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Suppose customers over fraction p should be allocated to a single server queueing system by splitting 

a given input stream. In this paper we fust show that the regular splitting rule, proposed by Hajek [1], minimizes 

the waiting time of a routed customer in the sense of convex stochastic ordering. However this arrival stream of 

routed customers is not in general a renewal process, so it is difficult to evaluate characteristics of the waiting time. 

Then we give upper and lower bounds for the waiting time distribution by using approximated renewal sequences. 

At last an application of the above evaluating method to a simple network queueing system will be demonstrated. 

§1. Introduction 

In a multi-queue system, it is a matter to decide to which queue an arnvlllg 

customer should be delivered. Delivering rules may change depending on which kind 

of information on the state of the queueing system can be utilized, e.g. current 

queue lengths, waiting times in each queues and so on. Here we consider the case 

no information can be available excepting statistical behavior of arrival and service 

processes. In this context, Bernoulli splitting rule is mainly studied hitherto as seen in 

Markovian network models. However, we will concentrate on deterministic splitting 

rules, in which we deliver customers to each queues automatically depending on just 

the ordering of arriving customers. It is the first aim to find an optimal rule in order 

to minimize mean waiting time of a customer, given that ratios of delivered customers 

to each queues are fixed. 

In a recent year, Hajek [1] considered the following simple splitting problem of 

input stream into a queueing system. Customers are arriving according to a renewal 

sequence and at least 100p% of them are to be routed to a single server queue. Other 
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Optimal Splitting to a Queueing System 

customers may be sent to another queue or ignored. Here we put rlc = 1 if the kth 

arriving customer is routed to the queue and rlc = 0 otherwise. Thus the sequen(:e 

r = (rlc);'" represents a (deterministic) rout.ing policy. The sequence r = (rlc);'" is 

called "regular" if the components are given by 

rlc = [kp + a]- [(k - l)p + a], [] = l J or r 1, (1) 

for some a E [0,1), where lzJUzl) denotes the maximum (minimum) integer not 

larger (smaller) than z. 
Let NIc( r) be the number of customers in the queueing system just before the 

arrival of the kth customer, when a splitting sequence r is used. For G 1/ M /1 queue, 

Hajek [1] has proved that 

liminf.!. t E{w(NIc(r))} ~ lim .!. t E{w(NIc(r))}, (2) 
.. -00 n Ic=i "-00 n Ic=i 

for any sequence such that lim inf .. _ oo * E~"i rlc ~ p, where W is any nondecreasing 

convex function. In the derivation of the result, Hajek tactically used the multimod­

ularity property of NIc(rlc- i) as a function of finite sequence r lc- i = (ri, r2, ... ,rlc-i). 
The result means that, among all deterministic splitting rules, the regular splitting 

rule r minimizes the number of customers in the system in the convex ordering sense. 

In short, in case of w(z) = z, we say, the mean system length is minimized by the 

regular sequence. 

In Section 2, we introduce similar results for the waiting time process of GI/G/l 

queues, which have been derived by Shirakawa, Mori and Kijima [7]. Here we only 

state some results necessary for the latter sections. Please refer to the paper for detail. 

Of course the stream of routed customer to the queue is not necessarily renewal type, 

so it is very difficult to evaluate the exact mean waiting time. In Section 3, upper and 

lower bounds for the mean waiting time for routed customers are discussed. Strict 

and detailed discussions on the derivation of bounds on the basis of sample path wise 

method should be reffered to a coming paper by Shirakawa et al [8]. In Section 4, 

an application to tree type network systems will be given. There we give a rough 

evaluation method of a network queue with splitting nodes by using an analogolls 

way to QNA (see Whitt [10]). 

§2. Optimal Splitting for a GI/G/l Queue 

Consider a single server queueing system with a renewal arrival stream and with 

a general service time distribution, however all the customers are not served neces­

sarily. At least 100p% of them are routed to have services at the server under Fe F S 
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220 M. Mori, H. Shirakawa 

discipline, but the rests are ignored or delivered to other systems. Customers having 

services at the server are called routed customers here. Throughout this section, the 

following notations are used: 

p a fraction of customers to be routed to the server (0< p <1). 
,. = (r,.)r' a splitting sequence. 

k = (kn)O', ko = 0 a sequence of indices of routed customers, which is uniquely 

determined by,.. 

u = (un)r', Un = kn - kn- 1 the number of arriving customers between the 

(n -1)th and the nth routed customers to the server. (u is also one-to-one 

corresponding to ,.). 

urn = (U1,"', um) a truncated sequence of u. 

T = (T,.)r' an i.i.d. random sequence of the interarrival time T,. between the 

(k - l)th and kth arriving customers. 

S = (S,.)O' an i.i.d. random sequence of the (potential) service time S,. for the 

kth arriving customer (k ;::: 1) and So is the initial backlog of the system. 

Wn the waiting time of the nth routed customer under FeFS discipline. 

It is assumed in the subsequent sections that the queue under consideration is stable, 

i.e. pE{S,.} < E{T,.}. 

For the routed customers, it is easily known that waiting times are recursively 

generated by 
" .. +1 

Wn+1 = [Wn +S,. .. - L 1j]+, n;::: 0, (3) 
j=",,+l 

where [a]+ = ma.x(a,O). For notational convenience, when u m and the random 

sequences S and T are specified, we write Wm = Wm(um, S, T) in an abbreviated 

manner. Thus it is clear that the mean waiting time of Wm is represented as a 

function of um. Let q; be any nondecrea.sing convex function, and put 

Jm(um) = { E{q;(Wm(u
m

, S, T»)}, if u
m 

E. Z+, 
00, otherwlSe, 

(4) 

where Z+ = {u"' E Z"'j all components of u'" are strictly positive} and Z'" is the 

m dimensional lattice space. 

Now we introduce the notion of the multimodular function on zm (Hajek [1]). 

Definition (Multimodularity) A real valued function J on zm is said to 

be multimodular if 

J(u + fi) + J(u + f j ) ;::: J(u) + J(u + fi + fj) (5) 
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for aUu E zm and ° ~ i < j ~ rn, where li (0 ~ i ~ rn) are vectors on zm given by 

I 
10 = (-1,0,0,···,0), 
'1=(1,-1,0,···,0), 

I = (0 ...... £I 1) 
m t J'. 

(6) 

Then we can show the next attractive property of Jm(um), the proof of which is 

given in [7] following several lemmas. 

Theorem 1. Jm(um) is a nonincreasing (in the componentwise order) multi­

modular function. 

By using the above property, we got the following useful result : 

Theorem 2. IT r is any splitting sequence such that lim inf,,-+oo * E/:=l rlc ~ 

p (that is limSUPl-+oo ~ E~=l U" ~ i), then liminfl-+oo ~ E~=l Jm(um) ~ liml-+oe. 

~ E~=l Jm(um
), where u is a regular sequence given by 

The sequence u = (u,,)r is corresponding to regular splitting sequence r, i.e. 

Tic = lkp+aJ -l(k-l)p+aJ (or Tic == rkp+al- r(k-l)p+al). 
The above theorem states that the regular splitting rule is optimal to minimiZE! 

the waiting time of a customer in the sense of convex ordering among all deterministic 

splitting rules with the same splitting ratio. When 'li(x) = x, we can briefly say that 

the mean waiting time is minimized by the regular splitting rule. 

§3. Upper and Lower Bounds of Mean Waiting Time 

In this section we will try to evaluate the mean waiting time of the routed customer 

under the regular splitting rule. However, in general, interarrival times of the routed 

customers do not form a renewal sequence for regular splitting rules, so it is difficult 

to enumerate the mean waiting time in an exa.ct sense. For example, in case of p = l, 
u = (3,2,3,2,···) by setting a = 0, which implies interarrival times process to the 

server is an alternative renewal. 

Here, by approximating the arrival process, we will derive upper and lower bounds 

of the mean waiting time. However, it should be mentioned that, in the case that 
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222 M. Mori, H. Shirakawa 

the original input stream is PH type (see Neuts [4]) and regular splitting is cyclic, 

the arrival stream of the routed customers can be also represented as PH type dis­

tribution with enlarged phase space and the mean waiting time can be obtained by 

a numerical computation. The method using PH type technique is not discussed in 

this paper. 

Upper Bound 

We call U = (Un)f, the renewal splitting sequence if the number of arriving 

customers between (n - l)th and nth routed customers to the server, i.e. Un, form 

a (discrete) renewal sequence. By elaborating the proof of Theorem 2, we derive the 

following results, the proofs of which are given in [5]. 

Theorem 3. Let U = (un)f be a regular sequence given in Theorem 2 and 

W be any nondecreasing convex function. Then 

ili.~ ~ t E{W(Wn(u»} ~ n~ E{W(Wn(U»)}, 
n=l 

(8) 

for any renewal splitting sequence U = (U,,)f such that E{Un} = ; and it is inde­

pendent of T = (T,,)f and S = (S,,)O'. 

Next we propose a special renewal splitting sequence, which minimizes the above 

performance measure of the queueing system. We set the renewal splitting sequence 

U = (U n)f in the following manner. 

{

I + l.!J - .! p p' 

P{Un = j} = ; -l;J, 
0, 

if j = UJ, 
if j = l~J + 1, 
otherwise. 

It is clear that E{Un} = ; and further that Un Se Un (we say Un is smaller than 

Un in the sense of convex order) for any integer valued renewal sequence with mean 

E{U,.} =;. Here Un Se Un is defined whenever E{f(U n)} S E{f(Un)} holds for 

any non decreasing convex function f (Stoyan [9]). The following lemma is a modified 

version of Stoyan's famous result to the waiting time process of routed customers. 

Lemma. Let U = (Un)f and V = (Vn)f be any renewal splitting sequences 

with rate p such that Un Se Vn. Then 

(9) 

for any nondecreasing convex function W. 
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That is, we say Wn(U) is larger than Wn(V) in the sense of convex order, ab­

breviated to Wn(U) ~c Wn(V). By using Theorem 3 and the above lemma, the 

following main result will be directly implied. 

Theorem 4. For any nondecreasing convex function 'li', the renewal splitting 

sequence U given by (9) generates the least upper bound for a regular sequence among 

all renewal splitting sequences in the sense that 

}~~ ~ t E{'li'(Wn(u»} ~ Ji.~ E{'li'(Wn(U»} ~ nli.~ E{'li'(Wn(U»)} , (10) 
n=l 

where U = (Un);'" is any renewal splitting sequence with E{Un} = 1. 
p 

Thus for the mean waiting time, the least upper bound for a regular sp~itting 

sequence is given by the mean waiting time based on U among all renewal splitting 

sequences. We use the value as an upper bound of the mean waiting time for a regular 

splitting sequence. 

Lower Bound 

Concerning the lower bound, we restrict ourselves to queues where the interarrival 

time distribution A(z) of the original input stream is GP H type, i.e. general phase 

type distribution. GP H is introduced by Shanthikumar [6], and the class of GP H is 

shown to be broader than the class of PH proposed by Neuts [4]. And also Otto [5] 
discusses GP JI type queueing model in a different way, in which GP H is named as 

almost phase type (AP JI). The Laplace transform of a GP H distribution is given 

by 

(11) 

where 1- is the mean sojourn time in each phase decaying in exponential law and M is 

a nonnegative integer valued random variable. That is, GP H is a mixture of Erlang 

distributions with the same scale parameter A, which permits infinite mixtures. L~!t 

(glc)O' denotes the distribution of M, and we can write 
00 

A(z) = L:gIcEIc(Z;A), (12) 
Ic=O 

where EIc(z; A) is the k-phase Erlang distribution function of scale parameter A. 

Theorem 5. Suppose original input stream is a GP H renewal type with a 

distribution given by (12). Then for any nondecreasing convex function 'li', we have 

lim ! t E{'li'(Wn(u»} ~ lim E{'l1(Wn(rm(A)/G/l»}. (13) 
l-+oo l n=l n-+oo P 
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224 M. Mori, H. Shirakawa 

Here Wn(r!!!.(A)/G/l) denotes the waiting time for the nth customer, under FCFS 
p 

discipline, of the queueing system with Gamma renewal input of scale parameter A 

and of shape parameter ;- where m = E{M} in (12). 

The proof needs somewhat intricated discussion (see [8] in detail), however the 

above statement might be easily understood in an intuitive manner. It is noticed 

that the nth interarrival time of customers routed to the server is represented as the 

Un sum of 7)'s, where 7)'s are distributed with a GP H distribution of (13) (see the 

equation (13». So the Laplace transbe written as [E{(,\~,)M}]ii ... On the other hand, 

we have (,\~,)"i = {(,\~,)m}~ for a r-'i(A) input, where i = liml-+oo i E~=l Un and 

m = E {M} are constant values, which are less in variability than random variables Un 

and M respectively. Thus the interarrival times of customers for the regular splitting 

rule are expected to be much larger in variability than r.v.s with the distribution 

r-'i(A). 

Remark 1. 
I 

We consider the case that (A*(s»p has a corresponding distribution 

function for P, where A *( s) denotes the Laplace transform of the distribution function 

of original arrival process. For example, if A(z) is a degenerate distribution or an in­

finitely divisible distribution, the above makes sense for any 0 < P ~ 1. In this case, it 
I 

can be shown that the lower bound is replaced by liIDn-+oo E{qi(Wn«A*(s»p /G/l»}, 

i.e. the performance measure for the GI/G/l queueing system with interarrival dis­

tribution (A*(s»~ in Laplace'Transform. 

Remark 2. In order to enumerate the upper and lower bounds of the mean 

waiting time, we can use the very nice approximation formula given by Kramer and 

Langenbach-Berz [2]. 

§4. An Application to a Network Queue 

Here we consider an open queueing network system with infinite waiting room at 

each service nodes, but the structure of network is tree type (Figure 1). This type of 

system is often observed as a production system and so on. In this paper we restrict 

models to the cases that the number of branching flows from each splitting point is 

2. For the cases, if a splitting sequence for one queue makes a regular sequence, then 

the rest sequence of discarded customers (i.e. routed to another service node ) is 

necessarily regular too. However, when the number of splitting flows n ~ 3, regular 

splitting sequences may not be constructed for some routes, depending on splitting 

ratio vector p = (Pl,P2,'" ,Pn)' For example, in case of p = n,~,!) r sequence 

can be constructed easily. But, in case of p = (!,!, *), we cannot realize three 
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regular flows to be routed to each queue without overlapping assignments. In order 

to overcome such difficulties, we will consider cyclic splitting sequences and propose 

methods evaluating lower and upper bounds of mean waiting times in a forthcoming 

paper. 

In order to clarify our method of evaluating network queueing system, we consider 

here the model shown in Figure 1. We assume the original input stream to the 

network is a Poisson process with rate A a.nd service time distribution at service 

node i is exponential with rate I'i. At each service node customers are served by 

a single server under FeFS discipline. And at each splitting points, customers 

are routed to queue i by regular splitting rule with splitting ratio pi. Here the 

decomposition method proposed in QN A by Whitt [10] is adopted. That is to say, 

we decompose the network into a set of imaginary G I / M /1 queues. And we are going 

to enumerate approximating values of mean queue length at each service nodes by 

using the upper and lower bounds models stated in Section 3. However, we have to 

notice that the values enumerated in the above manners do not give the lower and 

upper bounds respectively in exact sense for latter stages, for the departure process 

from the former service node is not a renewal process, which makes it difficult to 

apply results in Section 3 in a strict sense. 

But we are eagerly concerned in measuring the effect of introducing the simple 

control of arrival customers with a regular splitting rule. By using the above approx­

imate values, we can compare the rule with the ordinary Bernoulli splitting rule. 

Numerical example will teach us how largely we can decrease the congestion in the 

network by adopting a regular splitting rule. 

---1 1'3 

7 1'4 

~ 1-'5 

Figure 1. An example of tree type network ( pl + p2 = 1, p4 + p5 = 1) 
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Approximations by upper bound model 

For the service node i (= 1,2), we use the model (.8iEdA)+(l-.8i)El;+1(A))/M(l'i) 
/1 queue, i.e. the interarrival time distribution is a mixture of Erlang distributions, 

where li = l~ J and .8i = 1 + l~ J -~. The inter-departure time distribution from 

this service node is represented as 

(14) 

where Eo is the distribution with unit mass at 0 and "*" denotes convolution oper­

ation. 

This departure process will be discussed in Appendix. Thus, for the service node 

3, we use the model Dd M(1'3) /1 queue. And for the node i (= 4,5), we consider the 

model (.8iD;l; + (1- .8i)D;(l;+1»/M(l'i)/1 queue, where irle is the k-fold convolution 

of D. The values of mean queue length' enumerated for these models are shown in 

Table 2 at the row notated as "U.A.". This enumeration procedure is tiresome for 

latter stage service nodes. 

As the second approximation procedure, we introduce the spirit of QN A [10] much 

more and use Kramer and Langenba.ch-Berz approximation formula for mean queue 

size. Here the coefficient of variation of the departure process from some service node 

is estimated as 

(15) 

where Co. and Cb are the coefficients of variation of the arrival and service processes 

for the node. And the coefficient of variation of arrival process of splitted customers 

(with splitting ratio p) is given by 

C 2 C~o .8(1 - .8) 
0. = l + 1 - .8 + (l + 1 - .8)2' 

(16) 

where beta and l are given in upper bound model and Co.o is the coefficient of variation 

of the original input stream to the splitting point. (17) is easily derived from the 

relation for the arrival process of upper bound model that 

(17) 

stated in Section 3, where Ao is the distribution of the original arrival process before 

splitting. The approximate values obtained by this method are shown at the row 

"K.L.U." in Table 2, which give fairly good evaluation for "U.A." values. 
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Approximations by lower bound model 

Concerning the lower bound model, we can get the lower bound in a sense 

stated in Section 3 for the first stage service nodes i (= 1,2), by using the model 

r .d>')/ M(l'i)/I, where r a(>') is the Gamma distribution with shape parameter a 
Pi 

and scale parameter >.. However, the inter·-departure distribution from the service 

node i cannot be represented in a explicit form, which makes it difficult to apply the 

lower bound evaluation method directly to the latter stage's service nodes. 

So we consider the QN A method analogous to the second upper bound approx­

imation method. The only different point from the upper bound approximation 

method is to use 

(18) 

for a splitted flow, in stead of using (17). The above relation (19) is implied by the 

statements in Remark 1 below Theorem 5. The approximate values calculated by 

using this lower model are shown at the row "K.L.L." in Table 2, which seem to give 

us nice estimations by comparing with the values obtained through simulation. 

We repeat to notice that, by this approach, an upper and a lower bound are 

available only for the first stage nodes, but just approximate values are given for 

latter stage nodes. And the relative error of these approximations are not so small 

yet. This is because "renewal" property collapses much for latter stages. 

However, Table 2 tells that a control of arrival process by using regular splitting 

rule brings significant effect compared with using probabilistic routing rule. And we 

see that the queue sizes for nodes with small splitting ratio decrease much compared 

with the case of Bernoulli splitting rule. 

Remark 3. "K.L.U." and "K.L.L." approximation methods are applicable to 

much more general queueing network systems with general interarrival and service 

time distributions and having merging points of customer flows by using the method 

ofQNA. 

Table 1. Parameter sets for numerical evaluation. 

Case >. 1'1 1'2 1'3 1'4 Pr, p1 p4 

1 1.0 1.0 1.0 1.0 0.5 0.5 0.5 0.5 

2 1.0 1.4 0.6 1.4 0.42 0.18 0.7 0.7 

In each cases, traffic intencities for each service nodesame value p ::: 0.5. 
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Table 2. Values of Average Waiting Number of Customers for Q; (A.W.Q;.) and Average Waiting 

Number of Customers in the Network (A.W.N.). 

Routing A·W.Ql· A.W.Q2. A.W.Q3. A.W.Q~. A.W.Q5' A.W.N. 

B.B. 0.5 0.5 0.5 0.5 0.5 2.5 

U.A. 0.309 0.309 0.400 0.257 0.257 1.527 

1 R.B. Bimu. 0.301 0.304 0.378 0.237 0.245 1.465 

±0.0095 ±0.0085 ±0.0095 ±0.0092 ±0.0106 -

K.L.A. 0.309 0.309 0.383 0.258 0.258 1.517 

B.B. 0.5 0.5 0.5 0.5 0.5 2.5 

U.A. 0.441 0.243 0.466 0.337 0.198 1.685 

2 Bimu. 0.401 0.244 0.429 0.273 0.168 1.515 

R.B. ±0.0102 ±0.0112 ±0.0116 ±0.0131 ±0.0115 -
K.L.U. 0.449 0.261 0.463 0.320 0.196 1.689 

K.L.L. 0.384 0.232 0.435 0.266 0.186 1.504 

In case 1, upper and lower models are definitely the same. Simu.: 20 repetitions of 9600 time 

units of simulations are excused, and 90% confidence interval are given in the Table. B.S.=Bemoulli 

splitting rule. R.S.=Regular splitting rule. U.A.=Upper bound approximation. K.L.A.=Kriimer and 

Langenbach-Berz (K.L.) approximation. K.L.U.=K.L. approximation of upper bound. K.L.L.=K.L. 

approximation of lower bound. 

Concluding Remarks 

In this paper the waiting behaviour of splitted customers is studied at first. Briefly 

to say, the regular splitting rule is optimal to minimize the mean waiting time of a 

routed customer to the server among all deterministic splitting rules. And in the 

section 3, upper and lower bounds of the mean waiting time for the rule are derived. 

In the section 4, for simple queueing networks with splitting nodes, a method of 

evaluating system performances approximately for the rule is proposed on the basis 

of the QN A method. 

In a routing problem for a network, a nicely designed dynamic routing policy, 

which may depend on current states of queue sizes at each nodes, can decrease con­

gestions much. However, the overhead time arising in communicating the current 

data of the system states and in enumeration of selecting routes may be consider­

ably large and cannot be ignored. In fact, it is reported by Maruya [3], through 

a simulation experiment, that the joining to the shortest queue rule become worse 

than the regular splitting rule, when a considerably large time lag occurs in getting 
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information on queue sizes before each parallel servers. Therefore, we think, it is 

worthwhile to study on effects of introducing such a simple control policy like t.he 

regular splitting rule into routing problems of queueing networks. 

In this paper we just propose the method to evaluate system performances roughly 

under the condition that splitting ratios are given at each splitting nodes. However, 

a significant problem how we should set sU(:h splitting ratios remains yet to consider 

minimizing congestions in a network. 
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Appendix 

Inter-departure Time Distribution of GI/M/1 Queue 

We first consider the idle time distribution I(t) of GI /M /1 queue with interarrival 

distribution A(z) and with service rate p. It is assumed that the system is in steady 

state. Let Tn be a random variable of interarrival time between the (n - 1 )th and the 

nth customers, Uj be the sum of i service times and j be a generic random variable 

of an idle time. Then we have 

P{no customer stays just before the n-th arrival an:! j ~ t} 
00 

= 1: P{k customers stay just before the (n -1)th arrival and Tn - UHl ~ t} 
h=O . 

00 LOO (pZ)h = 1: 'lrlo A(t + z)-kl pe-I-'zdx, 
h=O 0 . 

where ('lrh)8" is the stationary queue size distribution observing just before arrivals. 

By using geometric property of ('lrh)8" , i.e. 'lrlo = 'lr0(1 - 'lro)", we easily derive 

( 19) 

Notice that this distribution is fairly different from the stationary residual life time 

distribution of the interarrival time. In heavy traffic case, i.e. 'lro - 0 and p -~ ~ 
(mean inter-arrival time), they are very close. Thus the inter-departure time distri­

bution D(t) is given by 

D*(s) = (1 - 'lro -I- 'lror(s))-p­
p+s 

(20) 
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in Laplace Transform. In Et/M/1 queue, /*(s) is represented as 

(21) 

which is a finite mixture of EIo(A). The fact implies that the idle time distribution of 

GPH/M/1 queue become a GPH distribution too. 

The coefficient of variation, Cd, of the departure process is given by 

2 1 ( 1- P) Cd = - + 2p 1 - --
l ~o 

(22) 

for Et/M/1 queues. 
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