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Abstract It has been shown by many authors that distribution properties of some characteristics in queues are 

inherited from those of the service times. For instances, Keilson (1978) showed that the length of a busy period in 

an M/G/l queue has a completely monotone density if so does the service time, Shanthikumar(1988) proved that 

the waiting time distribution in a GI/G/l queue is DFR if so is the service time distribution, etc. This paper studies 

such inheritance of distribution properties of discrete characteristics in M/G/l and GI/M/I queues. To do so, 

uniformly monotone discrete time Markov chains are first investigated. Various first passage times which are of 

independent interest for such Markov chains are considered. By showing that some characteristics in M/G/ I and 

GI/M/l queues are expressible as the first passage times, distribution properties of those characteristics are studied. 

§O. Introduction 

Consider a standard GI/G /1 queueing system having the inter-arrival time distribution 

function H(z) and the ~~vice time distribution function S(z). We assume that the queue 

under consideration is stable. In the context of queueing theory, such descriptive char­

acteristics as the number of customers in the system (denoted by N), the number served 

during a busy period (R), the waiting time of a customer (W) and the length of a busy 

period (B) are often of interest. Many papers have been devoted to studying extensively 

to obtain ergodic distributions of such random variables. 

Among those, the most notable results may be ones for GI/M/1 queues, l.e. S( z) is 

exponential (write S E EXP). For an arbitrary H(z) (H E ARB), this system results in 
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Distribution Properties in Queues 173 

that the conditional distribution function of W given W > 0 is exponential and that of 

the number of customers found by an arrival (N,arrival) is geometric. These results are of 

some interest in the sense that the exponentiality of S( x) is inherited to the distribution 

functions of W,w>o and N,arrival' This kind of inheritance has also been reported in Keilson 

[5] where he proved that the densities of both B and W,w>o are completely monotone if 

the density of S(x) is completely monotone (S E CM) and H E EXP (see e.g. [1,3,4] for 

the definitions of various distribution functions appearing hereafter in this paper). 

In a recent paper by Shanthikumar [14], it is shown that geometric compounding of 

i.i.d. DF R (decreasing failure rate) distibution functions is DF R. This striking result 

proves that the distribution of W is D F R when H E EXPand S E I M RL (increasing 

mean residual lifetime) or when S E DF Rand H E ARB. As a byproduct, he also 

showed that the distribution of R,is DFR when SE IFR in M/G/l queues. This paper 

studies such inheritance of distribution properties of discrete characteristics in M/G/l 

and GI/M/l queues, thereby extending Shanthikumar's results [14]. To do so, we first 

investigate discrete time Markov chains having monotone transition matrices with respect 

to the uniform stochastic orderings ~l, ~(_) and ~(+) introduced in Keilson and Sumita 

[9] and Whitt [15]. Various first passage times which are of independent interest for 

such Markov chains are then considered. By showing that some discrete characteristics in 

M/G/l and GI/M/l queues are expressible as the first passage times of Markov chains, 

distribution properties of those characteristics a.re studied. 

The construction of this paper is as follows. In Section 1, definitions and notation 

needed for the subsequent developments are given. In Section 2, Theorem 3.1 of Shan­

thikumar [14] is recaptured and extended accordingly from the point of view of preservation 

of the uniform orderings mentioned above. Based on this extention, we then study distri­

butions of three first passage times of a uniformly monotone Markov chain. Let N(t) be 

the numb~r of customers in the system at time t. For an M/G/l queue, the embedded 

process N" = N( T,,+) where T" is the departure epoch of the kth customer in the system 

constitutes a Markov chain on the state space {O, 1,2, ... } while so does N" = N( T,,-) for 

a GI/M/l queue where Th is in turn the arrival epoch of the kth customer. Some sufficient 

conditions under which the embedded Markov chains preserve the uniform orderings are 

derived in Section 3. The distribution of the number served during a busy period is studied 

in Section 4. Section 5 is devoted to M/G/l and GI/M/l queues with finite waiting rooms. 

§1. Some Preliminaries 

In this section, we give some definitions and notations needed for the subsequent studies. 

Let f(x, y) be a non-negative function defined on £. x t: where £. is either n = (-00,00) 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



174 M. Kijima 

or I = {- .. , -1,0,1· .. }. For Xn E E and Yn E E, 1 ::; n ::; p, we write 

I (Xl ... xp) = l(x~,Yd :: .. I(X~'Yp) 
Yl ... YP 

I(xp, yd ... f(xp, Yp) 

(1) 

The next definitions are due to Karlin [4]. The reader is referred to the monograph [4] for 

more detailed discussions. 

Definition 1.1. 

(a) A function I(x, y) is sign regular of order r (write I E S~) if, for every Xl < ... < xp, 

Yl < ... < YP and 1 ::; p ::; r, there exists a sequence of numbers each either +1 or -1 such 

that 

The number ep is called the sign of I (Xl ... Xp). In the case where ep can be chosen 
Yl ... YP 

as (_1)P(p-l)/2, we say that I is sign reverse rule of order r (f ERR,). If ep = +1 for 

every 1 ::; p ::; r, i.e. I (Xl ... xp) ~ 0 for every 1 ::; p ::; r, then I is called totally 
Yl ... YP 

positive of order r (f E T P, ). 

(b) A function g( x) of a single variable on E is said to be P6lya frequency of order r 

(g E PF,) if I(x, y) = g(x - y) is TP,. 

For a non-negative function g(x) defined on e having g(x) = 0 for X < 0, the following 

proposition holds. The proof is found in p159 of Karlin [4]. In what follows, we write, for 

example, g(x + y) E TP, if the function I of two variables defined by I(x, y) = g(x + y) is 

T P,. Other conventions should be understood in the same manner. 

Proposition 1.1. 

Then: 

Let g(x) be such that g(x) = 0 for X < 0 where X runs over e. 

(a) g(x + y) E RR2 in X,y ~ 0 if and only if g(x) E PF2. 

(b) g(x) E P F, implies that g(x + y) E R~ in x, Y ~ o. 
If g( x) is defined on I, the content of Proposition 1.1 can be understood via a matrix 

representation. Let (an) be a non-negative sequence defined on I such that an = 0 for 

n < o. For (an):'=o, define the two matrices A-and A + by 

(2) 
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These matrices play an important role in the sequel. A matrix A = (aij) is called totally 

positive of order r (denote A E TP,) if each 1) x P minor, p $; r, of A is non-negative. If 

each p x p minor, p $; r, of A has the sign (_1)P(P-l)/2, A is called sign reverse rule of 

order r (A ERR,). It is not hard to see that am E PF, and am+n E TP, in rn,n ~ 0 if 

and only if A - E T P, and A + E T P" respectively. Also am +n ERR, in rn, n ~ 0 if and 

only if A+ ERR,. The statements in Proposition 1.1 are readily verified for sequences via 

A- and A+. 

Remark 1.1. Let g(x) be given as in Proposition 1.1. 

(a) g(x+y) E TP" r ~ 2, in x, y ~ 0 does not imply g(x-y) ERR, in -00 < x, y < 00. To 

see this, consider a sequence (an)::'=o' Suppose am +n E T P2 in rn, n ~ 0 so that A + E T P2 • 

However, A-can not be RR2 except the trivi''l.1 case that an = 0 for all n. 

(b) g(x+y) ERR" r ~ 3, in x, y ~ 0 does not imply g(x) E PF,. For, suppose am +n E RRa 

in rn, n ~ 0, i.e. A + E RR3 • This does not imply A - E T Pa, since the non-negativity of the 

al a2 a3 

mmor ao al a2 is not guaranteed in general. Hence Corollary 3.7 of [2] is incorrect. 

o ao al 
o 

We next define important classes of distribution functions in applied probability by the 

aid of the total positivity, see [1,3,4]. Let X be a non-negative random variable having the 

distribution function F( x). If F( x) belongs to a class 1i of distributions, then we write 

either X E 1i or F E 1i for convenience. The survival function F( x) of F( x) is defined by 

F(x) = 1 - F(x) for x ~ 0 and F(x) = 0 for x < o. 

Definition 1.2. 

(a) A distribution function F(x) is said to be strongly unimodal (write F E SU), if the 

density I(x) = 1zF(x) exists and I(x) E PF2. 

(b) A distribution function F( x) is said to be P F2 , IF R, or D F R (F E P F2 , F E IF R, 

or F E DFR) if F(x) E PF2, 1'(x) E PF2, or Ji(X + y) E TP2 in x, y ~ 0, respectively. 

(c) A distribution function F( x) is said to have a completely monotone density f (x) (write 

F E CM) if I (x + y) E T P 00 in x, y ~ o. 

Remark 1.2. 

(a) FE SU implies both F E PF2 and FE IPR. FE CM implies F E DFR. 

(b) If F(x) has the density I(x), the failure rate function rF(x) = I(x)/ F(x) is defined 

whenever 1'(x) > O. For this case, F E IFR if and only if rF(x) is increasing, and 

FE DFR if and only if rF(x) is decreasing (in this paper, "increasing" and "decreasing" 

are used in the weak sense). Also, F E P F2 if a.nd only if h F (x) = I (x) / F (x) is decreasing 
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in z whenever F( z) > o. 
(c) The ordinary definition for F E CM is to require that (_1)nl(n)(z) ~ 0 for z ~ 0 and 

n ~ 0, where I(n)(z) denotes the nth derivative of I(z) with I(O)(z) = I(z). In [4], it is 

shown that FE CM if and only if I(z) is expressible as I(z) = J;" J-te-p"'dG(J-t) for some 

distribution function G(J-t). 0 

For a non-negative lattice random variable X, let In = Pr[X = n}, n ~ o. Define 

Fn = Pr[X ~ n] = L:;'==o be and F n = Pr[X ~ n] = Eh==n lie = 1 - Fn- l , n ~ 0, with 

F-l = o. The lattice counterpart of the classes of distributions described in Definition 1.2 

can be given using (In), (Fn) and (F n) in an obvious manner, see also [1,6,12]. A further 

definition is given for lattice distributions. 

Definition 1.3. The lattice distribution (fn)::"==o is called a Kaluza sequence (write 

In E K S) if the corresponding F+ in (2) is T P2. 

Remark 1.3. 

(a) By definition, it is obvious that CM c KS C DFR. 

(b) For the lattice distribution (fn)::"==o, the failure rate function is defined as TF(n) = 
In/Fn. The terms "IFR" and "DFR" are understood through rF(n) for lattice distribu­

tions. 

(c) The content of Remark 1.2(c) holds also for the lattice case. Here the kth difference 

t::.,(le) In is used instead of the kth derivative 1(1e)(z). In can be expressed as a mixture of 

geometric distributions. 0 

Let X and Y be non-negative lattice random variables having the distributions (an)::"=a 

and (bn)::'==a respectively. The ordinary stochastic ordering -<d is defined by X -<d Y if and 

only if Lh==n ale ~ Lf=n ble for all n ~ O. In Keilson and Kester [7], the following matrix 

is introduced to study the ordering -<d for a Markov chain on {O, 1,·· .}. Define T = (t;j) 

with tij = 1, i ~ j, and tij = 0, i < j, i.e., 

T= 

100 

110 

111 
(3) 

In the aid of T, one easily sees that X -<d Y if and only if aT ~ bT, where a = (aa, al,···) 
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and b = (bo, b1 ," .). Define the matrix 8 of the transpose of T, i.e. 

8= 

111 

011 

001 

177 

(4) 

It is also easy to see that X -<d Y if and only if a8 ~ b8. Hence as far as concerned 

with the ordering -<d, T and 8 play the same role. The inverse matrices of T and 8 are 

obtained respectively as 

1 o 0 

-1 1 0 

o -1 1 

1 -1 0 

and 8-1 = 
o 1 -1 

o 0 1 
(5) 

Keilson and Sumita [9] studied the uniform stochastic orderings -<l, -«_) and -«+). 

These orderings are defined in terms of T and 8. Here the difference between the two 

matrices gets significant. 

Definition 1.4. Let X and Y be non-negative lattice random variables having the 

distributions a = (an)::"=o and b = (bn)::"=o respectively. 

(a) X and Y are ordered in the sense of likelihood ratio ordering (write X -<I Y) if 

( : ) E TP2 • 

(b) X is uniformly smaller than Y in the negative direction (X -«_) Y) if ( : ) 8 E TP2. 

(b) X is uniformly smaller than Y in the positive direction (X -«+) Y) if ( : ) T E TP2 • 

It should be noted that -<I is stronger than -<: _) and -« +), i.e. X -<I Y implies that both 

X -«_) Y and X -«+) Y, and -<d is weaker than the three orderings. 

The next theorem plays a key role in the following developments. In the theorem, Part 

(a) is essentially shown in Lemma 2.3 of [13] and Part (b) is given in Lemma 2.1 of [14J. 

Part (c) seems new but can be proved in a similar manner to the proof of lemma 2.1 of 

[14] and the proof is omitted. 

Theorem 1.1. Let A and R be non-negative matrices. 

(a) Let R8 E T P2 and 8-1 RS ~ 0, where 0 denotes the zero matrix. If A8 E T P2 then 

AR8 E TP2 . 

(b) Let RT E TP2 and T- 1 RT ~ O. If AT E TP2 then ART E TP2 . 
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(c) Under the same conditions as in (a), if AS E RR2 then ARS E RR2. If AT E RR2 

then ART E RR2 under the conditions of (b). 

§2. Uniformly Monotone Markov Chains and Their First Passage Times 

Let {Xn; n 2:: O} be a discrete time Markov chain on the state space N = {O, 1, ... } 

governed by the transition probability matrix P. The state probability vector for Xn is 

designated by 1rn = (l!'n(k)hEN' where l!'n(k) = Pr[Xn = k]. If Xn ~i X n+1 for all n 2:: 0, 

the process {Xn; n 2:: O} is called uniformly increasing in the sense of ~i, where ~i is either 

~l, ~(-) or ~(+). If in turn X n+1 ~i Xn then it is called uniformly decreasing. The process 

is uniformly monotone when it is either uniformly increasing or decreasing. The aim of 

this section is to obtain sufficient conditions on the transition probability matrix P under 

which {Xn; n 2:: O} is uniformly monotone. As we shall see later, uniformly monotone 

Markov chains have interesting first passage time properties. 

Our first theorem shows that the T P2-ness of P, PS and PT preserves the uniform 

ordering ~l, ~(-) and ~(+h respectively. 

Theorem 2.1. Suppose Xo = 0 a.s. 

(a) If PE TP2 then Xn ~l X n+1 for all n 2:: O. 

(b) If PS E TP2 then Xn ~(_) X n+1 for all n 2:: o. 
(c) If PT E TP2 then Xn ~(+) X n+1 for all n 2:: o. 
Proof. Since 1ro = (1,0", .), one easily sees that Xo ~i Xl where ~i=~l, ~(_) and 

~(+). Hence Part (a) follows from Theorem 4.2 of [9]. For (b), suppose X n - l ~(_) X n , 

i.e., ( 1r;:1 ) S E TP2. Note that Q = (qij) = PS E TP2 implies S-IQ 2:: 0 since 

%qlcn - qkNin 2:: 0 for all i < k and j < n so that % 2:: qkj as n ---> =. Hence, from 

Theorem 1.1(a), 

( 
1rn ) S = ( 1rn

-1 ) SS-l PS E TP2 . 

1rn +l 1rn 

It follows that Xn ~(_) X n+1, proving (b). Statement (c) can be proved similarly. 0 

Let H be a non-empty subset of N and let {HXn ; n 2:: O} be a sequence of random 

variables defined as HXn 4: {Xn I Xm E H; 0 ::; m ::; n}, n 2:: O. Here 4: denotes 

equality in law. Let PH be a substochastic matrix obtained by deleting the rows and 

columns corresponding to the states in N - H. The distribution of HXn is denoted by 

H1r n = (Hl!'n(k) )kEN'-H. The matrix PH governs the sequence {HXn; n 2:: O} in the following 

way. For a given H1r n, the distribution H1r n+I is obtained by 

(6) 
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where 1 = (1,1,·· .)T (T denotes the transpose). 

Theorem 2.2. Let H be an arbitrary subset of N. 

(a) If Xo = min{i: i E H} a.s. then P E TPa implies HXn-<lHXn+l for all n 2: O. 

(b) If H has the maximal element, say C, i.e. C 2: i for all i E H, and if Xo = C a.s. then 

PET Pa implies HXn+l-<lHXn for all n 2: o. 

Proof. For (a), SInce H1rO = (1,0,···) one has . ( H
1r

O ) 
( 

H1rn-1 ) E T Pa. Suppose E 
H1r1 H 1rn 

TPa. Then from (6), 

(7) 

Since P E TP2 , so is PH. Hence ( H
1r

n ) E TP2 • The inductive argument then proves 
H 1rn+1 

Part (a). For Statement (b), we note that H1rO := (0, .. ·,0,1) so that ( H
1r

O ) E RRa. A 
H1r1 

similar argument to the prooffor (a) then leads to ( H1r n ) E RRa for all n 2: O. Hence 
H 1r n+1 

HXn+l-<IHXn , 0 

For an arbitrary H ~ N, PT E T Pa does not in general imply either P HT E T Pa or 

T- 1 PHT 2: O. For example, consider 

( 
0.4 0.3 0.3) 

A= ; 
0.3 0.2 0.5 ( 

1 0.6 0.3) il.T = . 
1 0.7 0.5 

Here, though A is not T P2 , AT E T Pa. If the third column of A is deleted, then the 

resulting A3T is not T Pa and T- 1 A3T is not positive. A similar example is readily 

constructed for that P 8 E T Pa implies neither P H 8 E T Pa nor 8-1 P H 8 2: O. Hence 

the same argument as in Theorem 2.2 can not be applied for the orderings -«_) and -«+). 

For a particular H, however, one has the next theorem. 

Theorem 2.3. 

(a) For H = {O, 1,···, Cl, C 2: 1, PS E TPa implies HXn-«-)HXn+1 for all n 2: 0 provided 

that HXO = 0 a.s. If HXO = C a.s. then P8 E l'P2 implies HXn+1-«-)HXn for all n 2: O. 

(b) For H = {j, j + I, ... }, j 2: 1, if HXO = j a.s. then PT E TP2 implies HXn-«+)HXn+l 

for all n 2: o. 
Proof. Let H = {O, 1,···, C} and let HXO == 0 a.s. so that H1rO = (1,0,···,0). This 

implies that (H
1r

O ) 8 E TP2. Suppose HXT/.-1 -«_) HXn , i.e. (H1rn-1) 8 E TP2. 

H1r1 H 1rn 
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We will show that ( H7r
n 

) S E TP2. For H7r n , one has from (6) that (H7r n ,O)P = 
117r n+l 

(en ll7r n +l,an ) for some an, where 0 = (0,0,···). Hence 

(8) 

S E TP2 implies S E TP2 • Thus, from Theorem 1.1(a), the 
( 

H7rn-l ) (H7rn-1 0) 
H7r n 117rn 0 

left hand side of (8) is T P2 so that ( en
-lll7r n ) SET P2 , which in turn implies the 

en H7r n +l 

desired conclusion. If HXO = C a.s., it is readily seen that ( 11
7r

O ) S E RR2 • Suppose 
117rl 

( 
H7rn-l ) SE RR2 . From (8) and using Theorem 1.1(c), one has ( H7r

n 
) S E RR2. 

H7r n H7r n +l 

Thus HXn+l --«_) HXn, proving Part (a). 

Next let H = {j,j+1,· .. } and suppose llXO = j a.s. Consider (O,ll7rn )P = (an, enH7rn+d 
for some an. Here 0 represents the zero vector (0, ... , 0). Then 

(9) 

Following the same arguments as in the proof for (a), one can show that HXn --«+) HXn+l> 

n ~ o. This completes the proof of the theorem. 0 

The following three first passage times of the Markov chain {Xn} are of interest to us. 

Define 

and 

Theorem 2.4. 

To 

To 

inf{n ~ 1 : Xn = 0 I Xo = O}, 

inf{n ~ 1: Xn > C I Xo = O}, C ~ 0, 

Tt = inf{n ~ 1: Xn > C I Xo = Cl, C ~ o. 

(a) If PE TP2 then To, Tt E KS and To E SUo 

(b) If PS E TP2 then To E IFR and Tj E DFR. 

( c) If PT E T P2 then To E D F R. 

(10) 

(11) 

(12) 

Proof. Statement (a) follows from Karlin [4]. (c) has been proved in Shanthikumar 

[14]. For (b), let H = {O, 1,···, C} and {HXn} be the sequence of random variables 
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obtained from {Xn} as before. Let r(n) be the failure rate function of Te, i.e., 

r(n) = Pr[Te = n I Te 2: n] == E [ 2: p(HXn - 1 , k)] 
,,~e+l 

(13) 

where P = (p(i,j)). Let 1Jn(k) = Pr[HXn ~ k] and write TIn = (1Jn(O), ... ,1Jn(C)), It is not 

hard to see from (13) that 

e 
r(n + 1) - r(n) = 2:(qie - qi+t,e)(1Jn-l(i) - 7}n(i)) (14) 

i=O 

where Q = (qij) = PS. Here 7Jn-t(C) = 7Jn(C) := 1 is used. From Theorem 2.3(a), one sees 

that HXn - 1 -«_) HXn , provided that HXO = 0 a.s. This implies that HXn - 1 -<d HXn so 

that Tln-l 2: TIn' see [9]. On the other hand, Q E TP2 implies that qie 2: q"e for i < k. Thus 

r(n) is increasing in n (see also Shaked and Shanthikumar [13)). To prove Tt E DFR, let 

r+ (n) be the failure rate function of Tt. It is evident that r+ (n + 1) - r+ (n) has the same 

expression as the right hand side of (14). The only difference is that HXO = C a.s., which 

in turn yields HXn -«_) HXn- 1 so that Tln-l ~ "In' Hence r+(n) is decreasing, completing 

the proof. 0 

Remark 2.1. From (14), it is sufficient for Te ElF R that 

(15) 

As we have already seen, even though the original process {Xn} is stochastically increasing, 

the sequence ofrandom variables {H Xn} needs not be so. The condition in (b) of Theorem 

2.4 simply ensures (15). 0 

§3. Embedded Markov Chains Associated with M/G/l and GI/M/l Queues 

In this section, we derive a condition for N,., the number of customers in an M/G/l 

queue left by the kth departing customer, to be uniformly monotone. For a GI/M/1 queue, 

N" is defined as the number of customers seen by the kth arrival. A simple condition for 

uniform monotonicity of this case is also obtained. 

Let PA(n, t) be the Poisson kernel defined by 

{ 

(At)n-I 

) 
A (n-l)! exp{ --'At}, n = 1,2", " 

p~(n, t = 
8(t), n = 0, 

for A, t 2: O. Here 8(t) is the delta function, meaning that 8(t) 

f: 8(t)dt = 1. Consider then the integral transformation 

g(n) = fJO p~(n, t)f(t)dt, 

(16) 

o for t > 0 and 

(17) 
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for f(t) defined on [0,(0). We first see properties of the integral kernel p>.(n,t) and the 

transformation (17). 

Proposition 3.1. 

(a) p>.(n, t) is TPoo in n 2 0 and t 2 O. 

(b) p>.(rn, t) * p>.(n, t) = p>.(m + n, t), rn, n 2 0, where * denotes the convolution with 

respect to t. 

(c) f(x + y) E SR. in x, Y 2 0 if and only if g(m + n) E SR. in m, n 2 0 having the same 

sign as for f(x + y). 

Proof. Let 5.(t) = e:e-·t so that 5.(t) -+ 5(t) as e: -+ 00. It is obvious that p>.(n, t) E 

TPoo in n 21 and t 2 0 (see Karlin [4]). It is aslo easy to see that pHn,t) defined by 

P>. (n, t) for n 2 1 and 5.( t) for n = 0 is T P 00 in n 2 0 and t 2 0 for sufficiently large e:. Since 

the total positivity is preserved under limiting operations, one has Part (a). Statement (b) 

is immediately derived by taking the Laplace transform on the both sides. (c) is obtained 

by applying Theorem 5.4 in p.130 of [4] (see also Theorem 3.6 of [2]). 0 

For a distribution function A(x) with a positive support, define the three vectors a(..\) = 

(a n (..\)), a-(..\) = (a;(..\)) and a+(..\) = (a~(..\)) by 

1 loo 
an (..\) = X 10 p>.(n + 1, t)dA(t), n 2 0, (18) 

1 loo 
a;;-(..\) = X 10 p>.(n + 1, t)A(t)dt, n 2 0, (19) 

and 

a~(..\) = 100 p>.(n, t)A(t)dt, n 2 0, (20) 

respectively. When the meaning is clear, the parameter ..\ is dropped in the above notation. 

It should be noted that, if a distribution function belongs to IF R or P F2 , it necessarily 

has a positive support. It is readily checked that 

(21) 

and 

n > O' - , a+ = aT. (22) 

Let ..\ be the arrival rate in an M/G/l queue and A(x) be the service time distribution 

function. Let N(t) be the number of customers in the system at time t and let r" be 

the departure epoch of the kth customer from the system. It is well known that the 

embedded process N" = N( r,,+) constitutes a Markov chain on.N. For a GI/M/l queue, 

..\ is considered as the service rate and A( x) the inter-arrival time distribution. The process 
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N" = N( Th-) for the GI/M/1 queue also forms a Markov chain on N where Th is in turn 

the arrival epoch of the kth customer at the system. Define the matrices 

ao al a2 a+ 
1 ao 0 

U= 
ao al a2 

and L = 
at al ao 

(23) 
0 ao al at a2 al 

It is obvious that the matrix U governs the Markov process {N,,} associated with the 

M/G/1 queue whereas L governs that of the GI/M/1 queue. 

Lemma 3.1. 

(a) If A E SU then both U and L are TP2 • 

(b) If either A E PF2 or A E IFR with an decreasing in n then US, LT E TP2. 

(c) If A E IFR then UT, LS E TP2. 

Proof. If a(x) = f;A(x) exists and a(x) E PF2 then a(x + y) E RR2 in x, y 2: 0 from 

Proposition 1.1(a). Proposition 3.1(c) then shows that am +n E RR2 in rn, n 2: 0 so that 

an E PF2. Hence, noting that A- in (2) is TP2, U, LE TP2. Similarly, Part (c) can be 

proved by noting the relation (22). For Part (b), let A E IF R. Then a; E P F2. This is 

equivalent to saying that 0 ::; (a;)2 - a;-la'~+l = (a;_l)2 - a;_2a; + Han - an-d from 

(21). If an::; an-l then (a~_1)2 2: a~_2a~ must hold. Since the TP2 property is a local one 

(see Theorem 2.2 of [8)), one has a;:; E P F2. A E P F2 evidently implies a;:; E P F2. The 

conclusions in (b) are now immediate. 0 

It should be noted that the stability condit.ions p AJoOO A(x)dx < 1 for the M/G/1 

queue and p-l < 1 for the GI/M/1 queue respectively are not required in Lemma 3.1. 

Accordingly, for any p, one has the following theorem. 

Theorem 3.1. Suppose No = 0 a.s. 

(a) If A E SU then N" ~l Nk+l for all k 2: 0 in both M/G/1 and GI/M/1 queues. 

(b) If either A E P F2 or A E IF R with an de-creasing in n then N" ~(_) Nk+l for all k 2: 0 

in M/G/1 queues and N" ~(+) Nh+l for all k 2: 0 in GI/M/1 queues. 

(c) If A E IFR then N" ~(+) Nlc+l for all k 2: 0 in M/G/1 queues and N" ~(-) NHl for 

all k 2: 1 in GI/M/1 queues. 

Proof. The theorem is immediate by combining Theorem 2.1 and Lemma 3.1. 0 

For a GI/M/1 queue, let p-l < 1 so that N" -+ Noo in distribution. It is well known 

that Noo is geometrically distributed for any inter-arrival time distribution. 

Consider next an M/G/1 queue. For the stability condition, we require p < 1. Then, 

Nh -+ N 00 in distribution and N 00 = V + K where V and K are independent of each other 
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and V is the number of arrivals during a service. Let 1'(z) = E::"=o Pr[K = n]zn. 1'(z) is 

given by 

() (l-p)(l-z) ( )[ 1-a(.x-.xz)]-1 (24) 
l' z = = 1 - p 1 - p ---,---,------'----..,.-----'--

a(.x - .xz) - z .x(1 - z)ES 

where a(s) = 1000 e-""dA(a:) and ES = 1000 A(a:)da:. The Laplace-Stieltjes transform of the 

residual lifetime distribution AR(a:) of A(x) is given by (1- a(s))/sES. Define 

(25) 

as in (18). It is readily seen that 

~ Rn l-a(.x-.xz) 
~anz = (.x-.xz)ES . (26) 

Let K;;', m ~ 1, be independently and identically distributed by (a~!)go and let L be 

geometrically distributed with the parameter p. Assume that {K;;'} and L are independent. 

Equation (24) then implies that K 4: E~=l K;;'. 

Theorem 3.2. Let K be defined as above for the M/G/l queue. 

(a) If A E IMRL, i.e. its residual lifetime distribution AR(a:) is DFR, then K E DFR. 

(b) If A E CM then KIK>O E CM. 

Proof. Part (a) follows from Theorem 3.5 of [14]. Next, let A E CM. Then AR(a:) 

is also CM. If we write the Laplace-Stieltjes transform of AR(a:) by aRCs) and j3(z) = 

aR(.x - .xz) then 

1'(z)= 1-p =l_p+ p(l- p),B(z). 
1 - p,B(z) 1 - pj3(z) 

Since aRCs) is of the form 1000 1t;dG(I-') for some distribution function G(I-') on [0,00), 

j3(z) = I~ t:~dG(O) for some distribution G(O) on (0,1), where 0 = ~~I' < 1 (A(O+) = 0 

implies that G(O+) = 0). Note that ,B(z)- is the generating function of a completely 

monotone sequence if and only if ,B(z) has simple poles located at (1,00) and j3(z) is 

increasing in z between these poles. A similar argument as in Theorem 3.1 of [5] then 

proves (b), completing the proof. 0 

§4. The Number Served during a Busy Period 

Let R be the number served during a busy period for a queue and denote gn = Pr[R = 
n], n ~ 1. Define the generating function of R by O'(z) = E:=l gnzn. For the M/G/1 

queue having the arrival rate .x and the service time distribution A(a:), it is well known 

that O'(z) = m(.x - .xO'(z)) where a(s) = 1000 e-""dA(x). 

Theorem 4.1. For an M/G/1 queue, if A E CM then R E CM. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Distribution Properties in Queues 185 

Proof. The theorem can be shown by mimicking the arguments in the proof of Theo-

rem 2.2 in Keilson [5]. 0 

Consider the Markov chain having the transition matrix of either U or L in (23). Here 

we require the stability condition to ensure that the Markov chain is positive recurrent. 

It is easy to see that To defined in (10) for this Markov chain represents the number of 

customers served during a busy period. Combining the results in Theorem 2.4 and Lemma 

3.1, one has: 

Theorem 4.2. 

(a) If A E SU then RE KS for both M/G/1 and GI/M/1 queues. 

(b) If either A E PF2 or A E IFR with an decreasing in n then R E DFR for GI/M/1 

queues. 

(c) If A E IFR then R E DFR for M/G/1 queues. 

We note that (c) of Theorem 4.2 is proved in Shanthikumar [14]. 

In Kijima [10], the Markov transition matrix A = (aij) such that aij = 0 for i > j + 1 

or j > i + 1 is called a semi-triangular matrix and first passage times of the associated 

Markov chain are studied. Because of the skip-free nature of the Markov chain governed 

by such matrices, more about the first passage time To may be derived. For example, let 

H = {1, 2, ... } and let 1rn = (7rn (1), 7rn (2), ... ) he defined by 

(27) 

starting with 1ro = (1,0", .). It is then easy to see that 

gn = Pr[Xn = 0; Xm 2: 1, 1 ~ m ~; n - 1 I Xo = 0] = ao7rn-l(I), (28) 

where gn = Pr[To = n], n 2: 1. Let en = '1r'n1, n 2: 0, so that en = 1roU'H1. Since 

(O,1r n )U = (ao7rn (1),1r n+1), one has 

(29) 

Note that en -+ 0 as n -+ 00 since U governs a positive recurrent Markov chain. Let 

ro(n) = Pr[To = n I To 2: n]. It then follows from (29) that 

(30) 

Hence ro(n) is decreasing in n if and only if en E KS. 

For a matrix P = (pijm~, define the m x n submatrix [P]mn of P by [P]mn = 

(Pi; )~~,;=1' Consider the matrix [U H]n+2,n+1 and suppose [U H]n+2,n+1 E T P2 . It is easy to 
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see that this is equivalent to that ahj ah-l decreases in 1 S k S n + 1. Since?ro = (1,0, ... ), 

[ ( :: ) lET P2 . From (27) and the upper semi-triangularity of U H, it then follows 

2,n+2 
that 

[ ( :: ) 1 = [( :: ) 1 [U H]n+2,n+1 E T P2· 
2,n+l 2,n+2 

(31) 

Repeating the argument, one finally has [( ?r?r n ) lET P2 • Equivalently, 
n+l 22 

From (27) and (28), 9n+2 = a19n+l + a~lI'n(2). Hence 

9n+1 > 9n+2 - a19n+1 and 9n+1 > 9n+2. 
9n+2 - 9n+3 - a19n+2 9n+2 - 9n+3 

(32) 

Since [U H]h+2,h+1 E TP2, 1 S k S n, it can be proved that 9h+1/9h'increases in 2 S k S 
n + 2. Note that 92 = aOal and 91 = ao so that 92 - a191 = O. Thus (32) holds also for 

n = O. In summary, if ah/ah-l decreases in 1 S k S n then Pr[To = k + 1]/ Pr[To = k] 

increases in 1 S k S n + 1. 

§5. Queues with Finite Waiting Capacity 

In this section, we consider an M/G/l queue with finite waiting capacity, say C. That 

is, the maximum number of customers in the system including the customer being served 

is (C + 1). Customers who arrive when the system is full are lost. Of interest for this 

system are the number served until a customer is first lost when the system starts with no 

customer (denote L o), and that of when it starts from being full (L). Note that Lo = Tc-l 

and L = T"J -1, where Tc and T"J are defined in (11) and (12) respectively. As for Theorem 

4.2, one easily has, from Theorem 2.4 and Lemma 3.1: 

Theorem 5.1. For an M/G/l queue with finite waiting capacity, 

(a) If A E SU then Lo E SU and LE KS. 

(b) If either A E P F2 or A ElF R with an decreasing in n, then Lo ElF Rand L E DF R. 

Other quantities of interest are e.g. the number served during a busy period given that 

no customers are lost (c+ITlO ), the number served until a customer is first lost in a busy 

period (OT1 ,c+1), etc. Here IcT'j, k < i < j, denotes the upward conditional passage time 

from i to j and jT;1c is the downward conditional passage time from i to k given no visits 

to.N - {k + 1,"',j -I}. Symmetry among these conditional passage times has been 
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discussed in Kijima [11). Distribution properties of such quantities as described above can 

be studied using the results in [10,11). 

For a GIIMll queue with waiting capa<:ity (C - 1), similar results to above hold, 

if variables are defined in terms of arrivals. Moreover, let H = {O, 1, ... ,C} and let 

/To(z) = 2:::"=1 Pr[Lo = n)zn. From Theorem 1.5 of Kijima [10), it can be readily seen that, 

for a skip-free positive Markov <:hain, 

() ne 1- Uj 
/To Z = , 

j=O 1 - UjZ 
(33) 

where Uj are the eigenvalues of the strictly substochastic matrix LH so that \Uj\ < l. 

This means that if Uj are all real and positive, Lo is represented as a sum of independent 

geometri<: random variables, whi<:h is P Foo. A suflkient condition for all Uj to be real and 

positive is that LH E TPoo ' For, if so, one nas Lo E PFoo whose asso<:iated generating 

function is as in (33), see Karlin [4). However, LH E TPoo is not necessary. Indeed, one can 

easily construct such lower semi-triangular matrices that are not T P 00 but have positive 

eigenvalues only. 
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