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Abstract This paper presents explicit expressions for the mean sojourn times in a multi-stage tandem queue, 

with Poisson arrival and general service times, served by a s,ingle server with a cyclic switching rule, M/GI-G2-"'­

GN/l. The expressions are derived using the results of the two-stage tandem queue, M/GI-G2/1, already con­

sidered by some authors and the well-known Pollaczek-Khintchine formula. With the first-in, first-out service 

discipline, the mean waiting times in the first stage are derived for some switching rules and upper and lower bounds 

for the mean sojourn times and the mean waiting times for workload conserving SWitching rules are also obtained. 

1. Introduction 

There are several practical exampl,~s of tandem queueing systems served 

by a single server: a labor and machine limited production system [1], a 

repairable system with a repair man [2], and operating systems in computer and 

telephone switching systems [6]-[9]. T. Katayama [6]-[8] dealt with a tandem 

queueing model served by a moving server for call processing in a single pro­

cessor switching system. A moving server, which corresponds to a single pro­

cessor control point, visits each processing program, i.e. input processing, 

internal processing, output processing and so on, in accordance with a 

switching rule given by a scheduling table. Call (Customer) services in some 

tandem queues are performed by a moving server. (The queues may be called 

hoppers and buffers.) 

There have been some analitical studies of these models of tandem queues. 

M. T. Netto l2] considered the steady-state probabilities in a two-stage 

tandem queue with Poisson arrival and general service times, denoted by M/G
1
-

G2/1 for simplicity in this paper, which is served according to a zero switch­

ing rule, i.e. the server stays in a stage until its queue becomes empty and 
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234 T. Katayama 

then it switches to the other stage. S. S. Nair analyzed the transient behav­

ior of the tandem queue (M/G
l
-G2/1) with a zero switching rule [3][4] and with 

a non-zero switching rule [5] (See Section 2). T. Katayama considered the 

steady-state probabilities in the tandem queue (M/G l -G2/1) with gated service 

[6] [7] (see Section 2), and he also investigated the influence of the 

server's walking time (sometimes known as switchover time or overhead time) 

on the mean sojourn time in a tandem queue with a non-zero switching rule [8]. 

These authors were concerned only with the two-stage tandem queue (M/G
l
-

G2/1) served by a single server [1]-[8]. To author's best knowledge, there 

are only a few studies treating the multi-stage tandem queue with a zero 

switching rule: the three-stage tandem queue (M/G
l
-G

2
-G

3
/1) by M. Murakami et 

al. [9], the N-stage tandem queue (M/~1-G2-···- GN/l) by T. Nishida et al. 

[10] and D. Konig et al. [11] (E. G. Enns considered the multiple feedback 

queue with priorities [121 similar to the N-stage tandem queue.) 

The main object of this paper is to provide expressions for the mean 

sojourn time, that is, the mean total time spent by a customer in the N-stage 

tandem queue, and to obtain upper and lower bounds for this expression in the 

tandem queue (M/G
l
-G

2
-· •• --GN/l) with some switching rules, including all the 

above switching rules, and also the expressions for the mean waiting times for 

receiving the service in the first stage. (In practical situations, the mean 

waiting time is also important since this means the waiting time for input 

processing in the call processing in some switching systems [6]-[8].) 

Section 2 of this paper describes in detail an N-stage tandem queue 

served by a single server, and certain switching rules. Section 3 is devoted 

to the derivation of expressions for the mean sojourn times and the mean 

waiting times in the N-stage tandem queue using the results of the two-stage 

tandem queue analysis and the well-known Pollaczek-Khintchine formula. 

Section 4 gives upper and lower bounds for the mean sojourn times and the mean 

waiting times for a general switching rule. Section 5 summarizes the paper. 

2. Multi-Stage Tandem Queueing Model 

This section presents the tandem queueing model served by a single server 

in detail, together with definitions of notations. 

The queueing system has N ( <~) service stages connected in series. The 

i-th stage has a service counter Si and a queue with infinite capacity, Qi' 

i=1,2, ... ,N. Customers arrive at the first stage according to a Poisson pro­

cess with rate A. Each customer requires exactly N services before leaving 

the queueing system. That is, after completion of service in S., the customer 
~ 
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goes to Qi +
l 

to receive the service in si+l' i=I,Z, ... ,N-l, and after service 

completion in SN' the customer leaves the system. 

Customers in each queue are served in the order of their arrivals (FIFO). 

Service times 'i at each counter Si' i=l ,Z, . .. ,N are independent and identi­

cally distributed random variables with a general distribution function H.(t), 
~ 

with finite first and second moments h. and h. (Z) The Laplace-Stieltjes 
~ ~ 

transform (LST) of H.(t) is denoted 
~ 

by H*i(S)' i=I,Z, •.• ,N. 

All the queues are served by a single server that moves among the 

counters according to a cyclic switching rule. That is, the server advances 

to the next counter in cyclic order, SI-+si .... • '-+SN-+Sl-+' and so on. The follow­

ing switching rules [13] will be considered for each counter. 

(a) Exhaustive service, also called a zero switching rule (ZS): when the 

server visits a queue, its customers are served until that queue is empty. 

(This is denoted by ZS in this paper.) 

(b) K-limited service, also called a non-zero switching rule (NZ): when the 

server visits a queue, it is served until either the queue becomes empty, or 

at most, a fixed number of customers, say K, are served, whichever occurs 

first. 

(c) Gated service (GA): when the server visits a queue, the customers found 

upon arrival at the queue are served. 

Remark 2.1: An example of the non-cyclic switching rule is as follows 

[14] : 

(d) Deterministic switching rule (DT): For example, the order of switching is 

given by SI-+SZ-+···-+SN-+SN_l-+SN_Z-+···-+Sl-+S2-+···. 

In the above switching rules, the server's walking time needed to switch 

service from one counter to another is assumed to be zero. When no customers 

are present in the system, the server waits for a new arrival at SI' 

For simplicity, the utilization at Q. and the mean total service time are 
~ 

denoted by the expressions 

(Z .1) Pi:= Ahi , i=I,Z, ... ,N, 
N 

h:= I h .. 
.i=1 ~ 

Server utilization p:= Ah <1 is assumed in order to ensure that there are sta-

tionary distributions of all relevant queueing quantities. 

The probability that rn customers arrive at Q
l 

during service times 'i' 
. 1 Z· (i) d h . f . . d d b ~= , , ••• ,N ~s denoted by q rn' an t e generat~ng unct~on ~s enote y 

Q . (x), i. e. , 
~ 
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(2,2) 

(2.3) 

(i) 
q 

T. Katayama 

,= foo

oe - )t (At)m dH. (t) 
m m! ~ , m 0,1,2, ••• , 

Q. (x):= 
~ 

~ (i) Xm 
L q m i=l ,2, ... ,N. 

m=O 

Then, from (2.2) and (2.3) 

(2,4) Q.(x) = H*.{A(l-x)}. 
~ ~ 

The following notations are used for a differentiable generating function 

Gi(x,y), 

(2.5) C'. (a,b):= 
~,x 

c". (a,b):= 
~,y 

o 
oX Gi(x,y)]x=a, y=b' 

8 2 

W Gi (x,y)]x=a, y=b' 

3. Analysis of Mean Sojourn Times for Cyclic Switching Rules 

This section considers an N-stage tandem queue model with cyclic switch-

ing rules. The mean sojourn time in the N-stage, E(fJ ) and the mean waiting 
N 

time in the first stage, E(W
N

), will be analysed using the results of two­

stage tandem queue analysis. 

3.1 Some results for queue length generating function 
First, we will discuss the generating function of the joint queue 

length dis'tribution. Denote by 'ITn (il ,i
2

, ... ,iN) the steady-state probability 

that i
k 

customers are waiting in Qk' k=l ,2, ... ,N, just after a customer has 

completed service at counter Sn' n=1,2, ... ,N and define the generating func­

tion by the expression 

(3.1) 

To obtain simple expressions for E(fJ
N

) and E(W
N

), the following lemma 

will be necessary. 

Lemma 1. For the cyclic switching rule with a ZS (NZ,GA) scheme at 

counter S , n=1,2, ... ,N, the following relationships hold: 
n 

(3.2) 

(3.3) 

C
1

(1,1,O, ... ,O) = G
2

(1,1,1,O, ... ,O) = ... = G
N

(l,O, ... ,O,1) 

N G 1 (X 1 ,x 2' 0, ••. , 0) = 2 L . G 1 (X 1 ' X 2) , 

N 
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and 

(3.3a) 

where the capital letter .L denotes an operator resulting from substituting 

H2 (t) for H2*H3*' .. *HN(t). (The symbol * denotes convolution.) 
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Proof: For the cyclic switching rule with a ZS (NZ,CA) scheme at counter 

5n , n=1,2,3, ... ,N, Gn (X
1
,x2 , ... ,xN) is equal to Gn(X1,0, ... ,0,xn,xn+1'0, ... ,0) 

since no customers are present in Q2"" ,Qn-1 and Qn+2, ... ,QN when the server 

serves at 5 . 
n 

Since exactly N services are required for each customer, the 

number of customers served at each counter 5 , n=l, 2, .. . ,N is also equal. 
n 

Thus, the following relationship holds: 

(3.4) G
1

(1,1,0, ... ,0) = G
2

(1,1,1,0, ... ,0) 

Hence, using the normalization condition 

N 

(3.5) I 
n=l 

G (1,1, ... ,1)=1, 
n 

(3.2) is obtained. 

G
N

(l,O, ... ,O,l). 

Next, a modified tandem queue with two stages, defined as follows, is 

introduced: Service time T1 at the first counter has the same distribution as 

the original tandem queue. However, service time T2 at the second counter is 

equal to the sum of '2"3"" and 'N' Tha t is, T 1 : =, l' T 2 : =, 2 +, 3 + ... + T 
N 

Everything else, e.g. arrival process, server switching rule and so on is 

exactly the same as in the original tandem queue. Hence, it is clear that in 

the original N-stage tandem queue and the. modified tandem queue with two 

stages, both the first queue length distr·ibutions at the instant when the 

server has arrived at counter 51 are equal. Since both the services at 51 are 

performed in the same manner, both of the queue length distributions at ser­

vice completion of a customer at 51 are also equal. That is, the following 

equation holds: 

(3.6) 
G

l 
(Xl ,X2 ,0, ••• ,0) 

~1,1,0, ..• ,0) 

Thus, using (3.2), this gives (3.3). 

Since no customer arrives at Q when the server serves at 5 , n=2,3, ..• , 
n n 

N, the second queue length distribution just after switching to 52 is equal to 

the (i+1)-th queue length distribution just after service completion of all 

customers in Qi' i=2,3, ••. ,N-l. Hence, the following equations are derived: 

(3.7) 
G

2
(1,x,1,0, .... ,0) 

G
2

(1,1,1,0, •.. ,0) 
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(3.8) G2 (1,x,1,a, ..• ,O) = G
3

(1,a,x,1,a, •.• ,a) G
N

(l ,a, ••. ,a,x). 

Thus, using (3.2), (3.7) and (3.8) give (3.3a). 

The following lemma will also be necessary. 

Lel1ll1a 2. For the cydic switching rule with a ZS (NZ,GA) scheme at 

counter Sn' n=l ,2, ... ,N, I~he mean sojourn time, E(8N), is expressed by 

N-1 
(3.8) 

where 

(3.9a) 

E(8 ) = E(W) / /1 + h + I h. 'E(Q *), 
N M G i=l ~ N 

A 2 N 
E(W)M/G/1:= 2(1-:P) [h + 1 

i=l 

E(QN*) : the mean queue length in Q
N 

at service completion at SN' 

o 

Proof: Since services in each queue are performed by the first-in, 

first-out service discipline (FIFO), all customers in front of an arbitrary 

customer, C*, must first be served before c* leaves the system. Thus, the 

mean sojourn time, E(8
N

), of an arbitrary customer, c*, is given by the summa­

tion of the following three terms [8][12]: 

(3.1 a) 

The first term, E(W), denotes the mean total service time remaining for 
.I 

all of the customers in the queueing system on arrival of C*. It is noticed 

that E(W) is invariant for any switching rule included in the workload con­

serving switching rule [16] described in Section 4. Thus, using the 

Pollaczek-Khintchine formula [15] on the condition that the service time 

distribution function is H
1

*H
2
* ... *HN(t) gives (3.9a). 

The second term, E(T), denotes the mean total service time of C* at Sl' 

S2"'" and SN' That is, E(T) = h. 

The third term, E(U), denotes the mean total service time at S"S2"'" 

and SN-1' for customers who have arrived at the system behind C*, to receive 

their services at Sl'S2"'" and SN-1 during the sojourn time of C*. (Note 

that for a ZS (NZ,CA) scheme, the number of waiting customers in Q2,Q3"'" 

and QN-1 is zero at the departure time of c*.) Denoting the average number of 

customers in QN when C* leaves SN by E(QN*)' gives the equation 

N-1 
(3.11) E(U) '\ h. 'E(Q *) J ~ N' 

~=1 

Since all customers in QN have already received services at Sl'S2"",SN_2 and 

SN-1' Thus, (3.9) is obtained. 0 
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Remark 3.1: The following switching rule is an example of the cyclic 

switching rule, for which Lemmas 1, 2 do not hold. 

239 

Probabilistic switching rule (PB): An example of this is the Bernoulli 

switching rule [14] which is parameterized by a vector (P1,P2, ... ,PN)' Here, 

at the completion of service at S., if Q. is empty, then Q. 1 is served. 
~ ~ ~+ 

Otherwise, Q; is served again with probability p., and Q. 1 is served with 
• ~ ~+ 

probability 1-Pi' i=1, 2, ... ,N. 

Remark 3.2: For a tandem queue with server walking time, (3.10) seems to 

hold, giving a different definition of t.he third term E(U). However, E(W), 

i.e. the mean workload in the system at an arbitrary instant [15], is not 

given by such simple expression as E(W)M/G/1' It also depends on the server 

switching rule. 

3.2 Analysis for exhaustive service 
This subsection considers an N-stage tandem queueing system with a zS 

scheme, in which all the queues are served according to the exhaustive ser­

vice. With the aid of Lemmas 1, 2, and the results of two-stage tandem queue 

analysis [2]. the mean sojourn time, E(BN)zs. and the mean waiting time, 

E(WN)ZS' can be obtained. 

Theorem 1. For the exhaustive service, E(eN)zs and E(WN)zS are given by 

(3.12) 

and 

(3.13) 

where 

(3. 12a) 

N-1 

E(W)M/G/1 + h + i~1hi'E(QN*)ZS' 

N 

P 1 LP. 
i=2 ~ A (1-p 1 ) 

. (h-h
1

) + -------=-N:---
N 

(1 -p) (1 -p + l' p .) 
1 i';'2 ~ 

. {h (2) + 
1 

(h-h
1

) 2 + 

E (QN *) ZS: = ------N-­

(1 -p) (1-p 1 + LP.) 
i=2 ~ 

N 
+ L (h. (2) -h. 2) }] . 

i=2 ~ ~ 

2 ( 1 -p) ( 1 -p 1 + I p .) 
i=2 ~ 

Proof: Using Lemmas 1. 2, we need to calculate E(QN*)ZS that is given by 
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(3.15) 

From the results of two-stage tandem queue analysis, the first derivative in 

(3.15) is given by (Al.3) in Appendix 1. By operating .L for (Al.3), i.e. the 

following replacement expressions 

(3.16) 

(3.12a) is obtained. 

Lemma 1 leads to the following relationship: 

(3.17) G
1
(I-S/A,I,0, ••. ,0) / (+) =.L ·{G,(I-S/A,1) / (+)}. 

The lefthand side of (3.17) represents the LST of the waiting time in the N­

stage tandem queue [2] (denoted by W*N(S)ZS). Hence (3.17) can be also 

rewritten as 

(3.18) 

That is, 

(3. 18a) 

is obtained. 

The mean waiting time ~n the two-stage tandem queue, E(W
2
)ZS' is given by 

(A1.5) in Appendix 1. Thus, operating .L for (A1.5) gives (3.13). 0 
Letting N=2 ~n Theorem 1, E(8 2)zs and E(W2)ZS are derived. This agrees 

with the results of M. T. Netto [2] obtained by a different analysis. (cf. 

(Al.4) and (Al.5) in Appendix 1.) 

Remark 3.3: The LST of the sojourn time distribution in an N-stage tan­

dem queue with a ZS scheme, denoted by 8*N(S)ZS' is given by [2][13] 

(3.19) 

The above w* (S) is also given by 
N ZS 

(3.19a) W* (s) 
N ZS 

G
1

(1 - S/A,I,0, ••• ,0)/G
1
(1,1,0, ••. ,0). 

Hence, without using Lemmas 1 and 2, E(8
N

)zs and E(WN)zS can be obtained 

directly by letting S + ° after differentiating (3.19) and (3.19a) with 

respect to S. However, it seems to need a lengthy and complicated calculation 

to obtain the values of GIN (1,0, ... ,1), GIN (1,0, ... ,0,1) and 
,xl ,xN 

Gl

1 
(1,1,0, ... ,0). 

,xl 
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3.3 Analysis for K-limited service 

Consider an N-stage tandem queueing system with an NZ scheme, in which 

all the queues are served according to the K-limited service. The mean 

sojourn time, E(BN)NZ can be derived. 

Theorem 2. For the K-limited service, E(BN)NZ is given by 

(3.20) 

where 

(3.21) 

N-1 
E(e ) 

N NZ E(W)M/G/1 + h + i~lhi'E(QN*)NZ' 

K-1 
E(QN*)NZ:= + {K-1-(1-p) I (K-r) 

, r=l 

° r 
(r-l)! }. 

Here, or' r=1,2, •.. ,K-1 are solutions of the following simultaneous linear 

equations. (Using Cramer' s formula, ° (= ID 1/ ID I) can be represented by the 
r r 

determinants ID I and IDI formed by the eoefficients of (3.21a).) 
r 

(3.21 a) 

(3.21b) 

and 

(3.Z1c) 

K-1 1 N r r K-r N K I ~ {wJ,K IT Qi (w
J
.) - w, Q1 (W.) IT Qi (wJ.)}·or 

r=l' i=2 J J i=2 

N 
K 

(l-w.) IT Q i (w
J
,), 

J i=l 
for j=1,Z, ... ,K-1, 

W .= 
j' 

I (_A)n-1 

n=l n! 

n dn- 1 N 
€ , --"'---:-{ IT 

J dAn- 1 i=l 
H* . (A) }n, 

~ 

{ Z1Ij . } 
€ .: = exp --- ~ , 

J K 

'} 

where i'- = -1 for j=l ,Z, ... ,K-l. 

Proof: Using Lenuna 1 for the K-limited service, E(QN*) NZ is given by 

(3.22) L '{G'2 (l,O}. 
,x

2 

The first derivative in (3.Z2) is given by (A2.3). By operating .L for (A2.3), 

i.e. the replacement in (3.16), gives (3.Z1). 

Thus, the following replacement in (A2.4> and (AZ.5) leads (3.21a) and 

(3.21b) , 

(3.23) 
N 

H*Z(A(l-x» -+ IT 
i=Z 

H*, (A(l-x» 
~ 

N 

IT 
i=Z 

Q. (x) }. 
~ 

o 
Remark 3.4: The relationship, E(WN)NZ L 'E(WZ)NZ' also holds in this 

tandem queueing system with the NZ scheme. However, the expression of E(W2)NZ 

seems to be extremely complicated. This is the reason that Theorem 2 does not 

contain any results for E(WN)NZ' 
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3.4 Analysis for gated service 
Consider an N-stage tandem queueing system with a GA scheme, in which 

all the queues are served according to the gated service. A virtual queue 

with infinite capacity, QO' is introduced in front of the first queue, Q1' in 

order to analyze the mean sojourn time, E(BN)GA' and the mean waiting time, 

E(WN)GA· First, customers join QO. Then, all customers waiting in QO move 

instantaneously to Q
1 

in the order of their arrival when a single server 

arrives at 51. After that, all customers in Q
1 

are served at 51 and they move 

to stage 2 for the second service and so on. (When there are no customers in 

QO on a server-arrival at 51' the server stays at 3
1

. After a new customer 

arrives, the server begins to serve the customer at 51 and further continues 

to serve the customer at S2, ... ,5
N

_
1 

and 5
N 

sequentially.) 

The steady-state probability that i
k 

customers are waiting in Qk' k=0,1, 

2, ... ,N, just after a customer has completed service at 5 , n=1, 2, ... ,N is 
n 

denoted by TIn (i0,i
1 
,i 2 , ... ,iN)' and the generating function is defined by the 

expression 

(3.24) 
i i 

~ (" , )x 0 1 L TI ~ '~1'···'~ 0 x 1 ••• 
i =0 nUN 

N 

With the aid of the results of two-stage tandem queue analysis [6][7], 

E(BN)GA and E(WN)GA can be derived. 

Theorem 3. For the gated service, E(BN)GA and E(WN)GA are given by 

(3.25) 

and 

(3.26) 

where 

(3.25a) 

N-1 

E(W)M/G/1 + h + i~1hi·E(QN*)GA' 

P1(1+P1) 
----. (h-h ) + 

1 
2 1 

-P 

2 N 
E(QN*) GA:= --2 [p 1 I P, 

1-p i=2 ~ 
{h (2)+(h_h )2 + 

1 1 

Proof: Using Lemma 1 for the GA scheme, E(QN*)GA is given by 
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(3.27) E(Q *) = 2 L 'G'2 (1,0,1). 
N CA ,K

2 

The first derivative in (3.27) is given by (A3.3) in Appendix 3. Hence, 

operating L for (A3.3) gives (3.25a). rhe expression of E(W 2)CA is also 

given by (A3.5). Since the same relation as (3.18a) holds, (3.26) is also 

obtained by operating L for (A3.5). o 

4. Minimum and Maximum of Mean Sojourn Times 

This section considers an N-stage tandem queueing system with a more gen­

eral switching rule than the cyclic switching rule defined in Section 2. It 

is considered under the FIFO service discipline in each queue. By this 

switching rule, however, a single server is not idle as long as there are 

customers in the queueing system and all interrupted services are resumed, 

i.e. the workload in the system is conserved perfectly [15][16]. Hence, it is 

called workload conserving switching rul,=, denoted by WL service scheme in 

this paper. Everything else, e.g. arrival process, service time distribution 

and so on ~s the same as the N-stage tandem queueing model described in Sec­

tion 2. 

Three switching rules will also be considered. 

(a) Sequential service, also called a s lngle thread service (ST) [7): cus­

tomers in Q. 1 have priority over customers in Q., i=l ,2, ... ,N-l. This is 
~+ ~ 

equivalent to a basic queueing model M/c/l with service times being the total 

sum of 'i' i=1,2, ... ,N. 

(b) Preemptive priority service (PR): customers in Q
i 

have priority over 

customers in Qi+l' i=1.2, ... ,N-l. If a customer arrives at Qi' i=l ,2, .. . N, 

when th~ server stays in S., j>i. the server interrupts the current service 
] 

and immediately starts serving the customer in Q .. The serving of the cus­
~ 

tomer in S. is resumed at an interrupted point when there are no customers in 
] 

Qk' k=1,2 •... j-l, j>i in the system [12]. 

(c) Decrementing service (DC), also called a semi-exhaustive service [13]: 

when the server visits a queue, it serves until the number of customers in the 

queue decreases to one less than that found upon its arrival at the queue. 

Note that the workload conserving s\{itching rule includes all cyclic 

switching rules, in which each counter is served by ZS, NZ, CA, PB, ST and DC 

schemes and non-cyclic switching rules, such as DT, PR and so on. 

For the WL service scheme, upper and lower bounds for the mean sojourn 

time. E(BN)WL' and upper and lower bounds for the mean waiting time, E(WN)WL 

will be investigated. 
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Theorem 4. In the workload conserving switching rule, the minimtml and 

maximtml of E(8
N

)WL arise from the ST scheme and the PR scheme, respectively. 

That is, the following inequality holds: 

(4.1) 

where 

(4.2) 

and 

(4.3) 

E '8) sE(8) :;E(8) \ N ST- N WL -- N PR' 

N 

E (e> ) h + A [h 2 + \' (h. (2) -h. 2) 1 , 
oN ST:= 2(I-p) i~1 ~ ~ 

h A 
E (8 N) PR: = --;V-i-- + ---"':";'-N=--I~-

( 1 - I p .) 2 (l-p ) (1 - I p .) 
i=1 ~ i=1 ~ 

h (2) 
N 

The inverse relationship for E(WN)WL also holds, i.e. 

(4.4) 

where 

(4.5) 

and 

(4.6) E (w) • = A h (2) 
N PR' 2 ( 1 -p 1 ) 1 

Proof: Even for the workload conserving switching rule, the mean sojourn 

time E(8
N

)WL of an arbitrary customer c* can be represented by 

(4.7) 

since customers in each queue are served in the order of their arrival (i. e. 

(3.10) also holds for the WL service scheme.) 

Note that the first term. E(W). is invariant for the WL service scheme (cf. 

Theorem 6.1 in Ref. (16». Thus, the expression {E(W) + E(1)} equals 

E(W)M/G/l+h, where E(W)M/G/l is given by (3.9a). 

Only the third term, E(U), depends on the server switching rule. (See 

the proof of Lemma 2.) In the ST scheme, customers behind c* receive no ser­

vice at SI.S2' ...• and SN during the sojourn time of C*. That is, E(U) is 

zero. In the PR scheme, there are never any customers in Ql,Q2"'" and QN-l 

when C* leaves the last counter SN' Hence, E(U) becomes maximtml. Thus, the 

inequality (4.1) holds. 

By the FIFa service discipline in Ql' the mean waiting time, E(W) , of 
N WL 
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an arbitrary customer c*, is given by the summation of th~ following two 

terms: 

(4.8) 

245 

The first term, E(W*), denotes the mean waiting time of c* in 01 assuming 

that the server always stays at Sl to serve customers in 01' That is, E(W*) 

is the minimum of the mean time spent by C* in °
1

, Hence, it follows from the 

Pollaczek-Khintchine formula that 

(4.9) E(W*) A h (2) 
2(1-P l) 1 

The second term, E(V), denotes the mean total time spent by the server except 

in Sl (i.e. S2'S3"",SN) during the waiting time of C* in 01' Only E(V) 

depends on the server switching rule. 

In the PR scheme, the server is in Sl as long as there are customers in 

01' Hence, E(V) is zero. 

In the ST scheme, there are no customers in 02'03"'" and ON when the 

customer c* begins to receive the service in Sl' Hence, E(V) becomes maximum. 

Thus, the inequality (4.4) is obtained. 

Therefore, (4.2), (4.5) and (4.6) are derived by the Pollaczek-Khintchine 

formula. 

Next, to derive (4.3) from the following result for a two-stage tandem 

queue with the PR scheme [12] [15], 

(4.10) 
h --+ 

l-p 1 
A '{h (2)+2h h +h (2)} 

2 ( 1 -p 1 ) (1 -p ) 1 1 2 2 ' 

a modified two-stage tandem queue with the PR scheme described as follows is 

first introduced. 

The service time Tl at the first counter is equal to the sum of 1 1,1 2"", and 

1
N

-
l

, i.e. Tl:=11+12+"-+lN_l and service time T2 at the second counter is 

equal to 1
N

• Everything else, e.g. arrival process and so on, are the same 

as with the original queueing model with the PR scheme. In both the original 

N-stage tandem queue and the modified two-stage tandem queue, (4.7) also holds 

and the mean workload in the system just before the arrivals of customers at 

01 is given by E(W)M/G/1 in (3. 9a). It is noticed that in the N-stage and the 

2-stage tandem queue models above, both of the last queue length distributions 

just after the instants at which a customer leaves the system are equal. 

Thus, the above arguments imply that both mean sojourn times are also equal. 

Hence, 

(4.11) L *'E(e ) 
2 PR 
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is obtained, where ~ * is an operator for substituting H1 (t) for H1*H2*'" 

*HN_
1 
(t) and H2 (t) for HN(t), i.e. L * means the following replacement, 

(4.12) 

h -+ h h (2) -+ h (2) P -+ P }. 
2 N' 2 N' 2 N 

Therefore, operatingL * for (4.10) gives (4.3). 

5. Conclusion 

p -+ 
1 

N-1 

I Pi' 
i=1 

o 

In this paper, mean sojourn times in the system and mean waiting times in 

the first stage have been derived for a multi-stage tandem queue served by a 

single server with a cyclic switching rule. These were derived by a simple 

method using the results of the two-stage tandem queue analysis and the 

Pollaczek-Khintchine formula. In a general switching rule (called the work­

load conserving switching rule), upper and lower bounds for the mean sojourn 

times and the mean waiting times were obtained. Further study is needed for 

mean sojourn time analysis in the multi-stage tandem queue with server walking 

time. 
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Appendix 1. Generating function for the exhaustive service 

In the two-stage tandem queue model with a zs scheme, the following func­

tional relationships [9][10] for Gn (x 1,xZ)' n=I,Z defined by (3.1) are 

obtained: 

(Al. 1) G
1

(X
1
,x

Z
) {G

1
(X

1
,xZ) - G

1 
(O'X

Z
)}'Ql (X

1
)'X

Z
/X

1 

+ {G Z (x 1 ' 0) - 11 Z (0 , 0) } • Q 1 (x 1 ) • x Z / Xl 

+ 112 (0,0) 'X1 'Ql (Xl) .XZ/X 1 ' 

and 

(Al.2) GZ (Xl ,XZ) {GZ (Xl ,X
2

) - G
Z

(x
1

,0)}'QZ(X
1
)/X

Z 

+ G1 (0'XZ)'QZ(X1)/XZ' 

From analysis of the two-stage tandem queue model with a zs scheme, the 

following expressions have been obtained [Z][6][7] : 

(Al.3) G'Z (1,1) ,x
2 

+ "2
Z 

(hI (Z) +h2 (2»] , 

(Al.4) 

and 

(Al.5) 

Appendix 2. Generating function for the K-limited service 

In the two-stage tandem queue model with a NZ service scheme, the follow­

ing functional relationships [8] for G
N

(X
1
,x

2
) are obtained: 

(AZ.1) 

and 

(A2. Z) 
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where 

From analysis of the two-stage tandem queue model with a NZ scheme, the 

following expressions have been obtained [5][8]: 

(AZ.3) 

(AZ.4) 

(AZ.5) 

and 

(AZ.6) 

K-1 
G'Z (1,1) = ---41 

{K-1 - (l-p)' I (K-r) 
,Xz r=l 

K-1 

o 
r 

(r-1)! }, 

'\ K r r K-r K 
l ---.rr {w. 'Oz (w J - w. '01 (w.)OZ (w J}·o 

r=l J J J J J r 

00 

w .= 
j' I 

n=l 

K 
(l-w .){01 (w.) 'OZ(w'>} 

J J J 

n 
E. 

J 

where i
Z 

for j=l ,Z, ... ,K-1. 

-1 for j=l,Z, ... ,K-1. 

Appendix 3. Generating function for the gated service 

In the N-stage tandem queue model IN-ith a GA scheme, let q 
(i) 

denote the 
m 

probability that m customers arrive at "'0 during service ti41es 'i' i=l,Z and 

let 0. (X) denote the generating function. Then, the following functional 
~ 

relationships [6][7] for G
n

(X
O

'X
1
'X

Z
)' n=l,Z defined by (3.Z4) are obtainl~d: 

(A3.1) 

and 

(A3.2) 

From analysis of the two-stage tandem queue model with a GA scheme, the 

following expressions have been obtained [6][7]: 

(A3.3) 
2 

1-p 
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2 
A(1+2P l+P2) 

(A3.4) E (B2) GA 
1-p 1 +p 2 

'h
1

+h
2

+ (h
1 

(2) +h2 (2)) , = ---2--
2 l-p 2 (l-p ) 

and 

(A3.5) E(W2)GA 
P,(1+P 1

) 
oh

2
+ 

A (1 +p,) 
(h

1 
(2) +h2 (2)) . = ---2--

2 
l-p 2 (l-p ) 
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