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Abstract Consider a discrete-time optimal stopping problem with a fmite planning horizon in which an offer 

passed up i ~ 0 periods ago becomes unavailable at the next time with a known probability Pi' provided that it 

remains available at present. The objective is to maximize the expected discounted gain where the term gain means 

the value of the offer accepted less the total search cost p,lid up to the termination of the process with its accept­

ance. The main results obtained are the next four. (1) Let a and b be, respectively, the lower bound and the upper 

bound in the distribution of offer w. Then the optimal stopping rule has the following property. For at least one 

set consisting of past offers available at present, there exists the following two critical numbers ~ and ~' such as 

a < ~ < ~ , < b. For a given present offer w, if ~ ~ w ~ ~', pass up it and continue the search; otherwise, stop the 

search with accepting the best of offers available at present. The necessary and sufficient condition for the optimal 

stopping rule to have the property is fJ/J. - c > a where fJ, /J., and c are, respectively, a discount factor, an expectation 

of offer w, and a cost per search. The property is called a double reservation value property or DRY-property for 

short. (2) The property gradually disappears as a planning horizon tends to infinity, with totally vanishing in its 

limit. (3) In the limit of a planning horizon, it suffices to memorize only the present offer with neglecting all past 

offers; in other words, the problem is eventually reduced to an infinite horizon optimal stopping problem with no 

recall. (4) Under the optimal stopping rule, each of the maximum expected discounted gain attained, the expected 

number of searches made, and the expectation of the offer accepted is less than or equal to one in an optimal 

stopping problem with recall, and both become the same in ':he limit of a planning horizon. 

L Introduction 

In almost all models of an optimal stopping problem presented so far [1-15]' the as­

sumption has been made that an offer once inspected and passed up either becomes forever 

unavailable or remains forever available. The former case is called It'itn-no-reclJii, the 

ratter It'itn-recllii. In applying these models to actual economic or managerial decision 
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146 S. IkutQ 

problems, however, it is rather realistic to postulate that the future availability of an 
offer once passed up is uncertain. An optimal stopping problem defined on such an assump­
tion is said to be lI'itD-uncertain-recall [4], [6]. Here let us show three examples of 
with-uncertain-recall; the auxiliary verbs in italics in the sentences below imply the 
uncertainty of recall. 
a. House purchasing proble. 

Suppose you are searching for a house in which you live, and suppose you have just 
found one for sale. If it does not seem to be desirable enough, you will avoid a ready 
answer about whether to purchase it or not and continue the search in the attempt to find 
a more desirable one. Such suspension, however, will involve the risk that, even if you 
want to buy it later on, it lI'il1 have already been purchased by any other person; what is 
worse, the misfortune may follow that more desirable ones than it will not appear within 
the remaining planning horizon. Taking such risk into consideration, you must decide 
either to stop the search with accepting one of the most desirable of houses which were 
founded so far and are available at present or to continue the search in the attempt to 
find a more desirable one. 
b. Job search proble. 

Suppose you, unemployed at present, have just now received an employment notice from 
one of the companies to which you applied for a position. Then, if you postpone your de­
cision of whether to join the company or not, it lI'ill employ other applicant in place of 
you. In such a situation, as being concerned about the possibility of missing the present­
ly available employment opportunity on the one hand and as expecting the possibility of 
encountering more desirable employment opportunities afterward on the other, you must de­
cide a company to join out of ones sending you employment notices one after the other be­
fore your unemployment insurance expires. 
c. RID proble. 

In a manufacturing company, it is a crucial management problem to decide which pro­
duct to be marketed as a new product among ones developed so far by its R&D department 
before other companies 11'111 put products on the idea similar to or identical with it on 
the market. 

2. Model 

Consider the following version of the standard discrete-time stopping problem with a 
finite planning horizon [13]. First, for convenience, let points in time be numbered back­
ward from the final point in time of the horizon, termed ti.llle 0, as time 0, time 1, ... and 
so on. If some fixed cost c ~ 0, searcD cost, is paid over a period (interval between 
two successive times), then you can get an offer, say such as wanting to buy one of your 
assets, at the end of the period. Each offer has a value; values of successive offers, w, 
w', ... , are assumed to be independent identically distributed random variables with a 
known continuous distribution function F(w) having a finite expectation /.1; for given 
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Optimal Stopping Problem 147 

numbers a and b with 0 < a < b « (0), let F(w) ::: 0 for w:$ a, 0 < F(w) < 1 
for a < w < b, and F(w) ::: 1 for b :$ w (so a < 4 < b). Let PJ, j ::: 0,1,···, 
be the probability that an offer inspected and passed up j periods ago becomes unavail­
able at the next time, provided that it remains available at present (so Po is the prob­
ability that an offer made at present becomes unavailable at the next time). Postulate 
that there exists a fixed non-negative integer N such that 0 < pj < 1 for j < N 
and PJ ::: 1 for j ;;; N; in other words, every offer has at most N periods of age. 
Assume that, for any past offer, it can be known instantly without paying any additional 
cost whether it is available at present or not. Finally, throughout the paper, let 

(2.1) /34- c > 0 

where /3 (0 < /3 :$ 1) represents a per-period discount factor. Thi s is the assumption 
made in order not to render the problem meaningless, implying that the present value of 
the expectation of an offer w obtained by an additional search, /34, always makes up for 
its search cost c. 

Below, by the term expected discounted gain, we shall mean the expectation of the 
present value of the offer w accepted less the present value of the total search cost paid 
over all times up to the termination of the proeess with its acceptance. The objective in 
the model is to find the optimal stopping rule, maximizing the expected discounted gain, 
provided that an offer must be accepted up to tJ.me o. We shall call the problem an optilllal 

stopping problelll lYitn uncertain recall. Here note that the optimal stopping problem wi th 
no recall is the special case with N::: 0 of the optimal stopping problem wi th uncertain 
recall defined above. The optimal stopping problem with recall, however, is not so; it is 
the case of N ~ 00 in PJ = 0 for N > j ;~ o. 

The pioneering works on this subject were made by Landsberger and Peled [6] and by 
Karni and Schwartz [4]. In the former, it is assumed that the best offer avai lable at 
present becomes unavailable at the next time with a known probability, with all offers 
except the best being neglected. They pointed out that the model in which the probability 
of future unavailability is defined for every past offer will become remarkably intract­
able in its mathematical treatment. The latter literature dealt with the case with such 
difficulties, succeeding in drawing some interesting conclusions, however, on some rather 
severe assumptions: the probability is strictly decreasing in age, the search cost is 
strictly increasing with the number of searches, and so on. 

In Section 3, the fundamental equations of the model is given, and Section 4 exempli­
fies the structure of the optimal stopping rule by using the simple case of N::: 1. In 
Section 5, the conclusions deduced analytically in Section 6 that follows are summarized 
with some considerations and numerical examples. 

3. Functional Equation 

Suppose the search process starts from time t, and let WJ denote an offer of time 
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148 s. Ikuto 

t+j (j periods ago). If the offer W.I is available at present (time t), let kj = Wj; 

otherwise, k.J = 0, so always ko = wo. Wi thout loss in generality, the kj can be de­

fined on D ~ k.i ~ b where k.l = D means that offer Wj has already been unavailable. 

Let K = (ko,kl,···,kN) and G = (k 1 ,k2 ,"',kN), vectors. For the convenience of later 
di scussions, we shall define vectors K and G at time t + 1 (previous time) by, respec­

tively, K" = (k;;,kr,···,k~) and G" = (kr,k~,···,k~) and those at time t-l (next time) 

by, respectively, K' = (kb,k~,···,k~) and G' = (k~,k~,···,k~). The relationship among 

K", K, and K' can be illustrated as Figure 1. Let the maximum elements in vectors K", 
K', K, G", G', and G be denoted by, respectively, k", k', k, g", g', and g. 

random sllllPle ----.,. 
K"= (~, kr, ... , kJ-l, k'j, kJ+l' ... , k'~-l' k~) time t+l (previous) 

random SaDIP 1 e ----.,. '" '" '" '" '" '" '" '" '" 
K = (ko, kl' ... , kj - l , kj , kj +l , ... , kN-l, kM) time t (present) 

random samp 1 e ----.,. '" '" '" '" '" '" '" '" 
K'= (k~, k~, ... , k~-l' k~, k~+l' "., k~-l' k~) tiE t-l (next) 

Pig. 1 Relationship among the previous state K", the present state K, 
and the next state K' 

A state of the search process at each time is described by the vector K, so a state 
space of each time is given by I = {KID ~ kj ~ b, j = D,l,···,N}. Let ao and al 
denote, respectively, an action of continuing the search to find an offer and an action 
of stopping the search with accepting the best offer k, and let At denote an action 
space of time t; clearly Ao = {a d and At = {a 0, a d for t;;;: 1. Then a stopp­
ing strategy is provided by the time sequence of history-dependent, randomized stopping 
rule where a stopping rule of time t ;;;: 1 when in state K is defined by the vector 

Pt(K) = (Pt.o(K),Pt.l(K» in which Pt.o(K)(Pt.l(K» represents the probability of tak-

ing action a o( a d at time t, dependent on the entire history of the process up to the 
previous time. Now define 

(3.1) VI. (K) = the maximum expected di scounted gain attainable over all possible 

stopping strategies, starting from time t when in state K( E I), 

(3.2) Vt(G) = S vtCwo,G) dF(wo), 

(3.3) VI. = Vt.(D,D,···,D). 

From the definition of the problem, clearly 

(3.4) vo(K) = k, K E I. 

We shall call the stopping strategy attaining the vt(K) for all K E I and all 

t ;;;: 1 an optlioal stopping strategy, proved to be history-independent as well as non-
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randomized [3], and each of the stopping rules composing the optimal stopping strategy an 

optilllal stopping rule. 

Now suppose the process starts from time t ~ 1 when in state K, using the optimal 

stopping strategy. Then, if action al is taken, the gain obtained is k. If action ao 
is taken, then the expected discounted gain obtained UL(K) is given by the present value 

of the maximum expected discounted gain attained by starting from time t -1 minus the 
search cost c, paid to get an offer at time t-1. Here note that the UdK) is independ­

ent of offer kN due to the assumption of PN = 1; it is expressed as follows. 

(3.5) UL(K) = /3 ~ P(K,G') J VL-l(W,G' la'F(w) - C 

where 
(3.6) r(K) 

G'Er(K) 

= /3 ~ P(K,G' )Vt-l(G') - C 
G'Er (K) 

{(k~,k~,···,k~)lfor j=O,l,''',N-l, if kJ>O, then 

k.l+1=O or kJ; otherwise, kj", = O} 
N-l 

(3.7) P(K,G') = IT p.l(kj ,kj~d 
J=o 

with 
1-pj if kJ = k.l+l > 0, 
pj if k.l > 0 and kJ+l = 0, 

if kJ k.l+l = O. 
Here 

(3.9) Ut(O,O,"',O,kN) = /3VL-1 - C. 

For the convenience of mathematical analysis in Section 6, we shall transform (3.5), 
(3.6), and (3.8) as follows; 

(3.10) 

where 
(3.11) 

(3.12) 

P(K ,G' )V L-l (G') -- c 

Ll(K) = {(k~,k~, .. ·,k~)1 k.l+1 = kJ or 0 for j = O,l,"',N-l}, 

The equivalence of (3.5) and (3.10) can be verified as follows. When K > 0, the equiva­

lence is obvious. Let K ~ O. In the case, for example, consider the case of N = 2 

and K = (WO,0,W2). Then, using (3.5), we have 

This is transformed into 

UL(WO,0,W2) = /3(POP1Vt -1(0,0) + Po(l-pdVL-1(O,0) 

+ (l-PO)P1VL-1(WO,0) + (l-PO)(l-Pl)VL-dwo,O» - c, 

which is identical with what is expressed by using (3.10). From the simple example, it is 
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150 S. Ikuta 

immediately realized that not only Ut.(ko.k1.k2) for any (ko.k1.k2) ;;;; 0 but also. in 

general. Ut.(K) for any K;;;; 0 can be expressed by using (3.10). 

Here notice that PJ(kJ .kJ+1) defined by (3.12) is independent of the value of kJ; 

it only depends on whether or not kJ is replaced by 0 at the next time where. for kJ 
already with value O. the replacement is regarded as that of toe tJ by neh'tJ. Accordingly. 

it follows that we may write (3.10). (3.7). and (3.12) as follows. 

(3.13) Ut.(K) /3 ~ peG' )Vt.-1eG') - C. 
G'E~(K) 

N-1 
(3.14) P(G') = IT PJ(kJ+1) . 

j-O 

1-PJ if kJ+1 = kJ • 
(3.15) pj(k~+l) = pj if kJ+l O. 

Remark 1. (a). The sum of peG') over t.(K) equals 1. (b). peG') is 

independent of K. only depending on whether or not each element of K is replaced by 

value O. 

From the principle of optimality in dynamic programming. we have 

(3.16) vt.(K) = max{k. UdK)}. t;;;; o. 

Then the optimal stopping rule of time t is provided as follows: if Ut(K) - k < O. stop 

the search with accepting the best offer k; otherwise. continue the search. Define 

(3.17) 

(3.18) 

(3.19) 
N 

St = U St(j). 

j 0.1. ···.N. 

0.1. ···.N. 

Suppose K E St.. Then. for at least one jE{O.l.···.N}. K E St(j); i.e .• Qt(K.j) 

< O. Consequently. since Ut(K) - k :$ Ut(K) - kJ = Qt(k.j) < O. it follows that 

stopping is optimal. On the contrary. suppose K ~ St. Then since K ~ S tCj) for all 

j; i.e .• Qt(K. j) ;;;; 0 for all j. we have Ut. (K) - k ;;;; O. implying that continuing is 

optimal. Accordingly. we may call the S t. a stop region and its complement. denoted by 
Ct. a continuation region. 

The successive sections except Section 6.5. are exclusively devoted to characterizing 

the structure of the continuation region C t and its sequence Co. Cl. ... as well as 

proving that the inequality /3/1. - c > a is the necessary and sufficient condition for 
the optimal stopping rule to have DRV-property defined below. 

DE FIN I T ION O. The optimal stopping rule is said to have a double reserva­
tion value property or fJRY-property for short when. for at least one (J. there exi st 

such two critical values ~ and ~'wi th a < ~ < ~'< b that. for a present offer 

wo. if ~ :$ wo :$ ~', then continuing is optimal; otherwise. stopping is optimal. 

Finally. we shall provide a lemma used in the subsequent sections. Let 
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00 

(3.20) T(x) = J (w-x) dF(w), -00 < w < 00, 
x+ 

(3.21) H(x) = /3(x + T(x» x - c, 

which are continuous functions of x, and let the smallest solution of H(x) = 0, if ex­

ists, be denoted by h'; i.e., 

(3.22) H(h') = O. 

Throughout the paper, a function ~ (x) is sa:.d to be increasing (decreasing) in x if 

~ (x) ~ (~) ~ (y) for any x > y and strictly increasing (strictly decreasing) in x 
if ~ (x) > ( <) ~ (y) for any x > y. Furthermore, a function ~ (x) of a vector x 

is said to be increasing (decreasing) in x :.f it is increasing (decreasing) in each 

element of x. 

LAMMA O. Wehave 
(a) T(x) is decreasing and convex on -00 < x < +00, strictly decreasing on x ~ b, 

and equal to J.1 - x on x ~ a and to 0 on b ~ x. 
(b) x + T(x) is increasing and convex on -- 00 < x < +00, strictly increasing on 

a ~ x, and equal to J.1 on x ~ a and to x on b ~ x. 
(c) If (1- /3)2 + c2 t:- 0, then h' exists. In addition, if a < /3J1. - c, then 

a < h' < b; otherwise, h' = /3J1. - c < b. 
(d) If (1-/3)2 + c2 = 0, then h' = b where H(x) > 0 for x < h' and H(x) 

= 0 for h' ~ x. 

Proof: Easy. 0 

4. Simple Case 

Let N = 1, and suppose the search process starts from time 1 when in state K­
(ko,kd. Then v1(ko,kd' = max{max{ko,kd, U,(ko,kd} where 

(4.1) Udko,kd = /3(PoJwdF(w) + (l-po)Jmax{w,ko}dF(w» - c 

= /3(PoJ.1 + (l-Po)(ko + T(ko») - c 

in which w represents an offer of time O. In the case, the stop region of time 1 is 
given by S1 = S,(0)US 1(l) where 

S,(O) = {(ko,k,) IQ,«ko,k, ),O) < A}, Q,«ko,k , ),O) = U,(ko,k , ) ko, 

S,(1) {(ko,k,)IQ,«ko,k,),l) < A}, Q,«ko,kd,l) = U,(ko,k , ) k,. 

In the discussions below, note that U,(h,kd = /3J1. - c for h ~ a, is strictly 
increasing in h ~ a, and is independent of k, and that U,(h,kd - h is strictly 
decreasing in h. 

The continuation region C 1 is given by the domain enclosed by the bold lines in 
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Figure 2 where the straight line re and the curved line de are the loci of points 

(ko,k , ) satisfying, respectively, U,(ko,kd - ko = 0 and U,(ko,k, ) - k, = 0; the 

curved line is an increasing function of ko. In the figure, h, (1) = U, (O,h , (1» = /3J1. 
- c > 0, and h, is the solution of U,(h,k,) - h = 0, positive and unique, where 

h, = U,(h
"

k, ) ~ U,(O,k') = h,(l). 

ko 

f' 

f 

G +- r----r--I 

Fig. 2 Continuation Region C, (N = l) 

Now, suppose h, = h,(l). Then since the curved line re is reduced to a straight 

line perpendicular to k,-axis, it goes without saying that the optimal stopping rule has 

not DRV-property. Next, suppose h, > h'( l). Then it is easily realized from Figure 2 

that the optimal stopping rule has DRV-property. In fact, for any k, with h, (1) < k, 

< h" the two critical numbers .; and ';' characterizing the property are given by, 

respectively, the solution of U,(~ ,k , ) = k, and the solution of U,(~',kd = ';'; 

i.e.,';' = h, . Here a < ~ <';' < b is proved by reductive absurdity as follows. 

If b ~ C, then ';' = .B(PoJ1+(1-po)';') - c, yielding C = (.BPo.:.L-c)/(l­

.B(1-po» = J1 - «(l-/3)J1+c)/(l-/3(l-po» ~ J1 < b, if e ~ .;, then C ~ 

U,(';,k,) = k, < h, = ';', and if .; ~ a, then k, = .B(PoJ1+(l-Po)J1) - c = .BJ1. 
- c = h, (1). From the above, it follows that it is only when hI > hI (l) that the 

optimal stopping rule of time 1 has DRV-property. 

If /3J1. - c ~ a, then since U,( /3J1. -c,k , ) = /3J1. - c, we get h, = /3J1. - c = 

h,(l) from the uniqueness of the solution to U, (h,k,) = h. On the concrary, if .BJ1. - c 

> a, then h, = U, (h
"

k, ) ~ U,(h , (l),k,) = U, ( /3J1. - c,k , ) > U,(a,k , ) = .BJ1. - c = 

h,(l). Consequently, it is concluded that the necessary and sufficient condition for the 

optimal stopping rule of time 1 to have DRV-property is /3J1. - c > a. It is proved in 

Section 6.4. that this holds for any t ~ 1 and any N ~ 1. 
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5. Conclusions and Considerations 

Define the following sets: 

(5.1 ) A {KID :;;; kj :;;; a, j = D,l,···,N}, 
(5.2) B = {KID :;;; kj :;;; b, j = D, 1, .•. ,N}, 
(5.3) M = {KiD :;;; kj :;;; /3/1.-c,j = D,L···,N}, 
(5.4) H* {KID :;;; kj :;;; h*, j = D, 1, ... , N}, 
(5.5) Ht = {KID :;;; kj :;;; ht, j = D,l,···,N}, 
(5.6) H~ = {KID :;;; kJ :;;; htU}, j = D,l,···,N}, 

in which hdj) and ht are the solutions of, respectively, Qt((D,···,D,kj,D,···,D),j) = 

D and Qd(h,h,···,h),j) == D where ht is independent of j. Both solutions are posi­
tive and unique (Lemma 3(c». The conclusions obtained in this paper are as follows: 

a. Structure of continuation region 

i. Suppose /3/1. - c :;;; a. Then Ct = M (c A), a perfect cube, for all t ~ 1 
(Theorem 6(d». Accordingly, in the case, not only has not the optimal stopping rule the 
DRV-property, but when the search process starts without any offer, stopping with accept­
ing the first offer is optimal because, once an offer Wo is made, the current state (D, 

D,···,D) changes into (wo,D,···,D) e M = Ct. due to a < wo. 
ii. Suppose !3/1. - c > a. Then 

(1). For all t ~ 1, the continuation region Ct is given by a /JoJJoll'ed cube en­
closed by N + 1 coordinate planes and N + 1 hollowed planes as shown in Figure 3 (N = 2) 

ko 
b 

Pig. 3 The continuation region Ct (bold lines) and the inclusion relation 
among its related regions (N = 2); for all t, if /3# -c > a, then 
B :::J H* :::J Ht :::J Ct :::J H~ :::J M ~ A; otherwise, Ct = M C A 
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where each hollowed plane is a set of K satisfying Qt.(K.j) = 0 and k.1 = k, j = 0, 

l,"',N; the outer space of the plane. Sdj). is convex (Theorem 1). In the figure, ht(j) 

is a point on kj-axis at which state K = (O.···,O,k.l.O.···.O) is transferred from the 

continuation region to the stop region when k.1 travels from its origin in a positive di­

rection, and the (ht.ht.ht) is an intersection point of the surface of the continuation 

region C t and the straight line emerging from the origin at angle of re /4 with each 

coordinate axis. 

(2). B ::J H' ::J Ht ::J Ct ::J H~ ::J M ~ A (Theorem 3. Lemma 1O(d). Figure 3) 

and C t+1 ::J C" for t ~ 1 (Theorem 4(a» where, in general, X"2 Y means that Y 

is a proper subset of X. If (1-/3)2 + c2 =I- 0, then B"2 H' (LemmaO(c»; other­

wise. B = H' (lemma O(d». 

(3), If N = 1, then h" = ht(O) and ht > ht(1) (Theorem 5(a), Figure 2). If 

N ~ 2, then ht > htU} > ht(N) for j = O.l,···.N-l (Theorem 5(b». 

iii. If pj >(=) Pi. then hl(j) «=) h1 (i) (Theorem 5(c». It will be quite diffi­

cult to examine whether or not the relationship holds for all t ~ 1. 

h. Necessary and sufficient coindition for an optiaal stopping rule to have DRV-property 

The above conclusion means that the necessary and sufficient condition for the opti­

mal stopping rule to have DRY-property for all t ~ 1 is /3f.J. - c > a. Here it should 

be noted that the conclusion claims that the DRY-property may appears even in the simplest 

case of /3 = 1 and c = O. Figure 4 illustrates how the property appears in case of 

N = 2 where G' and G are values of ko at which the straight line LL' intersects 

with the surface of the continuation region. 

ko 

l' 

Pig. 4 DRV-property caused by the curvature of continuation region Ct (N = 2) 

In almost all models of an optimal stopping problem presented so far. it has been 

demonstrated that the optimal stopping rules are characterized in such a fashion that. if 

continuing is optimal for a given present offer wo. then so also is continuing for any 
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present offer w < wo. This implies that there exists the superior ~ of present offers 

Wo for which continuing is optimal. The ~ is commonly called a reservation value, and 

when the optimal stopping rule is characterizl~d by such a reservation value, it is usually 

said to have a reservation value property. Applying the concept to our model will follows 

that, for any given G, presently available past offers, there exists a G-dependent cri ti­

cal number ~ (G) such that, if Wo < ~ (G), then continue; otherwise, stop. The conclu­

sion we stated above, however, claims that the optimal stopping rule of the optimal stop­

ping problem with uncertain recall has not al\~ays the reservation value property. 

c. DRV-property gradually disappears as a pLanning horizon tends to infinity 

When /3f.i - c > a, the continuation region Ct, a Dollolt'ed cube, increases and con­
verges to H', a perfect cube, as t ~ 00 (Theorems 4(a),6{c», implying that DRV-property 

gradually disappears as a planning horizon beeomes larger and totally vanishes in its limit. 

d. Reduction to with-no-recall case in the li.it of a planning horizon 

The above conclusion implies that when Bf.i - c > a, the optimal stopping rule is 

reduced in the limit of the planning horizon to that, if K E H', stop; otherwise, con­

tinue. This is the same to saying that, if k ;;;; h*, stop; otherwise, continue. Now as­

sume that the process has continued up to the present time, following the optimal stopping 

strategy. The assumption means that the continuation decision was also made at the previ-

0us time; accordingly, it must be that k";;;; h*. Then we can show k ;;;; ( » h* ~ Wo 

;;;; (» h*. It is clear that k;;;; h* yields Wo ;;;; h*. Suppose h* < k. Since g = 

max{k 1 ,k2 ,···,kN } ;;;; max{k(';,k~,···,kN-l} ;;;; max{k(';,k~,···,kN-l,kN} = k", it follows that g 

;;;; h* by the assumption. Accordingly, we have k = max{wo,g} ;;;; max{wo,h*}, from which 

we get h* < wo because Wo ;;;; h* leads to the contradiction of k;;;; h*. The equiva­

lent relation above implies that the optimal stopping rule is reduced in the limit of a 

planning horizon to a mere comparison of Wo and h*; in other words, it suffices to mem­

orize only the current offer Wo with neglecting all past ones. This eventually means 

that, in the limit of an planning horizon, the optimal stopping rule of the optimal stop­

ping problem wi th uncertain recall becomes su:ostantially identical wi th that of an optimal 

stopping problem with no recall. 

e. Expected discounted gain, search a.ount, and value realization 

In with-no-recall case (with-recall-case), let vt(koIO) (vt(kll» represent the 

expected discounted gain starting from time t with the present offer ko (with the best 

offer k). Then vdkll) ~ vt(K) ~ vdkolO) for all t ~ 0 (Lemma lO(a». If K E 

H', then vdkll), vdK), and v..{koIO) converge to h* as t ~ 00 (Theorem 6(a), 

Lemma 9(al,bl». 

In with-uncertain-recall case (with-recaLl-case), when the process starts from time t 

with offers K (with the best offer k), let the seareD ~un~ the expected number of 

searches, be represented by pdK) (pdkll)). and the value realization, the expectation 

of the offer w accepted, be denoted by v,(K) (vt(kll). Then pt(K), pt(kll), 

vt(K), and vt(kll) are all increasing in t for all K and all k (Theorems 8(b), 
9(b», and pt(K) ;;;; pt(k!l) and v..{K) ;;;; vdkll) for all t ~ 0 and all K (Theo-
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rems 8(a),9(a». 
Suppose (1-.8)2 + c2 1:- O. Then pt(K), pt(kll), vdK)' and vt(kll) converge 

as t -'J> 00 where the limits of pt(klO and vdkl1) are, respectively, O-F(hO))-1 

and hO + c(l-F(hO))-1 (Theorem 8(c),9(c». In addition, if .8f.J. - c > a, let K be 

an inner point of HO; otherwise, let K E HO. Then, as t -'J> 00, pt(K) and vt.(K) 
converge to, respectively, (l-F(hO»-1 and h' + c(1-F(hO»-I. 

f. Numerical Exa.ples 

i . Let N = 1, .8 = 0.99, Po = 0.02, c = 0.01, and F( w) = w on 0 ;;;;; w ;;;;; 1, a 

uniform distribution with a = 0 and b = 1, where x + T(x) = O+x2)/2 on 0;;;;; w 
;;;;; 1, and suppose the search process has onl y one period to go; i. e., it starts from time 

1. In the case, since the inequality .8f.J. - c > a holds, the optimal stopping rule has 

DRY-property for all t ~ 1. Then the continuation region C I becomes as in Figure 5 

where hl(1) = 0.485 and hdO) = hI = 0.78. Now consider the following four differ­
ent states: KI = (0.23,0.61), K2=(0.65,0.61), Ka=(O.82,0.61), and K4=(0.72,0.65). 

.; , = h, = 0.78 (-

ko 

1 

.; = 0.51 (- O.5~-------i" 

0 
-J. .j. 

0.485 0.61 
11 

h,(1) k, 

1 
kl 

-J. 
0.76 

h, 

Pig. 5 Continuation region Cl (N = 1) and DRY-property where .8 = 0.99, 
Po = 0.02, c = 0.01, and unifol"ll distribution F(w) with a = 0 
and b = 1 (K1 == stop, ~ = continue, Ka == stop, L = continue) 

Then we have 

vI(K I ) 

VI (Kz) 
vI(Ka) 
vI(K4) 

max{0.61, 0.51066179}. so stop with accepting offer 0.61 (= kl ) 

= max{0.65, O.68995475}, so continue, 

= max{O.82, 0.81118124}' so stop with accepting offer 0.82 (== ko ), 

max{0.72, 0.73647584}, so continue 

where no computational error is involved. 

First, compare vI(KI), vI(Kz), and vdKa) with KI ;;;;; Kz ;;;;; Ka , suggesting the 

existence of DRY-property. Two critical numbers characterizing the property, ~ == 0.51 
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and e = 0.78, are given by the solutions of Uo(ko,0.51) = max{ko,0.51} (Figure 6). 

Then the optimal stopping rule is that if 0.51 ~ ko ~ 0.78, then continue; otherwise, 
stop. 

ko 

0.61 {- 1------'--::::0'1'-.'1' 

.j, + 
~ = 0.51 ~ '= 0.78 

Pig. 6 Expected discounted gain fro. continuing, Uo(l{o,O.61), and gain 
froll stopping, max{ko,O.61} 

Next, let us compare v,(K, ) and vl(K4 ) with K, < K4 • In the case, we are liable 

to think that, since stopping is optimal when in state K
" 

so also will be stopping when 

in state K4 that is strictly greater than J{l. The result of the above numerical exam­

ples, however, indicates that this is not always true. 

ii. Figures 7(a,b,c) are continuation regions Cl for. respectively, 

«(3,0 ,0) with .B = 0.75, 0.80, 1.00, 

(/3 ,Po, c) = (1 ,Po,O) with Po = 
(1 ,0 ,c) with e 

0.00, 0.20, 

0.00, 0.05, 
1.00. 
0.25, 

which illustrate the relationship between the continuation region and the parameters (3, 

Po, and c. 
iii. Figure 7(d) shows how the continuation region increases as a planning horizon be­

comes greater and converges to H· in its 1 illi t. 

6. Analysis 

6.1. Honotonicity of continuation region 

LEMMA 1. For all t, 

(a) V..(G) ~ j). and V..(G) ~ k.l for all G and j = 1,2, ...• N. 

(b) Vl(G) ;;;;; b for all G, and U..(K) ;;;;; b for all K, 

(c) Vl(G) is increasing and convex in G, and Ut(K) is increasing and convex in K, 
(d) Ql(K,j) is increasing in ki for i t: j and convex in K. 
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ko ko 
1~P __ =_1_.00 ________________ 7 Po = 0.0 

lr------------------7 

P = 0.95 
Po = 0.2 

p = 0.90 ____ --, 
fJ = 0.85 
fJ = 0.80 

o • 5 I-P"'--=-::-O .""75----, 

Po = 0.4 

0.5~~~~ 

(a) 

o 

ko ko 
1 C = 0.00 

1 

c = 0.05 

c = 0.10 

O. 77 ~-~--~--~--~--~~~~-~--~--j-l 

/~ t = <D 
c = 0.15 0.5 

r-t---- t = r+--- t = 
3 t = 

t = 2 

t = 

Cd) 

0.5 1 
k1 

0.77 1 o 0.5 

Pig. 7 Numerical examples illustrating the relationship between the structure of 
continuation region and parueters !3, Po, 'and c (N = 1). 

(a) P = 0.75-1.00, Po = 0, and c = 0, 
(b) P = I, Po = 0.0-1.0, and c = 0, 
(c) P = I, Po = 0, and c = 0.00-0.25, 
(d) f3 = 0.98, Po = 0.15,c = 0.01, and t = 1,2,3,4,5,00 

Proof: (a). Immediate from vt.(K) ;;;: kj for all t;;;: 0, all K, and j = 0,1, 

... ,N. Cb), Since vo(ko,G) = k :;;; b, we have Vo(G) :;;; b. Suppose Vt - 1 (G) :;;; b for 

all G. Then since U..{K) :;;; ,Bb - c :;;; b for all K, we have v..(K) :;;; max{b,b} = b 

for all K. Hence, Vt(G) :;;; b for all G. Cc). g, the function of G, is increasing and 

convex in G, and Vo(G) (= g + T(g)) is increasing and convex in g. Hence, Vo(G) is 

also increasing and convex in G. Suppose Vt - 1 (G) is increasing and convex in G. Then 

Ut(K) also becomes increasing and convex in K. In addition, since k, the function of 

K, is also increasing and convex in K, it follows that vt(K) is increasing and convex 

in K. Therefore, Vt(G) is also increasing and convex in G. (d). Obvious from (c). [J 

THEOREM 1. St(j) is a convex set for all t;;;: 1 and all j. 

Proof: Immediate from Lemma l(d). [J 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Optimal Stopping Problem 

LEMMA 2. For all t and all j, 

(a) ,BVe-l(G') - kJ is decreasing in kj , 

(b) Qt(K,j) is strictly decreasing in k j and tends to -00 as kj --? 00, 

(c) Qt(K,j) = 0 with unknown kJ has a positive unique solution. 

159 

Proof: (a,b). These statements are always true for j = N because G' is inde­

pendent of kN. Below assume 0 :$ j :$ N-1. Let r(kj ) = ,BVo(G') - k j = ,B(g' + 
T(g')) - kj • If k~+l = 0, then since G' is independent of kJ' r(k j ) is decreasing 

in kj • Suppose kj+1 = kj , and let g' = mal{{k~, ... ,kj,kj+2, ... ,k~}. Then since g' 

= max{kj+l,g'} = max{k~,g'}, r(kj ) = /1(g'+ T(g')) - kj on 0:$ kj :$ g' and 

r(k j ) = ,BT(kj ) - (l-/1)kj on g' :$ k. j • Thus, r(k j ) is decreasing in kj both on 

o :$ kJ :$ g' and on g':$ kJ . In addition, since r(k j ) is continuous on kj ~ 0, it 

follows that r (k j ) is decreasing in kj ~ (J. Therefore, (a) holds for t = 1. Sup­

pose (a) holds for a given t ~ 1. Now note that (3.17) is expressed as 

(6.1) Qt(K,j) = ~ P(G')(,BVt-dG') - kJ) - c. 
G'EA(K) 

Here consider the term P(G')( /1V t-l (G') - kJ) with P(G') = POPl "'PN-l > O. Then 

since G' = (0,0"",0), it follows that, for all j, the term is strictly decreasing in 

kj and tends to -00 as kj --? 00. In addition, the other terms are all decreasing in 

kJ from the induction hypothesis. Thus it foLows that Qt(K,j) is strictly decreasing 

in kj and tends to - 00 as kJ --? 00. Now lie have 

(6.2) ,Bvt(ko,G) - kj = max{/1max{ko ,g} -- kj, p}, p = /1Ut(K) - kj 

where /1max{ko,g} - kj is decreasing in kj. If k.l+l = 0, then since UtCK) is inde­

pendent of kj, p is decreasing in k:J. If k.f+l = kj, then p = Qt(K,j+l), decreas­

ing in k:J. Accordingly, (6.2) is decreasing in k:J; therefore, ,BVt(G) - kj is also 

decreasing in k:J. Thus the induction completes. (c). For kJ = 0, since Qt(K,j) ~,Bf.l.­

C > 0 from Lemma Ha) and the assumption (2.1), the assertion becomes true from (b). 0 

For any subset L of {O,l,"',N}' possibly an empty set, if j E L, let Uj = h; 

otherwise, Uj = O. Then for any given K = (ko,kl,"',kN), define 

in which K(L,O,h) = (UO,Ul,"',UN) and K(L,N+l,h) = (ko,kl,"',kN) = K, and let 

G( L ,i,h) = (k l ,k2,"',k i -l,Ui,Ui+l,"',UN) for 1 :$ j :$ N+1. Similarly, also define 

K'( L ,i,h) = (k~,k~,···,k~-l,Ui,Ui+l,· .. ,UN) and G'( L ,i,h) = (k~,k~,· .. ,k~-l,Ul,Ul+l'···' 
UN). Then for 0 :$ i :$ N+l, 

(6.4) 

where 

(6.5) 

,Bvt(K(L,i,h)) - h = max{,Bmax{ko,k,,"',ki-l,P} - h, 

,BQt(K(L,i,h)) - (i-,B)h} 

QtCK( L ,i,h)) Ut-l(K(L,i,h)) - h 

~ peG' )(,BVt-dG') - h) - C 
G'f-.6(K(L.i.h» 
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and p = 0 (p = h) if K( L ,i,h) = (ko,k 1 ,"',k1 - 1 ,0,''',0) (otherwise). 

LEMMA 3. For all t, all L, and all i, 

(a) .8Vt.-l(G'(L,i,h» - h is decreasing in h (i cl- 0), 

(b) Qt.CK(L,i,h» is strictly decreasing in h and tends to -00 as h ~ 00, 

(c) Qt.(K(L,i,h» = 0 with unknown h has a positive unique solution. 

Proof: (a,b) . .8Vo(G'(L,i,h» - h = .8 ~max{w,k~,k~, .. ·,k~-l,p}a'F(w) - h 

with p = 0 (p = h) if G'(L,i,h) = (k~,k~, .. ·,k~-l'O,· .. ,O) (otherwise). This is 

decreasing in h. Thus, (a) holds for t = 1. Suppose it is true for a given t ~ 1. 

Then (b) can be proved in quite the similar way as in Lemma 2(b). Accordingly, (6.4) is 

decreasing in h; therefore, .8Vt.(G(L,i,h» - h is also decreasing in h. Thus, the 

induction completes. (c). Almost the same as the proof of Lemma 2(c). [] 

Let ht(L) denote the solution to the equation Qt(K(L,O,h» = 0 with unknown 

h where ht(L) is positive and unique from Lemma 3(c), and let htCj) = htC{j}) for 

j = O,l, .. ·,N and ht = ht({O,l, .. ·,N}). Since Qt(K({N},O,h» = Ut(O,O, .. ·,O,h) - h, 

we have 

(6.6) ht(N) Ut(O,O, .. ·,O,ht(N» 

= utCo,O""'O) = .8Vt-l - C ~ .8/.1. - C > O. 

THEOREM 2. For all t, 

(a) ht(j) ~ ht. for all j, 

(b) For a given K, 

1. If ht < kJ for at least one j E {O,l, .. ·,N}, then K ESt, 

2. If kJ ~ ht(j) for all j, then K E Ct. 

Proof: (a). If ht < htCj) for a certain j, then we get the contradiction of 

o = Qt(K({O,l'''·,N},O,ht» = Qt«ht.,ht, .. ·,ht),j) 

> Qt«ht,· .. ,ht,ht(j),ht,· .. ,ht),j) ~ Qt«O, .. ·O,ht(j),O, .. ·,O),j) 

= Qt(K(U},O,ht(j») = O. 

(bl). Let k,J = k. Then since ht < kj and kl ~ kJ for i = O,l, .. ·,N, we have 

Qt.CK,j) = QtC(ko, .. ·,kj, .. ·,kN),j) ~ QtC(kj,· .. ,kj, .. ·,k,l),j) 

= Q t.C K ( {O, 1 , ... , N}, 0, kj » < Qt (K ( {O, 1, ... , N}, 0, ht ) ) 0, 

implying K E S dj); therefore, K ESt. (b2). For all j, we have 

Qt.CK,j) = QtC(ko, .. ·,kj, .. ·,kN),j) ~ Qt(O, .. ·,O,k,l,O, .. ·,O),j) 

= QtCK({j},O,kJ» ~ Qt(K({j},O,ht.Cj») = 0, 

implying K e St(j); therefore, K E Ct. [] 

LEMMA 4. For all t, 

(a) If K E H*, then vtCK) ~ h*; otherwise, vtCK) k. 

(b) heeL) ~ h* for all L. 
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Proof: (a). Clear for t = 0 because vo(K) = k for all K. Assume the 

assertion holds for t-1, so vt-l(K'):$ max{h* ,k'} .•• (*) for all K'. First, suppose 

K' E H*, so k~ :$ k' :$ h* for 1 :$ j :$ N. If w > h*, then (w,G') ~ H* and 

max{w,G'} == w, and if h* :;;: w, then (w,G') '::: H*. Accordingly, 

Vt-1(G') == S (Vt-l(W,G' )I(w>h*) + Vt-l(W,G' )I(h* :;;:w» clF(w) 

:$ S (wI(w>h*) + h*Hh*:;;:w» clF(w) == h* + T(h*), 

from which UdK) :$ ,8(h* + T(h*» - c == H(h*) + h* == h*. Therefore, we have 

vt(K) :$ max{k,h*} == h*. Next, suppose K' ~ H *, implying h* < k' :$ k. Then, notic­

ing g' :$ k and (*), we have 

Vt-dG') == S Vt-l(W,G' )clF(w) :$ S D1ax{h*, max{w,g'}} clF(w) 

== Smax{w, max{h*,g'}}<:iF(w) :$ Smax{w, max{h*,k}}clF(w) 

== S max{w,k} clF(w) == k + T(k), 

from which UdK) :$ ,8(k + T(k» - c == H(k) + k :$ k due to H(k) :$ 0 for k > 

h*. Consequently, it follows that vdK) == k. (b). Suppose h:$ h*. Then since 

K( L ,O,h) E H*, it follows that Ut(K( L ,O,h» :$ h* (see the proof of (a»; therefore, 

Q..(K(L,O,h» :$ h* - h, yielding Qt(K(L,O,h*» :$ O. Accordingly, ht(L) :$ h* from 

Lemma 3(b,c). [] 

THEOREM 3. For all t:;;: 1, 

(a) B::::J H* ::::J Ht. ::::J C t ::::J H~, 

(b) If (1_,8)2 + c2 t- 0, then B ~ H*. In addition, if /3/.1 - c > a, then 

a < ht < b; hence, B 2 Ht 2 A, 
(c) If (1_,8)2 + c2 == 0, then H* == B. 

Proof: (a). B::::J H'::::J Ht is clear from LemmaO(c,d) and Lemma4(b). Con­

sider any K E Ct, for which Qt(K,j) :;;: 0 for j == G,l, .. ·,N. Then, if K ~ Ht. then 

ht. < ki for ki == k, leading to the contradiction of 

o :$ Q..(K,i) == Qt«ko,"',ki,"',kN),i) :$ Qt«ki,ki,''',kd,i) 

== Qt({O,l,"',N},O,kd) < Qt(K({O,l,"',N},O,h t » == O. 

Therefore, K E Ht must hold, implying Ht =) Ct. Ct::::J H~ is obvious from Theorem 

2(b2). (b). B ;;2 H* is clear from Lemma O(e). If /3J1. - C > a, then ht :;;: hc(N) :;;: 

/3J1. - c > a from Theorem 2(a) and (6.6), and ht :$ h* < b from Lemma 4(b) and Lemma 

O(C). (c). Clear from Lemma G(d). [] 

LEMMA 5. For all K, all L, and all i, 

(a) vt(K) is increasing in t; therefore, so also are Qc(K,j) and QdK(L,i,h», 

(b) ht.( L) is increasing in t. 

Proof: (a). Easily proved by induction starting with vl(K) :;;: k == vo(K) for 

any K. (b). Clear from Lemma 3(b,c) and (a). [] 
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THEOREM 4. We have 

(a) St is decreasing in t; therefore, Ct is increasing in t, 

(b) Ht and H~ are increasing in t. 

Proof: (a). Since Qt(K,j) < ° leads to Qt-l(K,j) < ° from Lemma 5(a), 

Sl+l(j) c St(j) for all j, which implies SUl eSt; therefore, Cl+l::J Ct. 

(b). Immediate from Lemma 5(b). D 

6.2. Structure of continuation region 

LEMMA 6. For any continuous function g(w), if h > g(w) for a < w < a 

+ E < b with an infinitesimal E > 0, then ~max{g(w),h}dF(w) > ~g(w)dF(w). 

Proof: Clear from max{g(w) ,h} > g(w) and few) > ° for such w where few) 

is the probability density function of F(w). D 

Let Ka = (ko,"·,k.l-l,a,kJ+l,"·,kN) and Ko = (ko,"',kJ-l,O,kJ+l,"',kN) for ° :;;; j 

:;;; N, and let Ga = (kl,"',kJ-l,a,kJ+l,"',kN) and Go = (kl,''',kJ-l,O,kJ+l,''',kN) for 

1 :;;; j :;;; N. Let the maximum elements in Ga and Go be denoted by ga and go, respec­

tively. Then 

LEMMA 7. V,,(Ga) = vtCGo) and UtCKa) = Ut(Ro) for all t and j. 

Proof: Let s = max{kl,"·,ki-l,ki+l,"·,kN}. Then, on a < w < b, we have 

max{w,ga} = max{w,s,a} = max{w,s,O} = max{w,go}. Hence, VO(Ga) = ~ max{w,ga}I(a<w< 

b) dF(w) = ~ max{w,go}I(a<w<b) dF(w) = Vo(Go). Suppose Vt.l(Ga ) = Vt-l(Go) for all 

pairs (Ga,Go). Then, since UL(Ka) = UtCKo), we have V,,(Ga) = ~ vdko,Ga) dF(ko) = 
~ max{max{ko,g,.}, Ut.-l(Ka)}I(a<ko<b) dF(ko) = ~ max{max{ko,go}, Ut-.(Ko)}I(a<ko<b) 

dF(ko) = bt(ko,Go)dF(ko) = vtCGo). D 

LEMMA 8. Suppose fjJi - c > a, and let h > ht(N) (~a) for t ~ 1. Then 

Vt(O,"',O,h 0,,,,,0).1 > Vt., 1:;;; j :;;; N, t ~ 1. 

Proof. We have ht(N) = Ut(O,O,"·,O,ht.(N» = Ut(a,O,"',O,h,,(N» = Uda,O, .. ·, 

0) from (6.6), and Lemma 7, and Ut-l(WO,O,"',O) is continuous and increasing in wo 

(Lemma 1(c». Therefore, it follows that there exists an infinitesimal E > ° for which 

hdN) :;;; Udwo,O,"',O) < h for a < Wo < a + E < h with a + E < b. This leads 

to max{wo, Ut.(wo,O,"·,O)} < h for such Wo. Hence, from Lemma 6, we have for 1 :;;; j :;;; N 

v dO, .. · ,0,h,0,"· ,0).1 = ~ max{max{wo,h}, utCwo,o,· .. ,O ,h,O,"', O).I+.} dF(wo) 

~ max{max{wo, Udwo, O,''',O,h, 0"",0) .I+1}' h} dF(wo) 

~ ~ max{max{wo, U..{wo,o,"·,O)}, h}dF(wo) 

> ~ max{wo, U,,(wo,o,"',O)}dF(wo) 

Vt(O, .. ·,O) = VL. D 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Optimal Stopping Problem 

THEOREM 5. Suppose /311 - c > a. Then 

(a) If N = 1, then ht = hL(O) and hl > ht(l) for all t ~ 1, 
(b) If N ~ 2, then ht > hd L) > hdN) for all t ~ 1 and for all L such as 

L 1:- rj(empty set), L 1:- {N}. L 1:- {O.l,···,N-l}, and L 1:- {O,l,···,N}; hence, 

ht > hdj) > ht(N) for j == 0,1,···,N--1 and all t ~ 1, 

(c) If pj >(=) Pi for i, j E {O,l,"',N--l}, then hl(j) «==) hl(i). 
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Proof: (a). Qt(h,h) == ° and Qt(h,O) == ° are expressed as, respectively, 

Uc(h,h) - h == ° and Ut(h,O) - h == 0. The two equations are identical because Ut(ko, 

kd is independent of k,. Hence, ht == ht (lJ). Consider any h > hd 1) . Then since 

h > ht - 1(1) from Lemma 5(b), we have Vt-1(h) > Vt -1 from Lemma 8. Therefore, for h 

> hd1), we have Qt(h,h) == /3(P OVt - 1 + (1--Po)Vt -dh» - c - h > /3V t -1 - C -- h 

== Qt(O,h), implying ht > ht (1) from Lemma 3(b,c) (Figure 8(a». (b). First, note the 

next three expressions: 

UdK( {o, 1,'" ,N},O,h» /3 P(G' )Vt-,(G') c ... (1*), 
G~d(K({O.l.···.N}.O.h» 

UdK( L,O ,h» /3 }; P(G' )Vt-1(G') c "'(2'), 
G'E'd (K( L. O. h) ) 

Ut(K({N},O,h» == /3 }; P(G' )Vt-l(G') - c ",(3'). 
G'H.(K( {N}. (] .h» 

Since K({O,l,"',N},O,h) ~ K(L,O,h) for any L, any term P(G')Vt-1(G') in (1*) is 

greater than or equal to the corresponding term in (2*) from Lemma l(c). Hence, (1*) ~ 

(2'). Since all Vt-1(G') in (3') equal Vt-I, any term in (2') is greater than or 

equal to the corresponding term in (3*). Therefore, (2*) ~ (3') .. Next, let us show 0') 
> (2') > (3*) on h > ht(N). For the L defined in the lemma, let D == L n{O,l,"', 

N-l} and D' == Lcn{O,l,"',N-l} where Le is the complementary set of L. Here 

D 1:- rj and D'1:- rj; its reason is as follows. If D == rj (D' == rj), then L = 
rj or {N} (V == rj or {N}, Le., L == {],l, .. ·,N} or {O,l, .. ·,N-l}). contradicting 

the assumption in the lemma. Below, assume h > hdN); therefore, h > ht-1(N) from 

Lemma 5(b). First, consider the following corresponding terms in (1') and (2'): 

0*') , 

( IT pj) x ( IT (1-p" »Vt -1 (2") 
.J~D .j~D* 

where, for any j E D' (1:- rj), Vt-1(G') ~ '1 t - 1(0,···,O,h,O"",O).J+l > Vt - 1 from Lemma 

8. Accordingly, it follows that (1") > (2"); hence, 

Qt(K({O,l,"',N},O,h» > Q.(K(L,O,h» ('.). 

Similarly consider the following corresponding terms in (2') and (3'): 

(2"'), 

(3"') . 
.i~D* .j~D 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



164 S. Ikuto 

where, for any j E D (,t r;1), VL- 1 (G') ;;;: Vt-l(O,···,O,h,O,···,O).l+l > VL- 1 from Lemma 

8. Therefore, we get (2"') ;;;: (3'''); hence" 

Q..{K( L ,O,h» > Q..{K({N}'O,h» ... ('''). 

Accordingly, it follows from ( .. ), ( ••• ), and Lemma 3(b,c) that ht > h..{L) > hdN) 

(Figure 8(b». (c). For 0 ~ j ~ N-1, 

Ql(K({j},O,h» = 13«(1-PJ)Vo(O, .. ·,O,h,O, .. ·,O)J+1 + PJVo) - c - h 

~ .B(l-PJ)(Vo (Q,·",O,h,Q,···,O)j+l - Vo) + /3Vo - c - h 

= 13(1-PJ)(h + T(h) - /.1.) + 13/.1. - c - h. 

Suppose h > hdN). Then, since h > a from (6.6), we have h + T(h) - /.1. > 0 from 

Lemma Q(b). Therefore, it follows that Qo(K{i},Q,h) >(==) Ql(K(U},Q,h» for PJ >(=) 

Pi with i, j E {O,l, .. ·,N-l} on h > hl(N). In addition, Ql(K(O},O,hdN») > 
Ql(K({j}'0,h 1 (j») = 0 because of hl(j) > h1 (N) from (b). Consequently, the assertion 

becomes true (Figure 8(c». [] 

(a) 

-------'t-~~ h ~----~--~--~h --...a.-~!"'"---__ ~h 
h,(N) h,(j) h,(i) 

6.3. Continuation region near the li.it of a planning horizon 
First, let us summarize some well-known properties of the standard, discrete-time 

stopping problem, usually classified into two cases as alreadY stated in Section 1: with­
no-recall case and with-reCall case. 

Since with-no-recall case is the special case with N = 0 of with-uncertain-recall 

case, vL(koIO) = vt(ko) (see the definitions in e of Section 5). Let Vt - 1 ( -10) = 

S vL-l(wIO) ciF(w). Then we have 

( 6 . 7 ) V t (ko I 0) = max {ko, 13 V L - 1 ( - I 0) - c}, t;;;:.1 , 

where vo(koIO) = ko and Vo( -10) = /.1.. 

In with-recall case, the maximum expected discounted gain attained only depends on 

the best offer k so far. Hence, let us denote it by vL(kI1), and define VL- 1 (kll) = 
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S Ve-l (max{w ,k} 11) dF( w). Then we have 

(6.8) ve(klO = max{k, .BVe-1(kIO - d, t ~ 1, 

where vo(kI1) = k and Vo(kll) = k + T(k). 

LEMMA 9. We have 

(a) In with-no-recall case, 

165 

1. vdkolD) and Vt-l(-ID) increase in t and ko and converge to, respectively, 

max{ko,h*} and (h* + c)/.B as t -0' 00, 

2. The reservation value, .BVt-d -10) - c, converges to h* as t ~ 00. 

(b) In with-recall case, 

1. vt(klO and Vt-l(kll) increase in t and k and converge to, respectively, 
max{k,h*} and max{k + T(k), h* + T(h*)} as t ~ 00 , 

2. The reservation value are given by h* for all t ~ 1. 

Proof: Refer to [2], [13]. 0 

In with-no-recall case (with recall case), the optimal stopping rule is given as fol­
lows. If ko > .BVt - l ( -ID) - c (k > h*), then stop with accepting the present offer 

ko (the best offer k); otherwise, continue. 

LEMMA 10. For all t, 

(a) vc(kI1) ~ vt(K) ~ vt(koID), 

(b) Vt (gll) ~ Vt(G) ~ Vt ( -ID), 

(c) ht(L)~.BVt-l(-ID)-c~.B1J. -c(>D) forall L, 

(d) H~:J M. 

Proof: (a,b). vo(kll) = k = vo(K) ~ ko ::: vo(koID), from which Vo(G) ~ 

Vo(-ID). Since vo(max{ko,g}IO ::: max{ko,g} = vo(ko,G), we have Vo(glO ::: Vo(G). 

Thus, (a) and (b) are true for t ::: D. Suppose that (b) is true for t-l. Then since 

Ve-1(G') ~ Vt-l( -ID) for all G', we have LdK) ~ .BVe- l ( -ID) - c. In addition, 

since k ~ ko, we have vt(K) ~ max{ko,.BVt - 1 (-ID) - d ::: vt(koID), from which 

Vt(G) ~ Vt(-ID). Since Vt-l(G'):';; Vt-l(g'll) :,;; Vt-l(kIO due to g' :,;; k, we have 

Ue(K) :,;; .BVt - l (kI1) - c, from which Vt(K) :,;; max{k,.BVt-dkll) - d = vt(kI1). This 

is written as vdko,G) :,;; vdmax{ko,g}11); therefore, Vt(G) :,;; V..(gll). Thus the induction 

completes. (c). Since Qt(K(L,D,h» ~ .BVt-1(-ID) - C - h from (b), we get hdL) 

~ .BVt-l(-ID) - c from Lemma 3(b,c) (Figure 9). Furthermore, since Vt(-ID) is in­

creasing in t, .BVL-l(-ID) - c ~ .BVo(-ID) - c::: .BIJ.- c. (d). Clear from ht(j) 

~ .Bf.l. - c for all j from (c). 0 

THE 0 REM 6. We have 
(a) If K E H*, then v,,(K) converge to h* as t ~ 00, 

(b) ht( L) converge to h* as t ~ 00 for all L, 

(c) Ht, Ct, and H~ converge to H* as t ~ 00, 

(d) If .BIJ. - c :,;; a, then H* = He ::: C,_ = H~ = M C A for all t ~ 1. 
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Q,(K( L,O,h)) 

.BVt-,(-IO) - c - h 

h 

Pig.9 ,8vt.-,(-IO)-c < ht(L) 

Proof: (a). Suppose K EH", implying k:;;; h"; hence, ko :;;; he. Then from 

Lemma 9(al,bl), vt.(koIO) and vt(kll) tend to h" as t ~ 00; therefore, so also does 

vt.(K) from Lemma 1O(a). (b). Since ,8Vt-l(-IO) - C ~ h" as t ~ 00 from Lemma 9(a1), 

it follows from Lemma 4(b) and Lemma 1O(c) that hdL) ~ h* as t ~ 00. (c). From (b), 

ht and ht(j) for j :::: O,l,"',N converge to hO, implying that both Ht and H~ 

converge to H*. Consequently, Ct. also converge to H* from Theorem 3(a). (d). Since 

the assumption in the lemma means (1_,8)2 + c2 "t- 0, we have h" = !3f./. - c :;;; a from 

Lemma O(c); therefore, H* = MeA. From this, Lemma 1O(d), and Theorem 3(a), the as-

sertion becomes true for all t. [] 

6.4. DRV-property 

LEMMA 11. If (1_,8)2 + c2 :::: 0, then Vt-l(G') < b forall t and all 

G' with g' < b. 

Proof: For any G' with g' < b, we have Vo(G') = g' + T(g') < b + T(b) 

:::: b from Lemma O(b). Suppose the assertion is true for a certain t. Then we shall 

show that, for G with g < b, the equality b = Vt(G) = ~ vtCwo,G)I(a<wo<b) dF(wo) 

leads to a contradiction. Since b ;;;; vt(K) for all K (see the proof of Lemma l(b», 
the above equality yields b = Vt(wo,G) (= vt.(K» = max{k, ~ P(G')Vt.-l(G')} on a < 

Wo < b, from which ~ P(G' )Vt-dG') = b because k:::: max{wo,g} < b on a < Wo < b. 

Consequently, it must follow from Lemma l(b) that Vt-l(G'):::: b for all G' where g' 

< b because g' :;;; k :::: max{wo,g} < b on a < Wo < b. This contradicts the induction 

hypothesis. Therefore, it must be that Vt(G) < b for G with g < b. Thus, the induc-
tion completes. [] 

Let K[wo] = (wo,ht(L)+ E ,···,ht.(L)+ c) with L = {1,2,"',N} where E is an 

positive infinitesimal number such as ht(L)+E < ht ; the existence of such E is 

obvious from Theorem S(a,b). Then 
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LEMMA 12. If fjp. - c > a. Then, for all t ~ 1, we get QdK[hdL)+ E],j) 

> 0 for 0 ~ j ~ N, Qt(K[a] ,N) < 0, and (It(K[b] ,0) < O. 

Proof: For 0 ~ j S; N, we have Q,,(Klh,,(L)+E],j) = Qt(K({O,l,"',N}'O,h,,(L) 

+E» > QdK({0,1,···,N},0,ht» = O. From Lemma 7, Qt(K[a],N) = Qt(K[O],N) = QdO, 

h,,(L)+E,"',h,,(L)+c) = QtCK(L,O,ht(L)+ c»< QdK(L,O,hdL» = 0 (Lemma 3(b». 

If (1_,B)2 + c2 = 0, then Qt(K[b],O) < b-b = 0 from Lemma l(b) and Vt.-t(O,O,···,O) 

< b (Lemma 11). If (1_,B)2 + c2 et 0, then Qt.(K[b],O) ~ ,Bb-c-b < O. D 

THE 0 REM 7. The necessary and sufficient condition for the optimal stoppi ng 

rule to have DRV-property for all t ~ 1 is ,Bp. - c > a. 

Proof: When fjp. - c ~ a, it is clear that the optimal stopping rule has not 

DRV-property because the continuation region C:t. is then reduced to a perfect cube ~ 

for all t from Theorem 6(d). Below assume t.lp. - c > a. Suppose the search process 

starts when in state K[wo]. Here, note that QtIK[wo],N) and Qt.(K[wo],O) are continuous 

functions of wo, respectively, increasing in 110 and decreasing in Wo (Lemma l(d) and 

Lemma 2(b». Then, it is easily seen from thes(! and Lemma 12 that there exist finite num­

bers .; and .;' such as .; = sUP{woIQtCK[wo],N) < O} and .;' = inf{woIQ,,(K[wo]'O) 

<O} where a<';<hdL)+E<';'<b(Figllre10). If wo< ';,then Qt.-t(K[wo],N) 

< 0, implying K[wo] E SdN) C St. If .;" < wo, then Qt-t(K[wo],O) < 0, meaning 

K[wo] E St(O) C St. If'; ~ wo ~ .;', then Qt-t(K[wo],O) ~ 0 and Qt-tCK[wo],j) 

= Qt-l(K[wo],N) ~ 0 for 1 ~ j ~ N; therefOl'e, K(wo) ~ St for 0 ~ j ~ N, leading 

to K[wo] E C t . Consequently, it follows that if either Wo < .; or .;' < Wo, then 

stop; otherwise, continue. Thus the proof comp:.etes. D 

~WO]'N) 
b 

Pig. 10 a < .; < ht(L)+E < .;' < b 

6.5. Search aIOunt and value realization 

The approach employed here is a generalization of that in [6]. First, the following 

are clear from the definitions in e of Section 5: PoCK) = 0 for all K, P dK) = 0 

for all K E St. and all t ~ 1, Po(kI1) = 0 for all k, and p..{kll) = 0 for all 

k > h* and all t ~ 1. For all t ~ 1, if K E C" (c H'), then 

(6.9) pdK) = 1 + ~ P(G')J p,,-l(w,G')I«W,G')EH')dF(w). 
G'E-.6(K) 
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Similarly for all t ~ I, if k ~ hO, then 

(6.10) p..(kll) = 1 + pt-l(kI1)F(hO). 

THE 0 REM 8. We have 

(a) pt(K) ~ pt(kll) for all t ~ 0 and all K, 
(b) pt(K) and p..(kI1) are increasing in t for all K, 

(c) Suppose (1-13)2 + c2 :f- a. Then 
1. If K E HO, then pt(K) and pt.(klll converge as t ~ 00 where the limit 

of pt(kI1) is (l-F(hO»-l, 

2. If JJIJ. - c > a, let K be an inner point of HO; otherwise, let K E HO. 
Then PL(K) converges to (1-F(hO))-l as t ~ 00. 

Proof: (a). Clear for t = O. Suppose the assertion is true for t-l. If 

K ESt, then pt(K) = 0 ~ pt(kll). Assume K E C t (c HO), so k ~ hO. Now 

since pt(klO is constant on k ~ hO, we shall denote it by pt(-11). Then we have 

pt(K) ~ 1 + ~ P(G')j pt-l(max{w,g'}Il)I(w,G')EH")dF(w) 
O'"t.(K) 

1 + pt.-l(-IO ~ P(G')jI(w,G')EH")dF(w) 
G'Eb (K) 

= 1 + pt.-l(kI1) ~ P(G')jI(w~hO)dF(w) 
O'Et.(K) 

= 1 + Pt-l(kll)F(h*) = pt(kll). 

(b). Pl(K) ~ 0 PoCK) for all K. Suppose pt-l(K) ~ pt-2(K) for all K. If 

K ESt-I, then pt(K) ~ a = pt-l(K). If K E Ct-l, then since K E CL from 

Theorem 4(a), 
p.(K) ~ 1 + ~ P(G')S Pt.-2(w,G')I«W,G')EHO)dF(w) = pt-I(K). 

G'Ed(K) 

Almost similarly proved also for pt(kll). (c). First, note F(hO) < 1 because of hO 

< b from Lemma a(c). (cl). Suppose K E HO. Then, from (6.10) and (a), immediately.we 
get pt(K) ~ pt(kll) = (l-F(hO)t)/(l-F(hO» ~ (l-F(hO»-1 ... (*) for all t; there­

fore, pt(K) and pt.(kIO are bounded above. Thus it follows that pt(K) and pt(kll) 

converge in t. It is clear from (*) that pt(klU converges to (l-F(hO))-l. (c2). Let 

the limit of pt(K) be denoted by p(K). If JJIJ. - c > a, then for any inner point K 
of HO, there exists such an integer T > a that K E C t for all t ~ T; otherwise, 

for any K E HO, we have K E C t for all t because of C t = HO for all t from 

Theorem 6(d). Accordingly, for any K defined in the lemma, since (6.9) holds for all t 

that are sufficiently large, we have 

p(K) = 1 + ~ P(G')j p(w,G')I«w,G')EH")dF(w). 
G'£-.6.(K) 

Now suppose the equation has two different solutions, P (K) and T (K), and let 6 = 

SUPHKOlp(K)-T(K)1 > 0 where KO is the set of K defined in the lemma. Then, from 

the above equation, immediately we get 6 ~ 6F(hO), leading to the contradiction of 1 ~ 

F(hO) < 1. Hence, the solution must be unique. It is easy to see that (1-F(hO»-l 

satisfies the above equation. Accordingly, pt(K) must converge to (l-F(h·»-l. 0 
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From the definitions, we have, for all t ~ 0 and all K, 

(6.11) 

(6.12) 

THEOREM 9. We have 

(a) v t(K) $ v dk 11) for all· t ~ 0 and all K, 
(b) vt.(K) and vt(kI1) are increasing in t for all K, 
(c) Suppose (1_,8)2 + c2 f:- O. Then 

1. If K E HO, then vdK) and vt,(kll) converge as t ~ 00, where the limit 
of vt.(kI1) is hO + c(1-F(hO))-l. 

2. If ,8p - c > a, let K be an inner point of HO; otherwise, let K E HO. 

Then vdK) converges to hO + c(l--F(hO»-l as t ~ 00. 

Proof: (a). Vt(K) - vt(kI1) = v,JK) - vt(kl1) + c(pt(K) - pdkll) 

169 

$ 0 from Lemma lO(a) and Theorem 8(a). (b). Obvious from Theorem 8(b), Lemma 5(a), Lemma 

9(b!), and (6.11). (c). Clear from Theorem 6(a), Lemma 9(b1), Theorem 8(c), (6.11), and 

(6.12). 0 
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