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Abstract The progress of computer architecture has increased the necessity to design efficient scheduling algo-

rithms according to the types of computer systems. We survey recent results of optimization and approximation 

algorithms for deterministic models of computer scheduling. We deal with identical, uniform and unrelated parallel 

processor systems, and flowshop systems. Optimality criteria considered in this paper are schedule-length and mean 

(weighted) flow-time. These are important measures for evaluating schedules in computer systems. Results on 

practical algorithms such as list scheduling are emphasized. 

1. Introduction 

The progress of computer architecture such as multiprocessor systems has 

increased the necessity to design efficient scheduling algorithms according to 

the types of computer systems. Two basic approaches have been considered for 

the evaluation of scheduling algorithms in computer systems. One is deter­

ministic approach and the other is stochastic approach. An advantage of 

deterministic approach over stochastic one is that job parameter values are 

not constrained to fit a prescribed distribution [22]. 

This paper surveys recent results of optimization and approximation 

algorithms for deterministic models of computer scheduling, refered to as 

deterministic scheduling problems. We will deal with parallel processor 

problems and flowshop problems. Optimality criteria considered in this paper 

are schedule-length and mean (weighted) flow-time. We will also emphasize 

results of practical algorithms such as list scheduling and highest-level­

first strategy, rather than elaborated algorithms. A parallel processor 

system corresponds to a multiprocessor computer system which can execute 

several jobs simultaneously in parallel. A flowshop system can be interpreted 
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as a computer system where all jobs pass through several phases such as input, 

execution and output [12]. Moreover schedule-length is a processor utiliza­

tion factor, and mean (weighted) flow-time corresponds to the mean (weighted) 

response time which is important from the user's viewpoint [6]. 

In this paper we will treat single processor problems as special cases of 

parallel processor problems, but we will r.ot deal with openshop and jobshop 

problems which are often used as models of production scheduling rather than 

computer scheduling. The reader LS refered to [7, 33, 45, 52, 53] for open­

shop problems, jobshop problems and parallel processor problems involving 

criteria other than schedule-length and mean (weighted) flow-time. Especially, 

we recommend [33] (or [52]) as a comprehensive survey. Moreover [7] gives 

detailed descriptions about problems with additoinal resources, and [38] 

summarizes recent results of approximation algorithms. 

Section 2 introduces the basic concepts and presents a detailed problem 

classification. Results on parallel processor scheduling are described in 

section 3 for problems with no additional resources, and in section 4 for 

problem~ with additional resources. Section 5 deals with flowshop scheduling. 

Finally in section 6, we give concluding remarks. 

2. Preliminaries 

2.1 Basic concepts 
First we briefly explain the basic ccncepts concerning the theory of the 

computational complexity. For formal definitions of these concepts, the 

reader is refered to [26]. 

Let T (n) denote the largest amount of time needed by an algorithm A 
A 

to solve a problem instance of size n. If there exists a constant c such that 

TA(n) ~ c f(n) for all values of n ~ 0, we say that the time complexity of the 

algorithm is O(f(n». A polynomial time algorithm is one whose time complexity 

is O(f(n», where f is some polynomial fur.ction. 

There is a large class of problems, called NP-complete problems, which 

include classical hard problems such as the traveling salesman problem or the 

integer programming problem, etc. The best known algorithms for all NP-com­

plete problems have exponential time complexity, and any NP-complete problem 

has a polynomial time algorithm if and only if all the others also have poly­

nomial time algorithms. Many researchers conjecture that NP-complete problem 

has no polynomial time algorithm. As a consequence, the knowledge that a 

problem is NP-complete shows inherent intractability of the problem. NP­

completeness is defined for decision problems which return "yes" or "no" answer. 
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192 T. Kawaguchi, S. Kiyabu 

Further) the notion of NP-hardness is used for showing that a problem is 

at least as hard as NP-complete problems. An optimization problem P is NP­

hard if the decision problem corresponding to P is NP-complete. 

Certain algorithms for NP-hard problems have the following property: they 

are polynomial if any upper bounds are imposed on input numbers, for example, 

which represent processing times of jobs; and otherwise they are not poly­

nomial. Such algorithms are called pseudopolynomial time algorithms. Given 

a problem p. let D(P) be the set of all instances of P. Moreover let p' 

denote subproblem which lS created by restricting D(P) to the instances. each 

of which has the maximum number bounded by a polynomial in its length. If 

there exists a polynomial for which P I is NP-hard. the original problem P is 

said to be strongly NP-hard or NP-hard in the strong sense. 

Next we define a measure for evaluating goodness of approximation algo­

rithms. Let P denote a minimization problem and let I be any instance of P. 

Then the absolute performance ratio for an algorithm A is given by 

R = inf { r ~ 1: R eI) ~ r for all instances of P } 
A A 

where 

RA (I) = A(r) /OPT(r) , 

where A(I) is the cost obtained by algorithm A and OPT(I) is the optimum cost. 

Moreover the asymptotic performance ratio for algorithm A is given by 

RA = inf { r ~ 1: for some K > 0) RA(I) ~ r for any instance I 

with OPT(I) ~ K }. 

If RA ~ r for some r ~ 1. then RA ~ r. But the converse is not necessarily 

true. Unless stated otherwise, the term "performance ratio" means the abso­

lut~ performance ratio in this paper. 

2.2 Problem classification 
The scheduling model that we consider has a set of jobs {J

1
,· •• )I

n
} and 

a processor system {P
1 
••••• P

m
}. Each job is to be executed on no more than 

one processor at a time. and each processor can process no more than one job 

at a time. Problems involving additional resources are discussed only in 

section 4. and so parameters about additional resources are given in section 

4. Below we will describe various job and processor characteristics. 

2.2.1 Processor environment 
As stated in the preceding section, this paper deals with two types of 

processor systems: parallel processor systems and flowshop systems. In 
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a parallel processor system. each job requires the use of exactly one proces­

sor, and each job can be performed on each processor. On the other hand, 

a flowshop system is a processor system in which each job J. has a chain of m 
~ 

tasks T .. and each task T .. requires execution on processor P .• Further with 
~J ~J ] 

respect to processing speed, we will distinguish three classes of parallel 

processor systems. Let s .. denote the processing speed of a job J. on a 
~J ~ 

processor P
j

• A parallel processor system is said to be uniform if Slj=s2j= 

•• • =s . for all processors P., and otherwise the processor system is said to 
nJ ] 

be unrelated. In uniform processors, s .-=sl' (=s2 .= . .. =s .) denotes the speed 
] ] ] nJ 

of processor P .• 
] 

Specially, a uniform processor system in which all proces-

sors have the same speed is said to be identical. 

The following notation 1.S used for specifying the processor environment. 

Let ~ denote the empty symbol. 

(1) TP (the type of processors) 

TP=~: one processor. 

(2) 

TP=P: identical processors. 

TP=Q: uniform processors. 

TP=R: unrelated processors. 

TP=F: flowshop. 

m (the number of processors) 

m=~: m is assumed to be a free parameter. 

m=k: m is a constant equal to k (k is a positive 

m;;:'k: m is a cons tant greater than or equal to k. 

2.2.2 Job characteristics 

integer) • 

If a job cannot be interrupted once it has begun execution, the job is 

said to be nonpreemptive. Otherwise, the job is said to be preemptive. 

A partial order < is defined on a given set of jobs, where J. < J. signi­
~ ] 

fies that J. must be completed befure J. can begin. 
~ ] 

The partial order < is 

conveniently represented as a dag (directed acyclic graph) where each node 

corresponds to a j ob. Let us denote by "e" the number of edges in >. 

Arrival time of a job denotes the time on which the job becomes available 

for processing. 

Processing time of a job, denoted by ti (or t
ij

), 1.S defined for each of 

three classes of parallel processor systems. 

Identical processors: ti is the time needed by a processor to complete J
i

. 

Uniform processors: ti is the time needed by the slowest processor to 

complete J
i

. 
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194 T. Kawaguchi, S. Kiyabu 

Unre lated processors: t .. is the time needed by processor p. to complete 
~J ] 

J .• 
~ 

The following notation is used for specifying job characteristics. 

(1) RULE (rule of operation) 

RULE=~: each job is nonpreemptive. 

RULE=pmtn: each job is preemptive. 

(2) < (partial order on a given set of jobs) 

<=~: no precedence relation ~s specified. 

<=prec: < is an arbitrary dag. 

(3) 

(4) 

<=intree: each node of < has at most one outdegree. that is. each node 

has at most one successor. 

<=outtree: each node of < has at most one indegree, that is, each node 

has at most one predecessor. 

<=tree: < is either an intree or an outtree. 

<=chain: each node of < has at most one outdegree and at most one 

indegree. 

a. (arrival times of jobs) 
~ 

a.=O: arrival times are equal to 0 for all jobs. 
~ 

a
i

: each job has an arbitrary arrival time. 

t. (processing times of jobs) 
~ 

ti=1: each job has unit processing time. 

ti=~: each job has an arbitrary processing time. 

2.2.3 Optimality criteria 

Let C. denote completion time of the job J. in a given schedule, and we 
~ ~ 

define two criteria for evaluating schedules as follows: 

schedule-length C = max {C
1 
••••• C }; 

max n 

mean flow-time (1/n)Li~1 (ci-a i ) 

mean weighted flow-time (1/n)Li~1 

or 

w. (C .-a.) 
~ ~ ~ 

where w. denotes weight of job J .• 
~ ~ 

Minimization of mean weighted flow-time 

corresponds to minimizing total weighted completion time Lw.c. because nand 
~ ~ 

Lw.a. are invariant with respect to schedules. Therefore in this paper we 
~ ~ 

will denote mean weighted flow-time by Lw.c .. 
~ ~ 
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2.2.4 Three-field notation 
When we need to distinguish scheduling problems in a short way, we will 

use three-field notation defined as follJws [33]: 

where 

Cl = 
s 
y 

(TP, m), 

(RULE. <. a .• t.). 
~ ~ 

C or LW'C" max ~ ~ 

3. Parallel Processor Problems With No Additional Resources 

This section concerns parallel processor problems with no additional 

resources. Both cases of ai=O and arbitrary a
i 

are considered for each 

criterion of C and LW'C" max ~ ~ 

3.1 Optimization algorithms 
3.1.1 Minimizing schedule-length 

Let us start from problems with a .=0 and t .=1. Table 1 sUllUIlarizes the 
~ ~ 

results for complexity of C minimization problems with a.=O and t.=I. 
max ~ ~ 

Some entries in the column < have not been explained yet. An interval order 

~s a dag in which each job J
x 

corresponds to an interval [a • b ] on the real 
x x 

line. and J precedes J if and only if a > b. Also a dag is a level order 
X y Y x 

if each connected component is partitioned into some k levels L
1 
•..•• L

k 
such 

that for every two jobs J
x 

E Li and J
y 

E L
j 

where i > j, J x precedes J
y

' 

An opposing forest is a disjoint union of intrees and outtrees. Moreover < in 

problem 1-7 represents a dag whose heighc is smaller than or equal to a con­

SLant h. Figure 1 shows an interrelationship among partial orders <, where 

"a + b" means that a is included in b. 

prec 

series-parallel 

opposing forest 

interval order intree out tree level order 

chain 

Figure 1. Interrelationship Among Partial Orders <. 
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Table 1. Complexity of C minimization problems with a.=O and t.=I. max ~ ~ 

Parameters: ai=O, t .=1 and 
Problem ~ Complexity References 

TP m RULE < 

1-1 P prec strongly NP-hard [66 ] 

* 1-2 P tree O(na(n» [37] 

1-3 P interval order 
2 

O(n ) [58] 

1-4 P ~ 3 prec Open 

1-5 P ~ 3 opposing forest o(n2m- 2 log n) [ 18] 

1-6 P ~ 3 level order o(nm- 1 ) [ 18] 

1-7 P ~ 3 the height :> h O(nh (m-1) +1) [17 ] 

1-8 P 2 prec O(e+na(n) ) * [23] 

* a(n) is an inverse of Ackermann's function and is very slow-growing. 
. 65536 For example, Lf n :> 2 then a(n) :> 5. 

The problem for m, a free parameter, is NP-hard if < is an arbitrary dag 

(problem 1-1). The problem remains NP-hard even if < is an opposing forest 

[27]. Polynomial algorithms are developed only for < = tree and for < = 
interval order (problems 1-2 and 1-3). 

The problem for fixed m ~ 3 can be solved in polynomial time for partial 

orders of special forms (problems 1-5, 1-6 and 1-7). But when < is an arbi­

trary dag (problem 1-4), complexity of the problem LS open. Problem 1-4 is 

the major scheduling problem remaining open. 

The m=2 case can be solved in polynomial time even if < is an arbitrary 

dag (problem 1-8). An algorithm by Coffman and Graham [14] requires time 

O(e+na(n» if a dag is transitive reduced or transitive closed, and otherwise 

it requires more O(min(en, n
2

•
61 » time [23]. On the other hand, Gabow [23] 

presents an O(e+na(n» algorithm which uses neither transitive reduction nor 

transitive closure. 

Next we will consider problems with ai=O and arbitrary t i . Table 2 

indicates the results for complexity of Cmax minimization problems with ai=O 

and arbitrary t
i

. The single processor problem with ai=O has at least one 

optimal schedule without preemptions even if preemptions are allowed. Thus 

an o(n
2

) algorithm for the nonpreemptive case of problem 2-1 can also solve 

the preemptive case. A pseudopolynomial time algorithm by Sahni [63] solves 

problem 2-2 in time O(n(Lt.)m-l). But problem 2-3 is strongly NP-hard and 
~ 

has probably no pseudoplynomial time algorithm. Problem 2-5 which corresponds 
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Table 2. Complexity of C minimization problems with a;=O and arbitrary t .. 
max ~ ~ 

Problem 

2-1 

2-2 

2-3 

2-4 

2-5 

2-6 

2-7 

2-8 

2-9 

2-10 

2-11 

2-12 

TP 

P 

P 

P 

Q 

R 

P 

P 

Q 

P 

P 

rn 

~ 2 

~ 2 

2 

2 

~ 3 

RULE* 

prntn,~ 

prntn 

prntn 

prntn 

prntn 

prntn 

prntn 

prntn 

prntn 

< 

pree 

interval. order 

tree 

pree 

pree 

pree 

pree 

Complexity 

o(n2
) 

NP-hard 

strongly NP-hard 

strongly NP-hard 

O(n) 

O(n+rn log rn) 

** LP 

O(n log rn) 

o(n 2
) 

o(n2
) 

Open 

strongly NP-hard 

References 

[49, 5] 

[26 ] 

[26 ] 

[58] 

[55 ] 

[30] 

[51 ] 

[31 ] 

[56, 12] 

[36, 33] 

[12] 

* An entry in the column RULE given as "prntn,~" means that the associated 

problem has at least one optimal schedule without preemptions even if 

preemptions are allowed. 

** We denote by "LP" that the associated aproblem can be formulated into a 

linear programming, which is polynmnially solvable. 

to the preemptive case of problem 2-3 can be solved in time o(n), and the more 

general problems (2-6, 2-7 and 2-8) can also be solved in polynomial time. 

The 0 (n) algori thm for problem 2-5 is used as a subroutine in many of pre­

emptive scheduling algorithms [39, 57]. The algorithm is as follows. 

Algorithm McNaughton 

Step 1. Set D = max (Li~1 ti/rn, max{ti }). 

Step 2. When scheduling job J
i

, let j be the smallest index of a processor 

with idle time and let (5, D) be the idle interval on P .. If s+t. ~ 
] ~ 

D, schedule job J
i 

in the interval (5, s+t
i

). Otherwise, schedule 

J. in the interval (5, D) on P. and (0, t.-(D-S» on P. 1. 
~ ] ~ J+ 

Further let us give a concise description of the algorithm for problem 

2-6. If X. = t~1 t. and Y. = t~1 s. where tl ~ ~ t and 51 ~ ... ?: 5 rn' ] ~ ] ~ n 
then the optimal value of C for the problem is given by D = max {X

l
/Y

l
, 

max 
X2 /Y2 ,·· • 'Xm- l /Yrn- l , X /Y }. In the algorithm, processors are viewed to 

n m 
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constitute a composite processo.r system. Each pracessor P. initially has a 
J 

speed function s .(t) given by s .(t) = s. for ° 
J J J 

~ t ~ D. Depending on its 

processing requirement, a job is scheduled in an interval (T,D) on a processor 

P., or the 
J 

job is scheduled in an interval (T,D) an P. 1 and (O,T) on P .. 
J- J 

former case, the speed function of P. is newly given by s .(t) = s. for 
J J J 

In the 

° ~ t ~ T, and s .(t) = ° far T < t ~ D; and specially if T=O, P. is deleted 
J ] 

from the camposite processar system. In the latter case, two processars p. 1 
r 

and P. are replaced by a camposite pracessor P. 1 with speed s. l(t) = s. 1 
J r r J-

for ° ~ t ~ T, and s. 1 (t) = s. for T < t ~ D. For convenience sake, let r J 

S; (a.b) = fb s. (t)dt and S. = s. (O.D). 
• a ~ ~ ~ 

Algorithm GS (Gonzalez and Sahni) 

Step 1. Sort pracessors so that sI ~ 

Cmax ' and si(t) = si far ° ~ 
~ s . m 

t :;; D. 

Set D to the aptimal value of 

Step 2. (We may schedule jobs in any order.) When scheduling jab J
a

• let k 

be the least integer satisfying ta ~ Sk' 

Case 1. ta = Sk' Schedule J a in the interval (O,D) an Pk ' and sub­

tract one from the index af P., k+l :;; j ~ m. //camment: We naw have 
J 

a campasite processar system with m-I pracessars and have n-l jabs to. 

schedule. / / 

Case 2. ta > Sk' Let T be the time satisfying Sk_l(T.D) + Sk(O,T) 

= ta' Schedule J a in the interval (T,D) an Pk -
1 

and (O,T) an Pk ; and 

then replace Pk- l and Pk by a single processor (newly called Pk- l ) 

with speed sk_l(t) for ° ~ t ~ T, and sk(t) far T < t ~ D. Subtract 

one from the index af P., k+l ~ j :;; m. //camment: Again, we are left 
J 

with a camposite processar system with m-I pracessars and n-l jobs to. 

schedule./ / 

Case 3. S > t Let T be the time satisfying S (T,D) = t . Sched-m a m a 
ule J in the interval (T,D) an P and let s (t) '" ° far T :;; t 

a m m 
~ D. 

An algarithm by Muntz and Caffman salves prablems 2-8 [57], 2-9 [56] and 

2-10 [36] in o(n2
) time, and salves problem 2-6 [36] in o(mn2

) time. Hawever 

as shawn in table 2, mare efficient algarithms are presented far problems 2-6 

and 2-8. Far arbitrary <. no. palynomial time algorithm has been faund yet 

even if m=3 and preemptians are allawed (see problem 2-11). 

Table 3 gives the results far camplexity af C minimizatian prablems 
max 

with arbitrary arrival times. It should be nated that minimization of C 
max 
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for jobs {J 1' . .•• J n} with arrival times a
i 

and a partial order < is equivalent 

to minimizing maximum lateness L = max(C.-d.) for the jobs {J
1

' ••••• J
n

'} 
max ~ ~ 

signified as follows: due dates. d .• of J.' are given by d. = -a;. respective-
~ ~ ~ ~ 

ly, and arrival times are equal for all ,li'; and moreover J
i

' precedes J
j

' in 

the partial order on {J
1
', •••• J '} if and only if J. precedes J. in <. For 

n ] ~ 

example, problem 3-1 (p I outtree. a .• t .=1 I C ) 1.S equivalent to P 
~ 1 max 

intree, t.=l I L • 
~ max 

Some of the results indicated in table 3 are presented. 

in the original papers. as results for L minimization problems. 
max 

Table 3. Complexity of C minimization problems with arbitrary a .• 
max ~ 

Problem Parameters other than a. "" Complexity References 
~ 

3-1 problem 1-2 «=outtree) O(n) [9, 50] 

3-2 problem 1-2 «=intree ) strongly NP-hard [9] 

3-3 problem 1-8 o(n3 ) [25 ] 

3-4 problem 2-1 (RULE=CP) 
2 O(n ) [ 49. 5] 

3-5 problem 2-1 (RULE=pmtn) o(n2) [5 ] 

3-6 problem 2-5 O(mn) [31 ] 

3-7 problem 2-6 O(n log n+mn) [64 ] 

3-8 problem 2-7 LP [51 ] 

3-9 problem 2-8 «=outtree) 
2 

O(n ) [50] 

3-10 problem 2-8 «=intree) strongly NP-hard [50] 

3-11 problem 2-9 o(n
2

) [50] 

3-12 problem 2-10 o(n2) [50 ] 

* Each problem is the same as one entered in this column. except that 

a. is arbitrary. 
~ 

3.1.2 Minimizing mean weighted flow-time 

Table 4 indicates the results for complexity of l.wiC
i 

minimization prob­

lems with ai=O. All of these results are indicated in [33]. The LWiCi 
minimization problem with <=CP and ai=O has at least one optimal schedule 

without preemptions even if preemptions are allowed [55]. Thus an O(n log n) 

algorithm for the nonpreemptive case of problem 4-1 is also an optimization 

algorithm for the preemptive case. The same statement is true for problems 

4-3 and 4-8. Moreover problems 4-10 and 4-11 are NP-hard and strongly NP-hard, 

respectively, whether preemptions are allowed or not. Although problem 4-10 

is NP-hard, a pseudopolynomial time algorithm by Sahni [63] solves the problem 
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If < is an arbitrary dag, even the single processor 

problem is strongly NP-hard (see problem 4-2). Moreover the two-processor 

problem is NP-hard even for the Lc. criterion and <=tree (problem 4-7), and 
~ 

even for the LW'C' criterion and <=~ (problem 4-10). It is an interesting 
~ ~ 

open question whether the two-processor problem with the LC' criterion remains 
~3 

to be polynomial for <=ehain (compare 4-3 with 4-7). An D(n ) algorithm by 

Adolphson [3] solves the single processor Lw.c. minimization problem for a 
~ ~ 

slightly more general < than "series-parallel". Whether the problem is poly-

nomial for a more general < is a subject for a future study (compare 4-2 with 

4-9) . 

Results for arbitrary a. are given in table 5. All of these results are 
~ 

indicated in [33]. 

Table 4. Complexity of Lw,c. minimization problems with a.=O. 
~ ~ ~ 

Problem 

4-1 

4-2 

4-3 

4-4 

4-5 

4-6 

4-7 

4-8 

4-9 

4-10 

4-11 

Parmneters: ai=O, ti=~ and 
Complexity 

w. TP m RULE < 
~ 

pmtn,~ D(n log n) 

pree strongly NP-hard 

P pmtn,~ D(n log n) 

Q D(n log n) 

Q pmtn D(n log n+mn) 

R D(n
3) 

P ,,; 2 tree strongly NP-hard 

pmtn,~ D(n log n) 

series-parallel D(n log n) .. 

P ;;; ') 
pmtn,~ NP-hard '" 

P pmtn,~ strongly NP-hard 

Table 5. Complexity of LW'C' minimization problems 
~ ~ 

with arbitrary a
i

. 

Problem Parameters other than a. Complexity 
~ 

5-1 problem 4-1 (RULE=~) strongly NP-hard 

5-2 problem 4-1 (RULE=pmtn) D(n log n) 

5-3 problem 4-8 (RULE=~) strongly NP-hard 

5-4 problem 4-8 (RULE-pmtn) strongly NP-hard 
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3.2 Approximation algorithms 

3.2.1 Minimizing schedule-length 

201 

Table 6 summarizies the results of performance and complexity of approxi­

mation algorithms for C minimization problems. First we give the following max 
remarks to help interpret the table. 

Table 6. Performance and complexity of approximation algorithms for 

C minimization problems. max 

Problem RA Complexity Algorithm References 

p 
1 prec 1 C max 2-1/m O(n log m+e) LIST [32, 

p 
1 prec, t ,=1 1 C 2-1/(m-1) O(e+na(n) ) HLF [47, 23) 

~ max 

(problem 1-1) 2-2/m o (e+na(n» CG [48, 23) 

4/3-1/3m O(n log n) HLF [32, 38) 

p 11 Cmax 
(1.182. O(n log n 

MF [20, 19] -k 1.2+2 ) -,kn log m) 
(problem 2-3) 

;;; 7/6+Z-k O(n log n 
DUAL [34, 34) 4 +km n) 

(1.512, O(n log n modified 

1.583) log m) HLF 
[16, 19] 

+n 
Q 11 C 

max (1.341, O(n log n modified 
-k log m) 

[19, 19] 
1.4+2 ) +kn MF 

;;; 2.51iil O(mn log n) [15, 15) 
R 11 C 

Ll'+O(mm-l ) max 
2 [60, 60] 

p intree 1 C 2-2/(m+1) O(n log n) HLF [47, max 

p 
1 chain 1 C max 5/3 Ol:n log n) HLF [47, 

p 
1 pmtn, prec 1 C , 2) max 2-2/m Ol,n MC [ 48, 12] 

(problem 2-12) 

Q 1 pmtn, prec 1 Cmax 
(0. 351iil, 

1.231iil) 
o(mn2) MC [36, 33) 
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(1) Each row in the table is associated with an algorithm. 

(2) For an algorithm whose performance ratio is not exactly known, we give 

upper and lower bounds of the ratio in the column RA' These bounds are best 

bounds currently known. 

(3) Each complexity indicated ~n the table ~s the minimal one that the authors 

know. 

(4) Each entry ~n the column on algorithm denotes the name by which the 

associated algorithm is called in this paper. 

(5) The first entry in references gives the source for the performance of the 

associated algorithm, and the second entry indicates the source for complexity 

of the algorithm. If the second entry is missing, complexity of the associated 

algorithm is obtained by the authors. 

Algorithms LIST and HLF can be used for the most general case, that is, 

for RULE=~, <=prec and ti=~' 

Algorithm LIST (List Scheduling) 

Step 1. An ordered list of jobs is constructed. 

Step 2. Whenever a processor becomes available, the list is scanned from left 

to right; and the first unexecuted job that is ready for execution is 

assigned to the processor. 

Before describing algorithm HLF, the level of a job on a partial order < 

is defined as follows: (i) the level of a job with no successor is equal to 

the processing time of the job; and (ii) the level of a job with one or more 

successors is equal to the processing time of the job plus the maximal value 

of the levels of the successors of the job. 

Algorithm HLF (Highest Level First) 

Step 1. A priority list is constructed, where jobs are arranged in nonin­

creasing order of their levels. 

Step 2. Do step 2 in algorithm LIST. 

Specially, algorithm HLF for <=~ case ~s sometimes called LPT (Largest 

Processing Time First) strategy. The performance ratio of algorithm LIST is 

given by 2-1/m for P I pree le, and the performance ratio is the minimal max 
one currently known for this problem. However, if t.=1 (problem P I prec, 

1. 

t.=1 le) or if < has a special form (problems P I le, P I intree I c 
1. max max max 

and P I chain le), then algorithm HLF gives a smaller ratio than 2-1/m. max 
Further, another algorithm which is abbreviated "CG" in the table gives a 

smaller ratio than HLF for P I prec, t.=1 
1. 

C max 
The algorithm has been 
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previously described as an optimization algorithm for problem 1-8, and requires 

O(min(en, n
2

.
61 » time if < is neither transitive reduced nor transitive 

closed. For P 11 C
max

' a number of approximation algorithms are presented in 

addition to HLF. Algorithms MF and DUAL shown in the table use approximation 

algorithms for the bin-packing problem. The problem can be viewed as one of 

packing n pieces with sizes t, into a minimum number of bins of capacity C. 
~ 

Algorithm FFD (First-Fit Decreasing), whi.ch is used in MF, generates a bin-

packing by placing successively a piece .rith the largest size into the lowest 

indexed bin in which it fits. Let FFD(C) be the function which returns 1 if 

algorithm FFD can pack all ti into m bins of capacity C, and otherwise returns 

o. 

Algorithm MF (Multi-Fit) 

Step 1. Initially set L = Li~1 ti/m and U=2L. 

Step 2. Repeat the following operation k times: after substituting (L+U) /2 

for C, set L to cif FFD (C) =0, and otherwise set U to C. 

On the other hand, an s-dual approximation algorithm for the bin-packing 

problem is defined as a polynomial time algorithm that can pack all pieces 

into OPT(C) bins of capacity (1 +e:)C, where OPT(C) denotes the number of bins 

used by an optimal packing. Let DUAL(S,C) be the function which returns 1 if 

an s-dual approximation algorithm can paek all ti into m bins of capacity 

(1 +s)C, and otherwise returns O. Algorithm DUAL consists of the same steps as 

MF, except that the function DUAL(S,C) is used instead of FFD(C). For the 

bin-packing problem, an 1/5-dual approximation algorithm and an 1/6-dual 

approximation algorithm are presented ~n [34]. Using these algorithms, algo­

rithm DUAL guarantees RDUAL ~ 6/5+2-
K 

in O(kn+n log n) time, and guarantees 
-k 4 

R
DUAL 

~ 7/6+2 in O(knm +n log n) time [34]. 

Besides the three algorithms indicated in table 6, Sahni [63] presents an 

1 'hm h' h ' , (( 2/ )m--1, d 1 f a gor~t w ~c requ~res t~me 0 n n s ~n or er to guarantee RA ~ +s or 

any s > O. Moreover an algorithm by Friesen and Langston [21] has R
A

=1.180 

and can be executed in the same time-complexity as algorithm MF. However, the 

algori thm contains the process of scheduling 32 jobs optimally on 5 processors. 

(Note that this process can be executed in 0(1).) Algorithm LIST has an ad­

vantage that it is available even though processing times of jobs are unknown. 

However, it is considerably inferior to algorithms HLF and MF in regard to the 

performance. R for P 11 C is given by 2-1/m [32], and this value is 
LIST max 

little improved even for jobs with similar processing times. It is shown in 

[1] that if max{t)/min{tj} ~ 3 then R
LI8T 

is given by 17/10 for m=5, and is 
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given by 2-1/{3lm/3J} for other ID ~ 3. 

Algorithms HLF and MF are modified for Q I I c . The modified HLF max 
generates a schedule by successively placing a job with the largest processing 

time on the processor which would complete the job first. For the modified 

MF, the reader is refered to [19]. Problem R I I c has an O(mm + mn log n) max 
algorithm with RA ~ 1.51m in addition to the algorithms indicated in the table 

(15] • 

An algorithm by Muntz and Coffman, abbreviated "MC" l.n the table, can be 

used for pi pmtn, prec I C and Q I pmtn, prec I C . The algorithm can be max max 
viewed as a highest-level-first strategy for the preemptive case. As stated 

in 3.1.1, the algorithm generates an optimal schedule for each of problems 

2-6, 2-8, 2-9 and 2-10. 

3.2.2 Minimizing mean weighted flow-time 
Few results are known on the performance of approximation algorithms for 

Lw.c. minimization problems. For problem 4-10, Sahni [63] presents an approxi-
~. ~ . . . 2 m-l . . 

matl.on algorl.thm whl.ch reqUl.res O(n(n /E) ) tl.me l.n order to guarantee RA ~ 

l+E for any E > O. This algorithm is efficient only for small m. Kawaguchi 

and Kyan [42] investigate the performance of the following algorithm for prob­

lems 4-10 and 4-11. 

Algorithm LRF (Largest Ratio First) 

Step 1. A priority list is constructed, where job J. precedes job J. if w./t. 
~ ] ~ ~ 

> wjltj' and precedence relations among jobs with the same wilti are 

arbitrary. 

Step 2. Do step 2 l.n algorithm LIST. 

Algorithm LRF can be executed in O(n log n) time. It is shown in [42] 

that RLRF is given by (12+1)/2 and RLRF never takes a smaller value than 

(12+1)/2 even if any priority rule is imposed among jobs with the same wi/t
i

. 

Moreover the problem of minimizing Lf.2 is studied in (10] and (41], where f., 
] ] 

1 ~ j ~ m, denote finishing times of processors P .. For this problem, Chandra 
] 

and Wong [10] present an O(n log n) algorithm with RA ~ 25/24, and Kawaguchi 

[41] gives an O(n log m + m log n) algorithm with R
A

=9/8. These results are 

applicable to a special case of problem 4-11 where jobs have the 

AnalgorithmforQ211 Lw,C. [35] requiresO(n
2

/E) time in 
~ ~ 

same W ./t .. 
~ ~ 

order to 

O. guarantee RA ~ l+E for any E > A modified LRF algorithm for Q I I LW'C' 
~ ~ 

(43] < . {" m guarantees RA = ml.n Lj=l 5/5 1, (12+1)5 1/25 m} where 51 ~ '" ~ Sm' 
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4. Parallel Processor Problems with Additional Resources 

In this section we will deal with parallel processor problems in which 

each job requires the use of a resource in addition to a processor during 

their execution. This additional resouree is called "memory" in this section. 

Let r
i 

be a fixed memory requirement of job J
i

. Two types of memories are 

considered. 

MEM=loc (local memories): each processor P. has a private memory of 
] 

capacity M., and job J; can be processed on P. if and only if M. ;;:; L· •• 
] ~ ] ] ~ 

MEM=com (common memory): a single memory of capacity M is shared among 

all processors, and we require that the total usage of the memory never 

exceeds the memory capacity M at a time. 

4.1 Optimization algorithms 
Table 7 summarizies the results for complexity of C minimization prob-

max 
lems with memory constraints. The problem with local memories can be solved 

polynomially for preemptive cases (problems 7-1 and 7-3). Problem 7-1 has the 

same parameters as problem 2-5, except for the existence of memory constraints. 

The algorithm for problem 7-1 is as follows. 

Algorithm KS (Kafura and Shen) 

Step 1. Sort processors so that Ml ;;:; M2 ;;:; ... ;;:; Mm' and arrange jobs in non­

increasing order of their memory requirements. We define the sets 

~ i < m, and G = 
.m 
~ 

Moreover for each i, 1 ~ i ~ m, let Fi Uk=l G
k 

and 

let Xi be the sum of processing times of jobs ~n F
i

. 

Step 2. Set D = max (Xl' X2 /2, ... , xm/m, max{t
i

}) and apply step 2 in algo-· 

rithm McNaughton. 

The algorithm for problem 7-3 uses algorithm GS for problem 2-6 as a 

subroutine. Further problem 7-2 is strongly NP-hard because problem 2-3 is so. 

The most of problems with MEM=com are NP-hard even if ti=l. Problem 

7-7 remains to be strongly NP-hard even if the memory capacity is 1 and 

memory requirements are 0 or 1 for all jobs [8]. On the other hand, problem 

7-5 remains to have a polynomial time algorithm even if each job requires 

s <: 1 memories during their execution. This algorithm uses the maximum 

cardinality matching, and requires time O(sn 2+n S /2) [8]. 
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If the Cmax criterion is replaced by the mean flow-time tc
l , the problem 

corresponding to 7-4 is also strongly NP-hard and the problem corresponding to 

7-5 can be solved in O(n log n) time using the algorithm for problem 7-5 [7]. 

corresponding to 7-4 is also strongly NP-hard and the problem corresponding 

to 7-5 can be solved in O(n log n) time using the algorithm for problem 7-5 [7]. 

Table 7. Complexity of C minimization problems with memory constraints. max 

Parameters: ai=O and 
Problem Complexity References 

MEM TP m RULE < ti 

7-1 lac P pmtn o (n log m) [39, 54] 

7-2 lac P strongly NP-hard 

7-3 lac Q pmtn 2 O(nm(log m) ) [54 ] 

7-4 corn P 3 strongly NP-hard [26 ] 

7-5 corn P 2 O(n log n) [8] 

7-6 corn Q 2 O(n log n) [8] 

7-7 corn P 2 chain strongly NP-hard [8] 

7-8 corn P m ~ n strongly NP-hard [26 ] . 
Table 8. Absolute and asymptotic performance of approximation algorithms 

for C minimization problems with memory constraints. 
max 

Parameters: ai=O and 
Problem RA RA References 

* 

MEM TP m RULE < ti 

7-2 lac P 2-2/m [39, 

8-1 corn P 2-2/m [ , 46] 

8-2 corn P pmtn 3-3/m [ 46, ] 

7-8 corn P m ~ n ;;; 2 1 [13, 13] 

8-3 corn P m f~ n 2.5 5/4 [65, 4] 

8-4 cam P m ~ n prec ;;; 2.7 [24, ] 

The first entry gives the source for RA and the second entry indicates 

the source for R
A

oo
• 

4.2 Approximation algorithms 

* 

Besides the absolute performance ratio RA' the asymptotic performance 

ratio R
A

oo 
is often used for evaluating approximation algorithms for problems 

with memory constraints. Table 8 summarizies the results of the absolute and 
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the asymptotic performances of approximation algorithms for C
max 

minimization 

problems with memory constraints. Each entry in the columns RA and R
A

oo 
is the 

minimum one currently known. The reader should notice that even if a problem 

has no entry in the column RA ' an algorithm with the absolute performance 
00 

ratio RA guarantees RA :;; RA for the problem. The algorithm for problem 8-1 

is as follows. 

A 1 gorittrn LMF (Larges t Memory Fi rs t) 

Step 1. Sort jobs so that r
1 

;;; ••. ;;; rn" and set t=O. 

Step 2. If no processor is idle at time t, set t=t+1 and go to step 3. 

Otherwise, scan for the first unexecuted job for which sufficient 

units of memory are available at time t. If such job exists, the job 

is assigned to an idle processor in the interval (t. t+1); and other­

wise set t=t+1. 

Step 3. If there are uncompleted jobs, repeat step 2. 

The algorithm for problem 8-2 is also the above one. Moreover the ratio 

3-3/m is guaranteed for problem 8-2 even if the ordering of jobs is arbitrary 

in step 1 of LMF. The algorithm for problem 7-2 is similar to LMF. In this 

algorithm, whenever a processor P. becomes available, a job with the largest 
] 

r. satisfying M. ~ r. 
~ ] ~ 

is assigned to the processor. Fuchs and Kafura [22] 

study the C minimization problem in a 
max 

computer consists of dual processors and 

parallel computer system where each 

a single memory is shared between 

these processors. This model can be vie\~ed as a bridge between the extreme 

models (problems 7-2 and 8-2) and the more general model where r ;;; 1 processors 

share a single memory. A largest-memory·-first strategy for this model guaran­

tees the absolute performance ratio (3p-2)/p where p denotes the number of 

computers and is equal to half the number of processors. Comparing the results 

for 7-2, 8-2 and their model, they conclude that the memory should be shared 

among a small number of processors. This is an important suggestion about the 

topology of computer system. 

Problem 7-8 is known as the bin-packing problem, and an approximation 

algorithm for this problem has been described in 3.2.1. This algorithm, 

called FFD, gives R
FFD

oo
=11/9. Note that a bin Bt' t ;;; 1, corresponds to a 

time interval (t-1, t). Moreover the following results are known for the 

problem [13]: 

00 

RFF = 17/10 and RMFFLoo = 71/60 

where MFFD is a modified FFD algorithm, and FF ~s the same as FFD except that 
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jobs are scheduled in an arbitrary order. Further as shown in the table, the 

problem has a polynomial time algorithm with R
A

oo
=1. However no polynomial 

time algorithm that guarantees the absolute performance ratio smaller than 2 

is found yet for the problem. On the other hand, even a more primitive algo­

rithm than FF guarantees RA ~ 2. In this algorithm, called Next-Fit, a job is 

placed in the current bin B
t 

if it fits there, and otherwise the job is placed 

in the next bin B 1 and t is increased by one. (Remember that FFD (or FF) t+ 
places a job ~n the lowest indexed bin in which it fits.) 

Problem 8-3 is known as the two-dimensional bin-packing problem. A number 

of results are reported on the asymptotic performance of algorithms for this 

problem, but few results are known on the absolute one. Moreover Garey et al. 

[24] presents an algorithm for the problem in which the number of memory is an 

arbitrary s ~ 1 and the other parameters are the same as problem 8-4. The 

algorithm uses a highest-level-first strategy and guarantees RA ~ 17s/10+1. 

The bound for problem 8-4 is obtained by substituting s=l in the above bound. 

Very little is known about the performance of approximation algorithms 

for Iw.c. minimization problems with memory constraints. 
~ ~ 

5. Flowshop Scheduling 

A flowshop consists of m ~ 2 processors {P1, ••• ,Pm} and n ~ 1 jobs {J
1

, 

••• ,J}. Each job J. has a chain of m tasks T .. , 1 ~ j ~ m. Let t. denote 
n ~ ~J ~ 

the processing time of job J; and let t .. be the processing time of task T . .• 
~ ~J ~] 

Each task T .. requires execution on processor P., and T .. can only be executed 
~J ] ~J 

after T . . 1 ~s finished. Specially, if T .. has to start at the completion 
~,]- ~] 

time of T . . l' the resulting flowshop is said to be a no-wait flowshop. 
~,J-

Before describing results of flows hop problems, we give the following notes 

about the notation used in this section. 

(1) Whenever a three field notation alSly ~s used, an information about no­

wait constraints is put in the first position of S. 

(2) We denote by "ti1=1 (or t i2 =1) " when t11=t21=.·.=tn1 (or t12=t22= ••• =tn2)' 

Moreover, the notation "t . . =1" represents that all t .. , 1 ~ i ~ nand 1 ~ j 
~] ~J 

~ m, are the same. 
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Table 9. Complexity of flowshop problems and no-wait 

flowshop problems. 

Problem Parameters Complexity 

9-1 F2 11 C 
max o(n log n) 

9-2 F2 I pmtn I C 
max 

9-3 F2 I a. I C 
~ max strongly NP-hard 

9-4 F2 I pmtn, ai I C 
max 

9-5 F2 I tree I C 
max strongly NP-hard 

9-6 F2 I pmtn, tree I C 
max 

9-7 F2 no-wait C O(n log n) 
max 

9-8 F3 11 C 
max strongly NP-hard 

9-9 F3 I pmtn I C 
max 

9-10 F3 I no-wait I C strongly NP-hard 
max 

9-11 F2 11 Ic. strongly NP-hard 
~ 

9-12 F2 I pmtn I ICi 
Open 

9-13 F2 I no-wait I Ic. strongly NP-hard 
~ 

Optimization algorithms 

209 

Table 9 gives the results for comp 1 '~xi t y 0 f f lows hop pro b lems and no-wait 

flowshop problems. The results for problems 9-10 and 9-13 were recently ob­

tained by Rock [61, 62]. For the sources of the other results, the reader is 

refered to [52]. Gonzalez and Sahni [29J show that preemptions on PI and Pm 

can be removed without increasing C
max 

in any preemptive schedule for a flow­

shop with m processors. Hence, the result for each of problems 9-2, 9-4, 9-6 

and 9-9 is obtained from the result for che nonpreemptive case of the problem. 

Achugbue and Chin [2] study j-maximal and j;ninimal flowshops. A flow­

shop is said to be j-maximal (j-minimal) if the j-th task of each job is not 

smaller than (not greater than) any other task of the same job. Problem F I 
3 I c remains to be strongly NP-hard even if the flowshop is 1 or 3-minimal, 

max 
and even if the flowshop is 1 or 3-maximal. Although problems 9-5 and 9-11 

are strongly NP-hard, F2 tree, t .. =1 I C and F2 I tree, t .. =1 I Ic. can 
~J max ~J 3 ~ 

be solved in O(n) time and F I ai' tij=1 I LC
i 

can be solved in O(n ) time 

[7]. Further F2 I t·
2

=1 I LC. and the 1·-maximal case of F2 I1 LC. can be 
~ ~ ~ 

solved in O(n log n) time [40]. 

Papadimitriou and Kanellakis [59] study an extension model of F2 I1 C max 
where the flowshop has b ;;; 0 buffers bet~veen PI and P

Z
. Each buffer is used 

for storing a job whose first task has been completed on PI' and whose second 

task has not been started on P
2

. They show that the problem is strongly NP-
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hard if 1 ~ b < n. 

5.2 Approximation algorithms 

Problem F 1 no-wait 1 C can be formulated as a traveling salesman 
max 

problem [33]. A number of approximation algorithms are presented for this 

problem, and so these algorithms can be applied to F 1 no-wait 1 C 
max 

Further, 

approximation algorithms which can be viewed as list scheduling for flowshop 

problems are presented for F 11 C and F 11 Lc .. max ~ 

Algorithm LISTF (List Scheduling for Flowshops) 

Step 1. Construct a list in which jobs are arranged in an arbitrary order. 

Step 2. Let L., 1 ~ j ~ m, denote m copies of the list obtained in step 1. 
] 

Whenever a processor P. becomes available, the first job is removed 
] 

from L. and the j-th task of the job is assigned to the processor. 
] 

Algorithm SPT (Shortest Processing time First) applies step 2 of the 

above algorithm to a list where jobs are arranged in nondecreasing order of 

their processing times. The following results are known about the performance 

of these algorithms [29]: 

RLISTF 

R
LISTF 

m 

= n and R
SPT 

= m 

for F 11 Cmax ' 

for F 11 LC" 
~ 

The performance of algorithm LISTF is not improved for F 11 C even if jobs 
max 

are processed in nonincreasing order of their processing times. Specially for 

F2 11 LC
i

, the performance of SPT is given by R
SPT 

= 2S/(S+a) where a denotes 

the smallest processing time of tasks and S is the largest one [40]. Chin and 

Tsai [11 ] investigate the performance of algorithm LlSTF for j-maximal and 

j-minimal flowshop problems, and give the following results: 

R 
LISTF 

m-l for the l-minimal case of F 11 C 
max 

(m ;;; 3) , 

R 
LISTF 

~ 1/2+1m for the l-maximal case of F 11 Cmax ' 

RLISTF 5/3 for the or 3-maximal case of F3 11 C 
max 

Further Kawaguchi and Kyan [44] investigate the performance of an algorithm 

for F2 1 t. 1=1 1 LC' and the l-minimal case of F2 11 Lc .. This algorithm is 
~ ~ ~ 

also a list scheduling algorithm and schedules jobs according to nondecreasing 

order of t i2 . The perfonnance ratio of this algorithm is given by 5/3 for the 

l-minimal case of F2 11 Ic
i

, and is given by 4/3 for F2 1 til=l 1 LC
i

, (As 

shown in 5.1, F2 1 t. 2=1 1 LC. and the l-maximal case of F2 11 Lc. can be 
~ ~ ~ 

solved optimally in time O(n log n).) 
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Problem F I I C has a polynomial time algorithm which is superior to max 
LISTF in regard to the performance. This algorithm guarantees RA ::; fm/21 in 

O(mn log n) time [29]. However. no polynomial time algorithm with the smaller 

performance than R is found yet for the 'C. minimization flowshop problem, 
SPT /... ~ 

except for the special cases described above. 

An optimization algorithm for F2 I no-wait C
max 

[28] generates a feasi­

C
max 

where the flowshop has 1:> ~ 0 

This algorithm guarantees RA ::; 

ble schedule for an extension model of 1:'2 I I 
buffers between PI and P 2 (see section 5.1). 

(2b+l)/(b+l) in O(n log n) time [59]. 

6. Conclusion 

We have briefly surveyed the recent results of optimization and approxima­

tion algorithms for deterministic models of computer scheduling. Many inter­

esting models have efficient optimization algorithms, whereas others are 

NP-hard. A number of approximation algorithms have been presented for the 

latter problems, and analytical results for the performance of approximation 

algorithms are obtained mainly for schedule-length minimization problems with 

equal arrival times. However at present, many models of computer scheduling 

have neither polynomial time optimization algorithms nor approximation algo­

rithms with guaranteed performance. Thus it is still important to evaluate 

goodness of an approximation algorithm by means of computational experiments, 

and such evaluation requires us to find a lower bound on the cost of an optimal 

schedule for a given problem instance. (Lower bounds are also used in enumer­

ative optimization algorithms such as branch-bound-bound method.) Various 

bounding schemes have been reported in recent years although we have not 

described these schemes in this survey on account of limited space. These 

schemes can be further improved in the future. 
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