
Journal of the Operations Research
Society of Japan

Vol. 31, No. 2, June 1988

DETERMINISTIC SCHEDULING IN
COMPUTER SYSTEMS: A SURVEY

Tsuyoshi Kawaguchi Seiki Kyan
University of the Ryukyu

(Received May 21, 1987; Revised September 26, 1987)

Abstract The progress of computer architecture has increased the necessity to design efficient scheduling algo-

rithms according to the types of computer systems. We survey recent results of optimization and approximation

algorithms for deterministic models of computer scheduling. We deal with identical, uniform and unrelated parallel

processor systems, and flowshop systems. Optimality criteria considered in this paper are schedule-length and mean

(weighted) flow-time. These are important measures for evaluating schedules in computer systems. Results on

practical algorithms such as list scheduling are emphasized.

1. Introduction

The progress of computer architecture such as multiprocessor systems has

increased the necessity to design efficient scheduling algorithms according to

the types of computer systems. Two basic approaches have been considered for

the evaluation of scheduling algorithms in computer systems. One is deter­

ministic approach and the other is stochastic approach. An advantage of

deterministic approach over stochastic one is that job parameter values are

not constrained to fit a prescribed distribution [22].

This paper surveys recent results of optimization and approximation

algorithms for deterministic models of computer scheduling, refered to as

deterministic scheduling problems. We will deal with parallel processor

problems and flowshop problems. Optimality criteria considered in this paper

are schedule-length and mean (weighted) flow-time. We will also emphasize

results of practical algorithms such as list scheduling and highest-level­

first strategy, rather than elaborated algorithms. A parallel processor

system corresponds to a multiprocessor computer system which can execute

several jobs simultaneously in parallel. A flowshop system can be interpreted

190

© 1988 The Operations Research Society of Japan

Deterministic Scheduling in Computer Systems 191

as a computer system where all jobs pass through several phases such as input,

execution and output [12]. Moreover schedule-length is a processor utiliza­

tion factor, and mean (weighted) flow-time corresponds to the mean (weighted)

response time which is important from the user's viewpoint [6].

In this paper we will treat single processor problems as special cases of

parallel processor problems, but we will r.ot deal with openshop and jobshop

problems which are often used as models of production scheduling rather than

computer scheduling. The reader LS refered to [7, 33, 45, 52, 53] for open­

shop problems, jobshop problems and parallel processor problems involving

criteria other than schedule-length and mean (weighted) flow-time. Especially,

we recommend [33] (or [52]) as a comprehensive survey. Moreover [7] gives

detailed descriptions about problems with additoinal resources, and [38]

summarizes recent results of approximation algorithms.

Section 2 introduces the basic concepts and presents a detailed problem

classification. Results on parallel processor scheduling are described in

section 3 for problems with no additional resources, and in section 4 for

problem~ with additional resources. Section 5 deals with flowshop scheduling.

Finally in section 6, we give concluding remarks.

2. Preliminaries

2.1 Basic concepts
First we briefly explain the basic ccncepts concerning the theory of the

computational complexity. For formal definitions of these concepts, the

reader is refered to [26].

Let T (n) denote the largest amount of time needed by an algorithm A
A

to solve a problem instance of size n. If there exists a constant c such that

TA(n) ~ c f(n) for all values of n ~ 0, we say that the time complexity of the

algorithm is O(f(n». A polynomial time algorithm is one whose time complexity

is O(f(n», where f is some polynomial fur.ction.

There is a large class of problems, called NP-complete problems, which

include classical hard problems such as the traveling salesman problem or the

integer programming problem, etc. The best known algorithms for all NP-com­

plete problems have exponential time complexity, and any NP-complete problem

has a polynomial time algorithm if and only if all the others also have poly­

nomial time algorithms. Many researchers conjecture that NP-complete problem

has no polynomial time algorithm. As a consequence, the knowledge that a

problem is NP-complete shows inherent intractability of the problem. NP­

completeness is defined for decision problems which return "yes" or "no" answer.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

192 T. Kawaguchi, S. Kiyabu

Further) the notion of NP-hardness is used for showing that a problem is

at least as hard as NP-complete problems. An optimization problem P is NP­

hard if the decision problem corresponding to P is NP-complete.

Certain algorithms for NP-hard problems have the following property: they

are polynomial if any upper bounds are imposed on input numbers, for example,

which represent processing times of jobs; and otherwise they are not poly­

nomial. Such algorithms are called pseudopolynomial time algorithms. Given

a problem p. let D(P) be the set of all instances of P. Moreover let p'

denote subproblem which lS created by restricting D(P) to the instances. each

of which has the maximum number bounded by a polynomial in its length. If

there exists a polynomial for which P I is NP-hard. the original problem P is

said to be strongly NP-hard or NP-hard in the strong sense.

Next we define a measure for evaluating goodness of approximation algo­

rithms. Let P denote a minimization problem and let I be any instance of P.

Then the absolute performance ratio for an algorithm A is given by

R = inf { r ~ 1: R eI) ~ r for all instances of P }
A A

where

RA (I) = A(r) /OPT(r) ,

where A(I) is the cost obtained by algorithm A and OPT(I) is the optimum cost.

Moreover the asymptotic performance ratio for algorithm A is given by

RA = inf { r ~ 1: for some K > 0) RA(I) ~ r for any instance I

with OPT(I) ~ K }.

If RA ~ r for some r ~ 1. then RA ~ r. But the converse is not necessarily

true. Unless stated otherwise, the term "performance ratio" means the abso­

lut~ performance ratio in this paper.

2.2 Problem classification
The scheduling model that we consider has a set of jobs {J

1
,· ••)I

n
} and

a processor system {P
1
••••• P

m
}. Each job is to be executed on no more than

one processor at a time. and each processor can process no more than one job

at a time. Problems involving additional resources are discussed only in

section 4. and so parameters about additional resources are given in section

4. Below we will describe various job and processor characteristics.

2.2.1 Processor environment
As stated in the preceding section, this paper deals with two types of

processor systems: parallel processor systems and flowshop systems. In

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Deterministic Scheduling in Computer Systems 193

a parallel processor system. each job requires the use of exactly one proces­

sor, and each job can be performed on each processor. On the other hand,

a flowshop system is a processor system in which each job J. has a chain of m
~

tasks T .. and each task T .. requires execution on processor P .• Further with
~J ~J]

respect to processing speed, we will distinguish three classes of parallel

processor systems. Let s .. denote the processing speed of a job J. on a
~J ~

processor P
j

• A parallel processor system is said to be uniform if Slj=s2j=

•• • =s . for all processors P., and otherwise the processor system is said to
nJ]

be unrelated. In uniform processors, s .-=sl' (=s2 .= . .. =s .) denotes the speed
]]] nJ

of processor P .•
]

Specially, a uniform processor system in which all proces-

sors have the same speed is said to be identical.

The following notation 1.S used for specifying the processor environment.

Let ~ denote the empty symbol.

(1) TP (the type of processors)

TP=~: one processor.

(2)

TP=P: identical processors.

TP=Q: uniform processors.

TP=R: unrelated processors.

TP=F: flowshop.

m (the number of processors)

m=~: m is assumed to be a free parameter.

m=k: m is a constant equal to k (k is a positive

m;;:'k: m is a cons tant greater than or equal to k.

2.2.2 Job characteristics

integer) •

If a job cannot be interrupted once it has begun execution, the job is

said to be nonpreemptive. Otherwise, the job is said to be preemptive.

A partial order < is defined on a given set of jobs, where J. < J. signi­
~]

fies that J. must be completed befure J. can begin.
~]

The partial order < is

conveniently represented as a dag (directed acyclic graph) where each node

corresponds to a j ob. Let us denote by "e" the number of edges in >.

Arrival time of a job denotes the time on which the job becomes available

for processing.

Processing time of a job, denoted by ti (or t
ij

), 1.S defined for each of

three classes of parallel processor systems.

Identical processors: ti is the time needed by a processor to complete J
i

.

Uniform processors: ti is the time needed by the slowest processor to

complete J
i

.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

194 T. Kawaguchi, S. Kiyabu

Unre lated processors: t .. is the time needed by processor p. to complete
~J]

J .•
~

The following notation is used for specifying job characteristics.

(1) RULE (rule of operation)

RULE=~: each job is nonpreemptive.

RULE=pmtn: each job is preemptive.

(2) < (partial order on a given set of jobs)

<=~: no precedence relation ~s specified.

<=prec: < is an arbitrary dag.

(3)

(4)

<=intree: each node of < has at most one outdegree. that is. each node

has at most one successor.

<=outtree: each node of < has at most one indegree, that is, each node

has at most one predecessor.

<=tree: < is either an intree or an outtree.

<=chain: each node of < has at most one outdegree and at most one

indegree.

a. (arrival times of jobs)
~

a.=O: arrival times are equal to 0 for all jobs.
~

a
i

: each job has an arbitrary arrival time.

t. (processing times of jobs)
~

ti=1: each job has unit processing time.

ti=~: each job has an arbitrary processing time.

2.2.3 Optimality criteria

Let C. denote completion time of the job J. in a given schedule, and we
~ ~

define two criteria for evaluating schedules as follows:

schedule-length C = max {C
1
••••• C };

max n

mean flow-time (1/n)Li~1 (ci-a i)

mean weighted flow-time (1/n)Li~1

or

w. (C .-a.)
~ ~ ~

where w. denotes weight of job J .•
~ ~

Minimization of mean weighted flow-time

corresponds to minimizing total weighted completion time Lw.c. because nand
~ ~

Lw.a. are invariant with respect to schedules. Therefore in this paper we
~ ~

will denote mean weighted flow-time by Lw.c ..
~ ~

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Deterministic Scheduling in Computer Systems 195

2.2.4 Three-field notation
When we need to distinguish scheduling problems in a short way, we will

use three-field notation defined as follJws [33]:

where

Cl =
s
y

(TP, m),

(RULE. <. a .• t.).
~ ~

C or LW'C" max ~ ~

3. Parallel Processor Problems With No Additional Resources

This section concerns parallel processor problems with no additional

resources. Both cases of ai=O and arbitrary a
i

are considered for each

criterion of C and LW'C" max ~ ~

3.1 Optimization algorithms
3.1.1 Minimizing schedule-length

Let us start from problems with a .=0 and t .=1. Table 1 sUllUIlarizes the
~ ~

results for complexity of C minimization problems with a.=O and t.=I.
max ~ ~

Some entries in the column < have not been explained yet. An interval order

~s a dag in which each job J
x

corresponds to an interval [a • b] on the real
x x

line. and J precedes J if and only if a > b. Also a dag is a level order
X y Y x

if each connected component is partitioned into some k levels L
1
•..•• L

k
such

that for every two jobs J
x

E Li and J
y

E L
j

where i > j, J x precedes J
y

'

An opposing forest is a disjoint union of intrees and outtrees. Moreover < in

problem 1-7 represents a dag whose heighc is smaller than or equal to a con­

SLant h. Figure 1 shows an interrelationship among partial orders <, where

"a + b" means that a is included in b.

prec

series-parallel

opposing forest

interval order intree out tree level order

chain

Figure 1. Interrelationship Among Partial Orders <.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

196 T. Kawaguchi, S. Kiyabu

Table 1. Complexity of C minimization problems with a.=O and t.=I. max ~ ~

Parameters: ai=O, t .=1 and
Problem ~ Complexity References

TP m RULE <

1-1 P prec strongly NP-hard [66]

* 1-2 P tree O(na(n» [37]

1-3 P interval order
2

O(n) [58]

1-4 P ~ 3 prec Open

1-5 P ~ 3 opposing forest o(n2m- 2 log n) [18]

1-6 P ~ 3 level order o(nm- 1) [18]

1-7 P ~ 3 the height :> h O(nh (m-1) +1) [17]

1-8 P 2 prec O(e+na(n)) * [23]

* a(n) is an inverse of Ackermann's function and is very slow-growing.
. 65536 For example, Lf n :> 2 then a(n) :> 5.

The problem for m, a free parameter, is NP-hard if < is an arbitrary dag

(problem 1-1). The problem remains NP-hard even if < is an opposing forest

[27]. Polynomial algorithms are developed only for < = tree and for < =
interval order (problems 1-2 and 1-3).

The problem for fixed m ~ 3 can be solved in polynomial time for partial

orders of special forms (problems 1-5, 1-6 and 1-7). But when < is an arbi­

trary dag (problem 1-4), complexity of the problem LS open. Problem 1-4 is

the major scheduling problem remaining open.

The m=2 case can be solved in polynomial time even if < is an arbitrary

dag (problem 1-8). An algorithm by Coffman and Graham [14] requires time

O(e+na(n» if a dag is transitive reduced or transitive closed, and otherwise

it requires more O(min(en, n
2

•
61 » time [23]. On the other hand, Gabow [23]

presents an O(e+na(n» algorithm which uses neither transitive reduction nor

transitive closure.

Next we will consider problems with ai=O and arbitrary t i . Table 2

indicates the results for complexity of Cmax minimization problems with ai=O

and arbitrary t
i

. The single processor problem with ai=O has at least one

optimal schedule without preemptions even if preemptions are allowed. Thus

an o(n
2

) algorithm for the nonpreemptive case of problem 2-1 can also solve

the preemptive case. A pseudopolynomial time algorithm by Sahni [63] solves

problem 2-2 in time O(n(Lt.)m-l). But problem 2-3 is strongly NP-hard and
~

has probably no pseudoplynomial time algorithm. Problem 2-5 which corresponds

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Deterministic Scheduling in Computer Systems 197

Table 2. Complexity of C minimization problems with a;=O and arbitrary t ..
max ~ ~

Problem

2-1

2-2

2-3

2-4

2-5

2-6

2-7

2-8

2-9

2-10

2-11

2-12

TP

P

P

P

Q

R

P

P

Q

P

P

rn

~ 2

~ 2

2

2

~ 3

RULE*

prntn,~

prntn

prntn

prntn

prntn

prntn

prntn

prntn

prntn

<

pree

interval. order

tree

pree

pree

pree

pree

Complexity

o(n2
)

NP-hard

strongly NP-hard

strongly NP-hard

O(n)

O(n+rn log rn)

** LP

O(n log rn)

o(n 2
)

o(n2
)

Open

strongly NP-hard

References

[49, 5]

[26]

[26]

[58]

[55]

[30]

[51]

[31]

[56, 12]

[36, 33]

[12]

* An entry in the column RULE given as "prntn,~" means that the associated

problem has at least one optimal schedule without preemptions even if

preemptions are allowed.

** We denote by "LP" that the associated aproblem can be formulated into a

linear programming, which is polynmnially solvable.

to the preemptive case of problem 2-3 can be solved in time o(n), and the more

general problems (2-6, 2-7 and 2-8) can also be solved in polynomial time.

The 0 (n) algori thm for problem 2-5 is used as a subroutine in many of pre­

emptive scheduling algorithms [39, 57]. The algorithm is as follows.

Algorithm McNaughton

Step 1. Set D = max (Li~1 ti/rn, max{ti }).

Step 2. When scheduling job J
i

, let j be the smallest index of a processor

with idle time and let (5, D) be the idle interval on P .. If s+t. ~
] ~

D, schedule job J
i

in the interval (5, s+t
i

). Otherwise, schedule

J. in the interval (5, D) on P. and (0, t.-(D-S» on P. 1.
~] ~ J+

Further let us give a concise description of the algorithm for problem

2-6. If X. = t~1 t. and Y. = t~1 s. where tl ~ ~ t and 51 ~ ... ?: 5 rn'] ~] ~ n
then the optimal value of C for the problem is given by D = max {X

l
/Y

l
,

max
X2 /Y2 ,·· • 'Xm- l /Yrn- l , X /Y }. In the algorithm, processors are viewed to

n m

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

198 T. Kawaguchi, S. Kiyabu

constitute a composite processo.r system. Each pracessor P. initially has a
J

speed function s .(t) given by s .(t) = s. for °
J J J

~ t ~ D. Depending on its

processing requirement, a job is scheduled in an interval (T,D) on a processor

P., or the
J

job is scheduled in an interval (T,D) an P. 1 and (O,T) on P ..
J- J

former case, the speed function of P. is newly given by s .(t) = s. for
J J J

In the

° ~ t ~ T, and s .(t) = ° far T < t ~ D; and specially if T=O, P. is deleted
J]

from the camposite processar system. In the latter case, two processars p. 1
r

and P. are replaced by a camposite pracessor P. 1 with speed s. l(t) = s. 1
J r r J-

for ° ~ t ~ T, and s. 1 (t) = s. for T < t ~ D. For convenience sake, let r J

S; (a.b) = fb s. (t)dt and S. = s. (O.D).
• a ~ ~ ~

Algorithm GS (Gonzalez and Sahni)

Step 1. Sort pracessors so that sI ~

Cmax ' and si(t) = si far ° ~
~ s . m

t :;; D.

Set D to the aptimal value of

Step 2. (We may schedule jobs in any order.) When scheduling jab J
a

• let k

be the least integer satisfying ta ~ Sk'

Case 1. ta = Sk' Schedule J a in the interval (O,D) an Pk ' and sub­

tract one from the index af P., k+l :;; j ~ m. //camment: We naw have
J

a campasite processar system with m-I pracessars and have n-l jabs to.

schedule. / /

Case 2. ta > Sk' Let T be the time satisfying Sk_l(T.D) + Sk(O,T)

= ta' Schedule J a in the interval (T,D) an Pk -
1

and (O,T) an Pk ; and

then replace Pk- l and Pk by a single processor (newly called Pk- l)

with speed sk_l(t) for ° ~ t ~ T, and sk(t) far T < t ~ D. Subtract

one from the index af P., k+l ~ j :;; m. //camment: Again, we are left
J

with a camposite processar system with m-I pracessars and n-l jobs to.

schedule./ /

Case 3. S > t Let T be the time satisfying S (T,D) = t . Sched-m a m a
ule J in the interval (T,D) an P and let s (t) '" ° far T :;; t

a m m
~ D.

An algarithm by Muntz and Caffman salves prablems 2-8 [57], 2-9 [56] and

2-10 [36] in o(n2
) time, and salves problem 2-6 [36] in o(mn2

) time. Hawever

as shawn in table 2, mare efficient algarithms are presented far problems 2-6

and 2-8. Far arbitrary <. no. palynomial time algorithm has been faund yet

even if m=3 and preemptians are allawed (see problem 2-11).

Table 3 gives the results far camplexity af C minimizatian prablems
max

with arbitrary arrival times. It should be nated that minimization of C
max

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Deterministic Scheduling in Computer Systems 199

for jobs {J 1' . .•• J n} with arrival times a
i

and a partial order < is equivalent

to minimizing maximum lateness L = max(C.-d.) for the jobs {J
1

' ••••• J
n

'}
max ~ ~

signified as follows: due dates. d .• of J.' are given by d. = -a;. respective-
~ ~ ~ ~

ly, and arrival times are equal for all ,li'; and moreover J
i

' precedes J
j

' in

the partial order on {J
1
', •••• J '} if and only if J. precedes J. in <. For

n] ~

example, problem 3-1 (p I outtree. a .• t .=1 I C) 1.S equivalent to P
~ 1 max

intree, t.=l I L •
~ max

Some of the results indicated in table 3 are presented.

in the original papers. as results for L minimization problems.
max

Table 3. Complexity of C minimization problems with arbitrary a .•
max ~

Problem Parameters other than a. "" Complexity References
~

3-1 problem 1-2 «=outtree) O(n) [9, 50]

3-2 problem 1-2 «=intree) strongly NP-hard [9]

3-3 problem 1-8 o(n3) [25]

3-4 problem 2-1 (RULE=CP)
2 O(n) [49. 5]

3-5 problem 2-1 (RULE=pmtn) o(n2) [5]

3-6 problem 2-5 O(mn) [31]

3-7 problem 2-6 O(n log n+mn) [64]

3-8 problem 2-7 LP [51]

3-9 problem 2-8 «=outtree)
2

O(n) [50]

3-10 problem 2-8 «=intree) strongly NP-hard [50]

3-11 problem 2-9 o(n
2

) [50]

3-12 problem 2-10 o(n2) [50]

* Each problem is the same as one entered in this column. except that

a. is arbitrary.
~

3.1.2 Minimizing mean weighted flow-time

Table 4 indicates the results for complexity of l.wiC
i

minimization prob­

lems with ai=O. All of these results are indicated in [33]. The LWiCi
minimization problem with <=CP and ai=O has at least one optimal schedule

without preemptions even if preemptions are allowed [55]. Thus an O(n log n)

algorithm for the nonpreemptive case of problem 4-1 is also an optimization

algorithm for the preemptive case. The same statement is true for problems

4-3 and 4-8. Moreover problems 4-10 and 4-11 are NP-hard and strongly NP-hard,

respectively, whether preemptions are allowed or not. Although problem 4-10

is NP-hard, a pseudopolynomial time algorithm by Sahni [63] solves the problem

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

200
T. Kawaguchi, S. Kiyabu

If < is an arbitrary dag, even the single processor

problem is strongly NP-hard (see problem 4-2). Moreover the two-processor

problem is NP-hard even for the Lc. criterion and <=tree (problem 4-7), and
~

even for the LW'C' criterion and <=~ (problem 4-10). It is an interesting
~ ~

open question whether the two-processor problem with the LC' criterion remains
~3

to be polynomial for <=ehain (compare 4-3 with 4-7). An D(n) algorithm by

Adolphson [3] solves the single processor Lw.c. minimization problem for a
~ ~

slightly more general < than "series-parallel". Whether the problem is poly-

nomial for a more general < is a subject for a future study (compare 4-2 with

4-9) .

Results for arbitrary a. are given in table 5. All of these results are
~

indicated in [33].

Table 4. Complexity of Lw,c. minimization problems with a.=O.
~ ~ ~

Problem

4-1

4-2

4-3

4-4

4-5

4-6

4-7

4-8

4-9

4-10

4-11

Parmneters: ai=O, ti=~ and
Complexity

w. TP m RULE <
~

pmtn,~ D(n log n)

pree strongly NP-hard

P pmtn,~ D(n log n)

Q D(n log n)

Q pmtn D(n log n+mn)

R D(n
3)

P ,,; 2 tree strongly NP-hard

pmtn,~ D(n log n)

series-parallel D(n log n) ..

P ;;; ')
pmtn,~ NP-hard '"

P pmtn,~ strongly NP-hard

Table 5. Complexity of LW'C' minimization problems
~ ~

with arbitrary a
i

.

Problem Parameters other than a. Complexity
~

5-1 problem 4-1 (RULE=~) strongly NP-hard

5-2 problem 4-1 (RULE=pmtn) D(n log n)

5-3 problem 4-8 (RULE=~) strongly NP-hard

5-4 problem 4-8 (RULE-pmtn) strongly NP-hard

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Deterministic Scheduling in Computer Systems

3.2 Approximation algorithms

3.2.1 Minimizing schedule-length

201

Table 6 summarizies the results of performance and complexity of approxi­

mation algorithms for C minimization problems. First we give the following max
remarks to help interpret the table.

Table 6. Performance and complexity of approximation algorithms for

C minimization problems. max

Problem RA Complexity Algorithm References

p
1 prec 1 C max 2-1/m O(n log m+e) LIST [32,

p
1 prec, t ,=1 1 C 2-1/(m-1) O(e+na(n)) HLF [47, 23)

~ max

(problem 1-1) 2-2/m o (e+na(n» CG [48, 23)

4/3-1/3m O(n log n) HLF [32, 38)

p 11 Cmax
(1.182. O(n log n

MF [20, 19] -k 1.2+2) -,kn log m)
(problem 2-3)

;;; 7/6+Z-k O(n log n
DUAL [34, 34) 4 +km n)

(1.512, O(n log n modified

1.583) log m) HLF
[16, 19]

+n
Q 11 C

max (1.341, O(n log n modified
-k log m)

[19, 19]
1.4+2) +kn MF

;;; 2.51iil O(mn log n) [15, 15)
R 11 C

Ll'+O(mm-l) max
2 [60, 60]

p intree 1 C 2-2/(m+1) O(n log n) HLF [47, max

p
1 chain 1 C max 5/3 Ol:n log n) HLF [47,

p
1 pmtn, prec 1 C , 2) max 2-2/m Ol,n MC [48, 12]

(problem 2-12)

Q 1 pmtn, prec 1 Cmax
(0. 351iil,

1.231iil)
o(mn2) MC [36, 33)

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

202 T. Kawaguchi, S. Kiyabu

(1) Each row in the table is associated with an algorithm.

(2) For an algorithm whose performance ratio is not exactly known, we give

upper and lower bounds of the ratio in the column RA' These bounds are best

bounds currently known.

(3) Each complexity indicated ~n the table ~s the minimal one that the authors

know.

(4) Each entry ~n the column on algorithm denotes the name by which the

associated algorithm is called in this paper.

(5) The first entry in references gives the source for the performance of the

associated algorithm, and the second entry indicates the source for complexity

of the algorithm. If the second entry is missing, complexity of the associated

algorithm is obtained by the authors.

Algorithms LIST and HLF can be used for the most general case, that is,

for RULE=~, <=prec and ti=~'

Algorithm LIST (List Scheduling)

Step 1. An ordered list of jobs is constructed.

Step 2. Whenever a processor becomes available, the list is scanned from left

to right; and the first unexecuted job that is ready for execution is

assigned to the processor.

Before describing algorithm HLF, the level of a job on a partial order <

is defined as follows: (i) the level of a job with no successor is equal to

the processing time of the job; and (ii) the level of a job with one or more

successors is equal to the processing time of the job plus the maximal value

of the levels of the successors of the job.

Algorithm HLF (Highest Level First)

Step 1. A priority list is constructed, where jobs are arranged in nonin­

creasing order of their levels.

Step 2. Do step 2 in algorithm LIST.

Specially, algorithm HLF for <=~ case ~s sometimes called LPT (Largest

Processing Time First) strategy. The performance ratio of algorithm LIST is

given by 2-1/m for P I pree le, and the performance ratio is the minimal max
one currently known for this problem. However, if t.=1 (problem P I prec,

1.

t.=1 le) or if < has a special form (problems P I le, P I intree I c
1. max max max

and P I chain le), then algorithm HLF gives a smaller ratio than 2-1/m. max
Further, another algorithm which is abbreviated "CG" in the table gives a

smaller ratio than HLF for P I prec, t.=1
1.

C max
The algorithm has been

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Deterministic Scheduling in Computer Systems 203

previously described as an optimization algorithm for problem 1-8, and requires

O(min(en, n
2

.
61 » time if < is neither transitive reduced nor transitive

closed. For P 11 C
max

' a number of approximation algorithms are presented in

addition to HLF. Algorithms MF and DUAL shown in the table use approximation

algorithms for the bin-packing problem. The problem can be viewed as one of

packing n pieces with sizes t, into a minimum number of bins of capacity C.
~

Algorithm FFD (First-Fit Decreasing), whi.ch is used in MF, generates a bin-

packing by placing successively a piece .rith the largest size into the lowest

indexed bin in which it fits. Let FFD(C) be the function which returns 1 if

algorithm FFD can pack all ti into m bins of capacity C, and otherwise returns

o.

Algorithm MF (Multi-Fit)

Step 1. Initially set L = Li~1 ti/m and U=2L.

Step 2. Repeat the following operation k times: after substituting (L+U) /2

for C, set L to cif FFD (C) =0, and otherwise set U to C.

On the other hand, an s-dual approximation algorithm for the bin-packing

problem is defined as a polynomial time algorithm that can pack all pieces

into OPT(C) bins of capacity (1 +e:)C, where OPT(C) denotes the number of bins

used by an optimal packing. Let DUAL(S,C) be the function which returns 1 if

an s-dual approximation algorithm can paek all ti into m bins of capacity

(1 +s)C, and otherwise returns O. Algorithm DUAL consists of the same steps as

MF, except that the function DUAL(S,C) is used instead of FFD(C). For the

bin-packing problem, an 1/5-dual approximation algorithm and an 1/6-dual

approximation algorithm are presented ~n [34]. Using these algorithms, algo­

rithm DUAL guarantees RDUAL ~ 6/5+2-
K

in O(kn+n log n) time, and guarantees
-k 4

R
DUAL

~ 7/6+2 in O(knm +n log n) time [34].

Besides the three algorithms indicated in table 6, Sahni [63] presents an

1 'hm h' h ' , ((2/)m--1, d 1 f a gor~t w ~c requ~res t~me 0 n n s ~n or er to guarantee RA ~ +s or

any s > O. Moreover an algorithm by Friesen and Langston [21] has R
A

=1.180

and can be executed in the same time-complexity as algorithm MF. However, the

algori thm contains the process of scheduling 32 jobs optimally on 5 processors.

(Note that this process can be executed in 0(1).) Algorithm LIST has an ad­

vantage that it is available even though processing times of jobs are unknown.

However, it is considerably inferior to algorithms HLF and MF in regard to the

performance. R for P 11 C is given by 2-1/m [32], and this value is
LIST max

little improved even for jobs with similar processing times. It is shown in

[1] that if max{t)/min{tj} ~ 3 then R
LI8T

is given by 17/10 for m=5, and is

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

204 T. Kawaguchi, S. Kiyabu

given by 2-1/{3lm/3J} for other ID ~ 3.

Algorithms HLF and MF are modified for Q I I c . The modified HLF max
generates a schedule by successively placing a job with the largest processing

time on the processor which would complete the job first. For the modified

MF, the reader is refered to [19]. Problem R I I c has an O(mm + mn log n) max
algorithm with RA ~ 1.51m in addition to the algorithms indicated in the table

(15] •

An algorithm by Muntz and Coffman, abbreviated "MC" l.n the table, can be

used for pi pmtn, prec I C and Q I pmtn, prec I C . The algorithm can be max max
viewed as a highest-level-first strategy for the preemptive case. As stated

in 3.1.1, the algorithm generates an optimal schedule for each of problems

2-6, 2-8, 2-9 and 2-10.

3.2.2 Minimizing mean weighted flow-time
Few results are known on the performance of approximation algorithms for

Lw.c. minimization problems. For problem 4-10, Sahni [63] presents an approxi-
~. ~ . . . 2 m-l . .

matl.on algorl.thm whl.ch reqUl.res O(n(n /E)) tl.me l.n order to guarantee RA ~

l+E for any E > O. This algorithm is efficient only for small m. Kawaguchi

and Kyan [42] investigate the performance of the following algorithm for prob­

lems 4-10 and 4-11.

Algorithm LRF (Largest Ratio First)

Step 1. A priority list is constructed, where job J. precedes job J. if w./t.
~] ~ ~

> wjltj' and precedence relations among jobs with the same wilti are

arbitrary.

Step 2. Do step 2 l.n algorithm LIST.

Algorithm LRF can be executed in O(n log n) time. It is shown in [42]

that RLRF is given by (12+1)/2 and RLRF never takes a smaller value than

(12+1)/2 even if any priority rule is imposed among jobs with the same wi/t
i

.

Moreover the problem of minimizing Lf.2 is studied in (10] and (41], where f.,
]]

1 ~ j ~ m, denote finishing times of processors P .. For this problem, Chandra
]

and Wong [10] present an O(n log n) algorithm with RA ~ 25/24, and Kawaguchi

[41] gives an O(n log m + m log n) algorithm with R
A

=9/8. These results are

applicable to a special case of problem 4-11 where jobs have the

AnalgorithmforQ211 Lw,C. [35] requiresO(n
2

/E) time in
~ ~

same W ./t ..
~ ~

order to

O. guarantee RA ~ l+E for any E > A modified LRF algorithm for Q I I LW'C'
~ ~

(43] < . {" m guarantees RA = ml.n Lj=l 5/5 1, (12+1)5 1/25 m} where 51 ~ '" ~ Sm'

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Deterministic Scheduling in Computer Systems 205

4. Parallel Processor Problems with Additional Resources

In this section we will deal with parallel processor problems in which

each job requires the use of a resource in addition to a processor during

their execution. This additional resouree is called "memory" in this section.

Let r
i

be a fixed memory requirement of job J
i

. Two types of memories are

considered.

MEM=loc (local memories): each processor P. has a private memory of
]

capacity M., and job J; can be processed on P. if and only if M. ;;:; L· ••
] ~]] ~

MEM=com (common memory): a single memory of capacity M is shared among

all processors, and we require that the total usage of the memory never

exceeds the memory capacity M at a time.

4.1 Optimization algorithms
Table 7 summarizies the results for complexity of C minimization prob-

max
lems with memory constraints. The problem with local memories can be solved

polynomially for preemptive cases (problems 7-1 and 7-3). Problem 7-1 has the

same parameters as problem 2-5, except for the existence of memory constraints.

The algorithm for problem 7-1 is as follows.

Algorithm KS (Kafura and Shen)

Step 1. Sort processors so that Ml ;;:; M2 ;;:; ... ;;:; Mm' and arrange jobs in non­

increasing order of their memory requirements. We define the sets

~ i < m, and G =
.m
~

Moreover for each i, 1 ~ i ~ m, let Fi Uk=l G
k

and

let Xi be the sum of processing times of jobs ~n F
i

.

Step 2. Set D = max (Xl' X2 /2, ... , xm/m, max{t
i

}) and apply step 2 in algo-·

rithm McNaughton.

The algorithm for problem 7-3 uses algorithm GS for problem 2-6 as a

subroutine. Further problem 7-2 is strongly NP-hard because problem 2-3 is so.

The most of problems with MEM=com are NP-hard even if ti=l. Problem

7-7 remains to be strongly NP-hard even if the memory capacity is 1 and

memory requirements are 0 or 1 for all jobs [8]. On the other hand, problem

7-5 remains to have a polynomial time algorithm even if each job requires

s <: 1 memories during their execution. This algorithm uses the maximum

cardinality matching, and requires time O(sn 2+n S /2) [8].

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

206 T. Kawaguchi, S. Kiyabu

If the Cmax criterion is replaced by the mean flow-time tc
l , the problem

corresponding to 7-4 is also strongly NP-hard and the problem corresponding to

7-5 can be solved in O(n log n) time using the algorithm for problem 7-5 [7].

corresponding to 7-4 is also strongly NP-hard and the problem corresponding

to 7-5 can be solved in O(n log n) time using the algorithm for problem 7-5 [7].

Table 7. Complexity of C minimization problems with memory constraints. max

Parameters: ai=O and
Problem Complexity References

MEM TP m RULE < ti

7-1 lac P pmtn o (n log m) [39, 54]

7-2 lac P strongly NP-hard

7-3 lac Q pmtn 2 O(nm(log m)) [54]

7-4 corn P 3 strongly NP-hard [26]

7-5 corn P 2 O(n log n) [8]

7-6 corn Q 2 O(n log n) [8]

7-7 corn P 2 chain strongly NP-hard [8]

7-8 corn P m ~ n strongly NP-hard [26] .
Table 8. Absolute and asymptotic performance of approximation algorithms

for C minimization problems with memory constraints.
max

Parameters: ai=O and
Problem RA RA References

*

MEM TP m RULE < ti

7-2 lac P 2-2/m [39,

8-1 corn P 2-2/m [, 46]

8-2 corn P pmtn 3-3/m [46,]

7-8 corn P m ~ n ;;; 2 1 [13, 13]

8-3 corn P m f~ n 2.5 5/4 [65, 4]

8-4 cam P m ~ n prec ;;; 2.7 [24,]

The first entry gives the source for RA and the second entry indicates

the source for R
A

oo
•

4.2 Approximation algorithms

*

Besides the absolute performance ratio RA' the asymptotic performance

ratio R
A

oo
is often used for evaluating approximation algorithms for problems

with memory constraints. Table 8 summarizies the results of the absolute and

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Detenninistic Scheduling in Computer Systems 207

the asymptotic performances of approximation algorithms for C
max

minimization

problems with memory constraints. Each entry in the columns RA and R
A

oo
is the

minimum one currently known. The reader should notice that even if a problem

has no entry in the column RA ' an algorithm with the absolute performance
00

ratio RA guarantees RA :;; RA for the problem. The algorithm for problem 8-1

is as follows.

A 1 gorittrn LMF (Larges t Memory Fi rs t)

Step 1. Sort jobs so that r
1

;;; ••. ;;; rn" and set t=O.

Step 2. If no processor is idle at time t, set t=t+1 and go to step 3.

Otherwise, scan for the first unexecuted job for which sufficient

units of memory are available at time t. If such job exists, the job

is assigned to an idle processor in the interval (t. t+1); and other­

wise set t=t+1.

Step 3. If there are uncompleted jobs, repeat step 2.

The algorithm for problem 8-2 is also the above one. Moreover the ratio

3-3/m is guaranteed for problem 8-2 even if the ordering of jobs is arbitrary

in step 1 of LMF. The algorithm for problem 7-2 is similar to LMF. In this

algorithm, whenever a processor P. becomes available, a job with the largest
]

r. satisfying M. ~ r.
~] ~

is assigned to the processor. Fuchs and Kafura [22]

study the C minimization problem in a
max

computer consists of dual processors and

parallel computer system where each

a single memory is shared between

these processors. This model can be vie\~ed as a bridge between the extreme

models (problems 7-2 and 8-2) and the more general model where r ;;; 1 processors

share a single memory. A largest-memory·-first strategy for this model guaran­

tees the absolute performance ratio (3p-2)/p where p denotes the number of

computers and is equal to half the number of processors. Comparing the results

for 7-2, 8-2 and their model, they conclude that the memory should be shared

among a small number of processors. This is an important suggestion about the

topology of computer system.

Problem 7-8 is known as the bin-packing problem, and an approximation

algorithm for this problem has been described in 3.2.1. This algorithm,

called FFD, gives R
FFD

oo
=11/9. Note that a bin Bt' t ;;; 1, corresponds to a

time interval (t-1, t). Moreover the following results are known for the

problem [13]:

00

RFF = 17/10 and RMFFLoo = 71/60

where MFFD is a modified FFD algorithm, and FF ~s the same as FFD except that

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

208 T. Kawaguchi, S. Kiyabu

jobs are scheduled in an arbitrary order. Further as shown in the table, the

problem has a polynomial time algorithm with R
A

oo
=1. However no polynomial

time algorithm that guarantees the absolute performance ratio smaller than 2

is found yet for the problem. On the other hand, even a more primitive algo­

rithm than FF guarantees RA ~ 2. In this algorithm, called Next-Fit, a job is

placed in the current bin B
t

if it fits there, and otherwise the job is placed

in the next bin B 1 and t is increased by one. (Remember that FFD (or FF) t+
places a job ~n the lowest indexed bin in which it fits.)

Problem 8-3 is known as the two-dimensional bin-packing problem. A number

of results are reported on the asymptotic performance of algorithms for this

problem, but few results are known on the absolute one. Moreover Garey et al.

[24] presents an algorithm for the problem in which the number of memory is an

arbitrary s ~ 1 and the other parameters are the same as problem 8-4. The

algorithm uses a highest-level-first strategy and guarantees RA ~ 17s/10+1.

The bound for problem 8-4 is obtained by substituting s=l in the above bound.

Very little is known about the performance of approximation algorithms

for Iw.c. minimization problems with memory constraints.
~ ~

5. Flowshop Scheduling

A flowshop consists of m ~ 2 processors {P1, ••• ,Pm} and n ~ 1 jobs {J
1

,

••• ,J}. Each job J. has a chain of m tasks T .. , 1 ~ j ~ m. Let t. denote
n ~ ~J ~

the processing time of job J; and let t .. be the processing time of task T . .•
~ ~J ~]

Each task T .. requires execution on processor P., and T .. can only be executed
~J] ~J

after T . . 1 ~s finished. Specially, if T .. has to start at the completion
~,]- ~]

time of T . . l' the resulting flowshop is said to be a no-wait flowshop.
~,J-

Before describing results of flows hop problems, we give the following notes

about the notation used in this section.

(1) Whenever a three field notation alSly ~s used, an information about no­

wait constraints is put in the first position of S.

(2) We denote by "ti1=1 (or t i2 =1) " when t11=t21=.·.=tn1 (or t12=t22= ••• =tn2)'

Moreover, the notation "t . . =1" represents that all t .. , 1 ~ i ~ nand 1 ~ j
~] ~J

~ m, are the same.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

5.1

Deterministic Scheduling in Computer Systems

Table 9. Complexity of flowshop problems and no-wait

flowshop problems.

Problem Parameters Complexity

9-1 F2 11 C
max o(n log n)

9-2 F2 I pmtn I C
max

9-3 F2 I a. I C
~ max strongly NP-hard

9-4 F2 I pmtn, ai I C
max

9-5 F2 I tree I C
max strongly NP-hard

9-6 F2 I pmtn, tree I C
max

9-7 F2 no-wait C O(n log n)
max

9-8 F3 11 C
max strongly NP-hard

9-9 F3 I pmtn I C
max

9-10 F3 I no-wait I C strongly NP-hard
max

9-11 F2 11 Ic. strongly NP-hard
~

9-12 F2 I pmtn I ICi
Open

9-13 F2 I no-wait I Ic. strongly NP-hard
~

Optimization algorithms

209

Table 9 gives the results for comp 1 '~xi t y 0 f f lows hop pro b lems and no-wait

flowshop problems. The results for problems 9-10 and 9-13 were recently ob­

tained by Rock [61, 62]. For the sources of the other results, the reader is

refered to [52]. Gonzalez and Sahni [29J show that preemptions on PI and Pm

can be removed without increasing C
max

in any preemptive schedule for a flow­

shop with m processors. Hence, the result for each of problems 9-2, 9-4, 9-6

and 9-9 is obtained from the result for che nonpreemptive case of the problem.

Achugbue and Chin [2] study j-maximal and j;ninimal flowshops. A flow­

shop is said to be j-maximal (j-minimal) if the j-th task of each job is not

smaller than (not greater than) any other task of the same job. Problem F I
3 I c remains to be strongly NP-hard even if the flowshop is 1 or 3-minimal,

max
and even if the flowshop is 1 or 3-maximal. Although problems 9-5 and 9-11

are strongly NP-hard, F2 tree, t .. =1 I C and F2 I tree, t .. =1 I Ic. can
~J max ~J 3 ~

be solved in O(n) time and F I ai' tij=1 I LC
i

can be solved in O(n) time

[7]. Further F2 I t·
2

=1 I LC. and the 1·-maximal case of F2 I1 LC. can be
~ ~ ~

solved in O(n log n) time [40].

Papadimitriou and Kanellakis [59] study an extension model of F2 I1 C max
where the flowshop has b ;;; 0 buffers bet~veen PI and P

Z
. Each buffer is used

for storing a job whose first task has been completed on PI' and whose second

task has not been started on P
2

. They show that the problem is strongly NP-

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

21 0 T. Kawaguchi, S. Kiyabu

hard if 1 ~ b < n.

5.2 Approximation algorithms

Problem F 1 no-wait 1 C can be formulated as a traveling salesman
max

problem [33]. A number of approximation algorithms are presented for this

problem, and so these algorithms can be applied to F 1 no-wait 1 C
max

Further,

approximation algorithms which can be viewed as list scheduling for flowshop

problems are presented for F 11 C and F 11 Lc .. max ~

Algorithm LISTF (List Scheduling for Flowshops)

Step 1. Construct a list in which jobs are arranged in an arbitrary order.

Step 2. Let L., 1 ~ j ~ m, denote m copies of the list obtained in step 1.
]

Whenever a processor P. becomes available, the first job is removed
]

from L. and the j-th task of the job is assigned to the processor.
]

Algorithm SPT (Shortest Processing time First) applies step 2 of the

above algorithm to a list where jobs are arranged in nondecreasing order of

their processing times. The following results are known about the performance

of these algorithms [29]:

RLISTF

R
LISTF

m

= n and R
SPT

= m

for F 11 Cmax '

for F 11 LC"
~

The performance of algorithm LISTF is not improved for F 11 C even if jobs
max

are processed in nonincreasing order of their processing times. Specially for

F2 11 LC
i

, the performance of SPT is given by R
SPT

= 2S/(S+a) where a denotes

the smallest processing time of tasks and S is the largest one [40]. Chin and

Tsai [11] investigate the performance of algorithm LlSTF for j-maximal and

j-minimal flowshop problems, and give the following results:

R
LISTF

m-l for the l-minimal case of F 11 C
max

(m ;;; 3) ,

R
LISTF

~ 1/2+1m for the l-maximal case of F 11 Cmax '

RLISTF 5/3 for the or 3-maximal case of F3 11 C
max

Further Kawaguchi and Kyan [44] investigate the performance of an algorithm

for F2 1 t. 1=1 1 LC' and the l-minimal case of F2 11 Lc .. This algorithm is
~ ~ ~

also a list scheduling algorithm and schedules jobs according to nondecreasing

order of t i2 . The perfonnance ratio of this algorithm is given by 5/3 for the

l-minimal case of F2 11 Ic
i

, and is given by 4/3 for F2 1 til=l 1 LC
i

, (As

shown in 5.1, F2 1 t. 2=1 1 LC. and the l-maximal case of F2 11 Lc. can be
~ ~ ~

solved optimally in time O(n log n).)

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Deterministic Scheduling in Computer Systems 211

Problem F I I C has a polynomial time algorithm which is superior to max
LISTF in regard to the performance. This algorithm guarantees RA ::; fm/21 in

O(mn log n) time [29]. However. no polynomial time algorithm with the smaller

performance than R is found yet for the 'C. minimization flowshop problem,
SPT /... ~

except for the special cases described above.

An optimization algorithm for F2 I no-wait C
max

[28] generates a feasi­

C
max

where the flowshop has 1:> ~ 0

This algorithm guarantees RA ::;

ble schedule for an extension model of 1:'2 I I
buffers between PI and P 2 (see section 5.1).

(2b+l)/(b+l) in O(n log n) time [59].

6. Conclusion

We have briefly surveyed the recent results of optimization and approxima­

tion algorithms for deterministic models of computer scheduling. Many inter­

esting models have efficient optimization algorithms, whereas others are

NP-hard. A number of approximation algorithms have been presented for the

latter problems, and analytical results for the performance of approximation

algorithms are obtained mainly for schedule-length minimization problems with

equal arrival times. However at present, many models of computer scheduling

have neither polynomial time optimization algorithms nor approximation algo­

rithms with guaranteed performance. Thus it is still important to evaluate

goodness of an approximation algorithm by means of computational experiments,

and such evaluation requires us to find a lower bound on the cost of an optimal

schedule for a given problem instance. (Lower bounds are also used in enumer­

ative optimization algorithms such as branch-bound-bound method.) Various

bounding schemes have been reported in recent years although we have not

described these schemes in this survey on account of limited space. These

schemes can be further improved in the future.

Acknowledgement

The authors would like to thank Pr. Y. Nakanishi, Dr. H. Nakano and

Dr. H. Ishii of Osaka university for their valuable suggestions. The first

author was supported by the Grant-in-Aid for Encouragement of Young Scientists

of the Ministry of Education, Science and Culture of Japan under Grant: (A)

61750343 (1986). The second author was also supported by the Grant-in-Aid for

Co-operative Research of the Ministry of Education, Science and Culture of

Japan under Grant: (A) 61302080 (1986).

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

212 T. Kawaguchi, S. K(vabu

References

[1] Achugbue, J. O. and F. Y. Chin: Bounds on Schedules for Independent

Tasks with Similar Execution Times. J. Assoc. Comput. Mach., Vol.28

(1981).81-99.

[2] Achugbue. J. O. and F. Y. Chin: Complexity and Solutions of Some Three

Stage Flow-Shop Scheduling Problems. Math. Oper. Res., Vol.7 (1982),

532-544.

[3] Adolphson. D. L.: Single Machine Job Sequencing with Precedence Con­

straints. SIAM J. Comput., Vol.6 (1977), 40-54.

[4] Baker, B. S., D. J. Brown and H. P. Katseff: A 5/4 Algorithm for Two

Dimensional Packing. J. Algorithms, Vol.2 (1981), 348-368.

[5] Baker, K. R., E. L. Lawler, J. K. Lenstra and A. H. G. Rinnooy Kan:

Preemptive Scheduling of a Single Machine to Minimize Maximum Cost Sub­

ject to Release Dates and Precedence Constraints. oper. Res., Vol.31

(1983), 381-386.

[6] Blazewicz, J.: Selected Topics in Scheduling Theory. Ann. Discrete.

Math., Vol.31 (1987), 1-59.

[7] Blazewicz, J., W. Cellary, R. Slowinski and J. Weglarz: Scheduling Under

Resource Constraints - Deterministic Model (Ann. Oper. Res.,Vol.7), J. C.

Baltzer AG, 1986.

[8] Blazewicz, J., J. K. Lenstra and A. H. G. Rinnooy Kan: Scheduling Sub­

ject to Resource Constraints - Classification and Complexity. Discrete

Appl. Math., vol.5 (1983), 11-24.

[9] Brucker, P., M. R. Garey and D. S. Johnson: Scheduling Equal-Length

Tasks Under Tree-Like Precedence Constraints to Minimize Maximum Late-

ness. Math. Oper. Res., Vo1.2 (1977), 275-284.

[10] Chandra. A. K. and C. K. Wong: Worst-Case Analysis of a Placement Algo­

rithmRelated to Storage Allocation. SIAMJ. Comput., Vo1.4 (1975),

249-263.

[11] Chin, F. Y. and L. L. Tsai: OnJ-maximal and J-minimal Flow-Shop Sched­

ules. J. Assoc. Comput. Mach., Vol.28 (1981), 462-476.

[12] Coffman, E. G. Jr (cd.): Computer and Job-Shop Scheduling Theory. John­

Wiley, 1976.

[13] Coffman, E. G. Jr, M. R. Garey and D. S. Johnson: Approximation Algo­

rithms for Bin-Packing - an Updated Survey. In Algorithm Design for

Computer System Design (CISM Courses and Lectures, No.284), Springer­

Verlag, 1984, 49-106.

[14] Coffman, E. G. Jr and R. L. Graharn: Optimal Scheduling for Two Processo

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Deterministic Scheduling in Computer Systems 213

Systems. Acta Informatica, Vol.l (1972), 200-213.

[15] Davis, E. and J. M. Jaffe: Algorithms for Scheduling Tasks on Unrelated

Processors. J. Assoc. Comput. Mach., Vol.28 (1981), 721-736.

[16] Dobson, G.: Scheduling Independent Tasks on Uniform Processors. SIAM J.

Comput., Vol.13 (1984), 705-716.

[17) Dolev, D. and M. K. Warmuth: Scheduling Precedence Graphs of Bounded

Height. J. Algorithms, Vol.5 (1984), 48-59.

[18] Dolev, D. and M. K. Warmuth: Profile Scheduling of Opposing Forests and

Level Orders. SIAMJ. Alg. Disc. Meth., Vo1.6 (1985), 665-687.

[19] Friesen, D. K. and M. A. Langston: Bounds for MULTIFIT Scheduling on

Uniform Processors. SIAM J. Comput., Vol.12 (1983), 60-70.

[20] Friesen, D. K.: Tighter Bounds for the MULTIFIT Processor Scheduling

Algorithm. SIAM J. Comput., Vol.13 (1984), 170-181.

[21] Friesen, D. K. and M. A. Langston: Evaluation of a MULTIFIT-Based Sched­

uling Algorithm. J. Algorithms, Vol.7 (1986), 35-59.

[22] Fuchs, K. and D. Kafura: Memory-Constrained Task Scheduling on a Netw'ork

of Dual Processors. J. Assoc. Comput. Mach., Vo1.32 (1985), 102-129.

[23] Gabow, H. N.: An Almost Linear-Algorithm for Two-Processor Scheduling.

J. Assoc. Comput. Mach., Vo1.29 (1982),766-780.

[24] Garey, M. R., R. L. Graham, D. S. Johnson and A. C. C. Yao: Resource

Constrained Scheduling as Generalized Bin Packing. J. Combinatorial

Theory Ser A, Vol. 21 (1976), 257-298.

[25] Garey, M. R. and D. S. Johnson: Two-Processor Scheduling with Start­

Times and Deadlines. SIAM J. Comput., Vo1.6 (1977), 416-426.

[26] Garey, M. R. and D. S. Johnson: Computers and Intractability - A Guide

to the Theory of NP-completeness. Freeman, 1979.

[27] Garey, M. R., D. S. Johnson, R. E. Tarjan and M. Yannakakis: Scheduling

Opposing Forests. SIAM J. Alg. Disc. Meth., Vol.4 (1983), 72-93.

[28] Gi lmore , P. C. and R. E. Gomory: Sequencing a One-State Variable Machine

- a Solvable Case of the Traveling Salesman Problem. Oper. Res., Vol.12

(1964) 655-679.

[29] Gonzalez, T. and S. Sahni: Flowshop and Jobshop Schedules - Complexity

and Approximation. Oper. Res., Vo1..26 (1978), 36-52.

[30] Gonzalez, T. and S. Sahni: Preemptive Scheduling of Uniform Processor

Systems. J. Assoc. Comput. Mach., Vo1.25 (1978), 92-101.

[31] Gonzalez, T. and D. B. Johnson: A New Algorithm for Preemptive Schedul­

ing of Trees. J. Assoc. Comput. Mach., Vo1.27 (1980), 287-312.

[32] Graham, R. L.: Bounds on Multiprocessing Timing Anomalies. SIAM J. Appl.

Math., vol.17 (1969), 416-429.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

214 T. Kawaguchi. S. Kiyabu

[33] Graham, R. L., E. L. Lawler, J .. K. Lenstra and A. H. G. Rinnooy Kan:

Optimization and Approximation in Deterministic Sequencing and Schedul­

ing - a Survey. Ann. Discrete Math., Vol.5 (1979), 287-326.

[34] Hochbaum, D. S. and D. B. Shmoys: Using Dual Approximation Algorithms

for Scheduling Probelms - Theoretical and Practical Results. Proc. 26th

IEEE Symp. on Foundatoins of Computer Science, 1985, 78-89.

[35] Horowitz, E. and S. Sahni: Exact and Approximate Algorithms for Schedul­

ing Nonidentical Processors. J. Assoc. Comput. Mach., Vo1.23 (1976),

317-327.

[36] Horvath. E. C., S. Lam and R. Sethi: A Level Algorithm for Preemptive

Scheduling. J. Assoc. Comput. Mach., Vol.24 (1977), 32-43.

[37] Hu, T. C.: Parallel Sequencing and Assembly Line Problems. Oper. Res.,

Vo1.9 (1961), 841-848.

[38] Ishii, H.: Approximation Algorithms for Scheduling Problems. Comm. Oper.

Res. Soc. Japan, Vol.31 (1986),26-35 (in Japanese).

[39] Kafura, D. G. and V. Y. Shen: Task Scheduling on a Multiprocessor System

with Independent Memories. SIAM J. Comput., Vol.6 (1977), 167-187.

[40] Kawaguchi, T.: On List Scheduling for the Mean Flow-Time Flowshop Prob­

lem. Trans. IECE Japan, Vol. J 66-A (1983), 516-523 (in Japanese).

[41] Kawaguchi, T.: A Linear Time Placement Algorithm Related to Storage

Allocation. Trans. lECE Japan, Vol. J 66-A (1983), 1023-1024 (in Japa­

nese) .

[42] Kawaguchi, T. and S. Kyan: Worst Case Bound of an LRF Schedule for the

Mean Weighted Flow-Time Problem. SIAM J. Comput., Vol.15 (1986), 1119-

1129.

[43] Kawaguchi, T. and S. Kyan: Recent Topics on Scheduling Algorithms. Proc.

7th Mathematical programming Symposium Japan, 1986, 143-157 (in Japa­

nese).

[44] Kawaguchi, T. and S. Kyan: Bounds on Permutation Schedules for the Mean

Finishing Time Flowshop Problem. Paper of Technical Group on Circuit and

System, CAS 86-174, IECE Japan, 1987, 1-8.

[45] Kise, H.: On Recent Topics of the Machine Scheduling Theory. Proc. 2nd

Mathematical Prograrrming Symposium Japan, 1981, 81-92 (in Japanese).

[46] Krause, K. L., V. Y. Shen and H. D. Schwetman: Analysis of Several Task

Scheduling Algorithms for a model of MUltiprogramming Computer Systems.

J. Assoc. Comput. Mach., Vol.22 (1975), 522-550.

[47] Kunde, M.: Nonpreemptive LP-Scheduling on Homogeneous Multiprocessor

Systems. SIAM J. Comput., Vol.l0 (1981), 151-173.

[48] Lam, S. and R. Sethi: Worst Case Analysis of Two Scheduling Algorithms.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Deterministic Scheduling in Computer Systems 215

SIAM J. Comput., Vol.6 (1977), 518-536.

[49] Lawler, E. L.: Optimal Sequencing of a Single Machine Subject to Prece­

dence Constraints. Management Sci., Vol.19 (1973), 544-546.

[50] Lawler, E. L.: Preemptive Scheduling of Precedence-Constrained Jobs on

Parallel Machines. In Deterministic and Stochastic Scheduling (ed.

M. A. H. Dempster et al.), Reidel, 1982, 101-123.

[51] Lawler, E. L. and J. Labetoulle: On Preemptive Scheduling of Unrelated

Parallel Processors by Linear Programming. J. Assoc. Comput. Mach., Vol.

25 (1978) 612-619.

[52] Lawler, E.L., J. K. Lenstra and A. H. G. Rinnooy Kan: Recent Develop­

ments in Deterministic Sequencing and Scheduling - a Survey. In Deter-'

ministic and Stochastic Scheduling (ed. M. A. H. Demps ter et al.),

Reidel, 1982, 35-73.

[53] Lenstra, J. K., A. H. G. Rinnooy Kan and P. Brucker: Complexity of

Machine Scheduling Problems., Ann. Discrete Math., Vol.l (1977), 343-362.

[54] Martel, C.: Preemptive Scheduling to Minimize Maximum Completion Time on

Uniform Processors with Memory Constraints. Oper. Res., Vol.33 (1985),

[55] McNaughton, R.: Scheduling with Deadlines and Loss Functions. Management

Sci., Vo1.6 (1959), 1-12.

[56] Muntz, R. R. and E. G. Coffman, Jr: Optimal Preemptive Scheduling on Two

Processor Systems. IEEE Trans. Computer, Vol.c-18 (1969), 1014-1020.

[57] Muntz, R. R. and E. G. Coffman, Jr: Preemptive Scheduling of Real Time

Tasks on Multiprocessor Systems. J .. Assoc. Comput. Mach., Vol.17 (1970),

324-338.

[58] Papadimitriou, C. H. and M. Yannakakis: Scheduling Interval-Ordered

Tasks. SIAM J. Comput., Vol.8 (1979), 405-409.

[59] Papadimitriou, C. H. and P. C. Kanellakis: Flowshop Scheduling with

Limited Temporary Storage. J. Assoc. Comput. Mach., Vol.27 (1980), 533-

549.

[60] Potts, C. N.: Analysis of a Linear Programming Heuristic for Scheduling

Unrelated Parallel Machines. Discrete Appl. Math., Vol.l0 (1985), 155-

164.

[61] Rock, H.: The Three-Machine No-Wait Flow Shop Is NP-Complete. J. Assoc.

Comput. Mach., Vol.31 (1984),336-345.

[62] Rock, H.: Some new results in flow.shop scheduling. Zeitschrift fUr Opera­

tions Research, Vol.28 (1984), pp.1-16.

[63] Sahni, S.: Algorithms for Scheduling Independent Tasks. J. Assoc. Cornput.

Mach., Vol.23 (1976), 116-127.

[64] Sahni, S. and Y. Cho: Scheduling ladependent Tasks with Due Times on a

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

216 T. Kawaguchi, S. Kiyabu

Uniform Processor System. J. Assoc. Comput. Mach., Vol.27 (1980), 550-563~

[65] Sleator, D. K. D. B.: A 2.5 Times Optimal Algorithm for Bin Packing ~n

Two Dimensions. Information processing Lett., Vol.10 (1980),37-40.

[66] Ullman, J. D.: NP-Complete Scheduling Problems. J. Comput. Syst. Sci.,

Vol.10 (1975), 384-393.

Tsuyoshi KAWAGUCHI and Seiki KYAN:

Department of Electronics and

Information Engineering, Faculty of

Engineering, University of the Ryukyus

Nishihara, Okinawa 903-01, Japan

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

