. 

Then from equation (17), it can be written, 

(21) g(b) g 1 (b) +g2 (b) , 

where -c
1

b+W
4

, 

[{cl (s-s)/a}b+w
S

] /{rs +
b 

/S+(S-s) la}, 

This shows that gl (b) is a linearly decreasing function and g2(b) is a 

monotonic increasing function. Thus, g(b) is either monotonic or unimodal. 

Lemmas 6, 7 and 8 provide the ranges of b and the cost relations under 

which there exists a finite b with which the long-run overall expected average 

cost is minimized for fixed sand S. The existence of such a finite b implies 

that the given (s,S) inventory model may be better than other (s,s) inventory 

models with either complete backlogging or lost sales allowed. 

From equations (17), (18) and (19), it is further observed that the 

optimal value of S is finite, since EC(s,S,b) increases as S increases. Based 

on this observation along with our computational experience in Section 5, the 
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optimal value of 5 is upper bounded by 

(22) 5 

where 5 corresponds to Hadley and Whitin [6]'s upper bound of Q in (r,Q) 

inventory model. Moreover, since 5 is less than S, it may be easy to search 

both the optimal values of 5 and S by simple grid method when b is fixed. 

* * Let 5 (b) and 5 (b) denote the local optimal values of 5 and 5, respectively, 

for a given problem with a fixed b. Then, it can not be analytically verified 

* * but experienced in our various numerical problems test that EC(5 (b) ,5 (b) ,b) 

is unimodal in b. If the unimodality holds and if 2c
2

/S-c
3 

;'; 0, then it 

follows from Corollary 1 that the optimal value b* is infinite. 

Based on the above solution characteristics, a solution search procedure 

for problems satisfying unimodality in b is described below: 

Step 1. Compute W = 2c
2

/ S-c
3

. If W ;'; 0, go to Step 2. 

Otherwise, go to Step 3. 

* * * Step 2. Let b = 00, and search 5 (00) and 5 (00). 

Then, stop the search procedure. 

Step 3. Select an arbitrary initial value for b, less than 5 computed from 

equation (22). 

Step 4. 

Step 5. 

* * * * Search 5 (b), 5 (b) and compute EC(5 (b),5 (b) ,b) 

Continue Steps 3 and 4 over b in a standard local descent search 

procedure by adjusting b in the direction of descent until any 

further change in b value increases the total cost. 

5. A Numerical Example 

The behavior of the optimal policy with respect to input parameters a, 

13, or c
i 

(i=0, 1,2,3) are examined. The corresponding optimal values of 5, S 

and b are summarized in Tables 1 through 6, where the examination starts with 

a base problem, where a=I.0, 13=.05, c O=100.0, c
1
=1.0, c

2
=2.0 and c

3
=50.0. 

The problem test is repeated with varying the given base problem parameters 

one at a time. Each problem is numerically searched for optimal solutions of 

5, 5 and b on an IBM/PC-XT. 
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fable 1. The Optimal Values of 5, S 
and b with the Variations 
of et. 

et 

.5 

1.0 

1.5 

2.0 

2.5 

5 

2 

8 

13 

19 

S b 

22 10 

42 16 

62 23 

81 28 

24 101 36 

et 

3.0 

3.5 

4.0 

4.5 

5.0 

5 S b 

30 121 42 

35 140 48 

41 160 55 

36 180 62 

52 199 67 

Table 3. The Optimal Values of 5, S 
and b with the Variations 
of cO' 

50. 

100. 

150. 

200. 

250. 

5 S b 

9 41 15 

8 42 16 

6 43 18 

5 44 19 

5 45 19 

300. 

350. 

400. 

450. 

500. 

5 S b 

4 46 19 

3 47 20 

2 48 21 

2 49 22 

50 23 

Table 5. The Optimal Values of 5, S 

and b with the Variations 
of c 2 · 

.25 

.50 

.75 

1.00 

1. 25 

5 S 

o 21 

o 28 

o 33 

o 38 

o 41 

b 

1.50 

1. 75 

2.00 

2.25 

2.50 

5 S b 

3 42 34 

5 42 25 

8 42 16 

10 39 5 

11 37 o 

Table 2. The Optimal Values of 5, S 
and b with the Variations 
of S. 

.01 

.02 

.03 

.04 

.05 

5 S b 

18 58 0 

15 49 0 

14 44 0 

12 40 o 
8 42 16 

.06 

.07 

.08 

.09 

.10 

5 S b 

5 39 25 

3 36 31 

2 33 39 

30 

o 27 

Table 4. The Optimal Values of 5, S 
and b with the Variations 

.25 

.50 

.75 

1.00 

1. 25 

of cl' 

5 5 b 

24 78 32 

15 59 22 

10 48 18 

8 42 16 

6 37 15 

1.50 

1. 75 

2.00 

2.25 

2.50 

5 5 b 

4 33 14 

3 31 14 

2 28 14 

26 13 

24 12 

Table 6. The Optimal Values of 5, S 
and b with the Variations 
of c

3
. 

1.0 

5.0 

10.0 

20.0 

30.0 

5 5 b 

050 

o 8 0 

o 11 0 

2 19 0 

6 27 0 

40.0 

50.0 

60.0 

70.0 

80.0 

5 S b 

9 33 0 

8 42 16 

6 46 31 

6 48 39 

6 49 

From Tables 1 and 2, as the ratio et/S increases, policy parameters 5 and 

S also increase as expected. This is interpreted as more inventory holdings 

are required. Tables 3 and 4 show that S-5 increases as the ratio cO/cl 

~ncreases. This implies that the expected amount per each order increases, 
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as the ratio cO/cl increases. Tables 5 and 6 show that as the ratio c
3

/c
2 

increases, b increases. This is because larger backlogging levels are required 

to compensate for lost sales cost. 

6. Conclusion 

This paper has examined a (s,S) inventory model with limited (fixed) 

backlogging levels and stochastic lead times, where demand follows a Poisson 

process. Using the Markov renewal theory, the steady-state probabilities of 

inventory levels are derived, upon which a long-run expected average cost 

function is described. The cost function is then characterized as satisfying 

unimodality over certain ranges of b when sand 5 are fixed. On the basis of 

characteristic, a solution search procedure is suggested and illustrated w'ith 

a numerical example. 

As an immediately following topic, the limited backlogging level ~nven­

tory model is under study for demands occurring in a compound Poisson process. 
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