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Abstract Variational inequalities have extensively been studied to formulate equilibrium problems which arise 

in many fields including economics and operations research. Also, various numerical methods such as projection 

method and diagonalization method have recently been developed for the solution of variational inequalities. This 

paper considers modified variational inequalities which allow the constraint set to be non-convex and therefore 

contain classical variational inequalities as a special case. First, a solution method is presented for unconstrained 

problems and conditions for global convergence are established. Then, for inequality constrained variational in­

equalities, a solution method is proposed by modifying the multiplier methods for constrained optimization, 

and its convergence property is examined. When this method is applied to a dual formulation of the asymmetric 

traffic equilibrium problem, in which variables are travel costs and all constraints are inequalities, path flows can 

be obtained as the optimal Lagrange multipliers of the variational inequality problem. Finally, some numerical 

examples containing traffic equilibrium problems of medium size are solved to exhibit the effectiveness of the 

proposed methods. 

1. Introduction 

Many equilibrium problems in operations research and economics can be 

formulated as variational inequalities and numerical methods for solving them 

have also been extensively studied [3,4,10]. Most of the existing methods 

such as projection methods [3,4] and diagonalization methods [5,7] find a 

solution of variational inequalities by successively solving symmetric varia­

tional inequalities, for which equivalent minimization problems exist. Thus, 

these methoQs are doubly iterative, because they require at each major itera-
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tion solving a minimization subprob1em by another suitable iterative method. 

Also, the amount of computation may considerably increase as problems become 

large. Recently, a singly iterative method called the relaxed projection 

method [8] was proposed for asymmetric variational inequalities. Unlike the 

above mentioned methods, this method generates a sequence of points converging 

to a solution by a very simple iterative scheme, but the generated sequence is 

not necessari ly contained in the constraint set. Also, Hammond and Magnanti 

[12] consider systems of non1inear equations from the viewpoint of variational 

inequalities, and present a singly iterative solution method which is a modi­

fication of the steepest descent method in unconstrained optimization. But 

this method can only solve unconstrained problems and requires the mapping 

involved to satisfy more restrictive conditions than those for existence and 

uniqueness of a solution. 

In this paper, we first present a formulation of modified variational 

inequalities which may contain unlike the classical variational inequalities 

non-convex constraint sets. Such modified variational inequalities are also 

considered in Fukushima [9] and may be reduced to the usual variational 

inequalities, when constraint sets are convex. 

Next, we consider unconstrained variational inequalities and present a 

method of steepest descent type. This method differs from the one proposed by 

Hammond and Magnanti [12] only in the line search criterion and this differ­

ence yields weaker convergence conditions than those of [12]. 

For the modified variational inequalities with inequality constraints, we 

then propose a solution method which is a modification of the multiplier 

methods for constrained optimization. This method updates solutions and 

Lagrange multipliers alternatively and can be implemented very easily. We 

give some updating schema for Lagrange multipliers and establish convergence 

conditions for the method with a particular multiplier updating scheme. 

As an application, the last method is used to solve the dual formulation 

of the traffic equilibrium problem in which variables are arc costs and costs 

for origin-destination (O/D) pairs and Lagrange multipliers correspond to path 

flows [10]. Since this problem may contain an enormous number of constraints, 

we also incorporate a technique based on a shortest path algorithm which 

generates only needed constraints at each iteration. 

Finally, we report numerical results for some examples including a traf­

fic equilibrium problems of medium size. These results indicate that the pro­

posed methods are practical and effective in solving asymmetric variational 

inequality problems. 

Throughout the paper, <. , . > and 11' 11 denote the inner product and 
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the ordinary Euclidean norm in Rn, respectively. Also, transposition of a 

matrix is denoted by T. 

2. Modified Variational Inequalities 

The classical variational inequality problem is to find a point x E S 

such that 
, 

< F(x) , x - x > ~ ° for all x E S, (2.1) 

Figure 1. 

* X 

where S is a nonempty closed set in 

Rn and F is a mapping from Rn into 

Rn, and the work on variational ine­

qualities has primarily been concerned 

with problems of the form (2.1). 

However, this formulation is adequate 

only when the constraint is convex. 

Here we consider, as in [9] a modifi­

cation of (2.1) which allows the 

constraint set S to be non-convex. 

Specifically, the problem is to find a 

point x E S such that 

< F(x) , y > ~ ° for all y E TS(x), (2.2) 

where TS(x) is the tangent cone [16] of S at x, i.e., 

TS(x) = ( y I Vxk + x, xk E S, tk + 0, 3yk + y 

with xk + tkyk EIS ). (2.3) 

Of course, when the set S is convex, problem (2.1) and (2.2) are equivalent. 

From now on, we assume that the mapping F is continuously differen':' 

tiable and the set S consists of points x satisfying 

Si(x) :;; 0, i = 1,2, •.. ,m, (2.4) 

where Si: Rn + R are twice continuously differentiable. 

Let us consider the next problem: 

Find x ERn, ui E R, i = 1,2, ..• ,m, such that 

m 
F(x) + L uiVSi(x) = 0, 

i=l 

Si(x) :;; 0, ui ~ 0, uiSi(x) 0, i = 1,2, ... ,m. 

(2.5) 

Under a suitable constraint qualification such as linear independence of 
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active constraint gradients. the problem (2.5) is easily shown to be equiva­

lent to the modified variational inequality problem (2.2). 

We define the mapping H(x.u) from Rn+m into Rn by: 

m 
H(x.u) = F(x) + I max( 0 • Ui + 08i(x) )~8i(x). 

i=l 
(2.6) 

where 0 

solution 

is a positive penalty parameter. It may easily be shown that any 

* * (x .u) of (2.5) also solves the equation 

H(x.u) = O. 

We shall prove that under some assumptions the augmented mapping H(x.u) is 

locally monotone with respect to x rrear the solution. To establish this 

result. we need the next lemma. 

Lenma 1. (Finsler) Let B and A are n by n and n by m matri-

ces. respectively. Then 

yTBy > 0 for all YE(y I ATy = 0 l. y f. o. 

if and only if. there exists rO ~ 0 such that 

yT( B + rAAT )y > 0 for all y ERn. y f. O. r i: rO' 0 

Theorem 1. Let x* E Rn and 

(2.5). Assume that 

* ui E R. i=1.2 ••..• m. 

and 

where 

Ui* > 0 for all i E I(x*) 

* m * 2 * < y • ( ~F(x ) + I u· ~ 8· (x ) 
i=l ~ ~ 

for all y E C(x*). y f. o. 

1 T y > > O. 

C(x) yE Rn I < ~8i(x) • y> = o. i E I(x) l. 
I(x) (i 18i(x) = o. i = 1.2 ..... m l. 

be the solution of 

(2.7) 

Then for all o large enough. the matrix * * ~~(x .u ). the Jacobian of H 

with respect to x. is positive definite. 

Proof: Since 

* m *? * ~F(x ) + I Ui ~··8i (x ) 
i=l 
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Lemma 1 guarantees that for all sufficiently large 0, 

tive definite. 0 
* * VxH(x ,u) is posi-

This theorem states that H(x,u*) is a locally monotone mapping of 

neighborhood of x*. Note that x* is a solution of 

* H(x,u ) = 0, 

x in a 

* we may therefore obtain x by applying such an algorithm to this equation 

that accounts for the monotonicity of the mapping H(x,u*). This fact moti­

vates the solution method for the modified variational inequalities to be 

developed in Section 4. 

3. Method for Unconstrained Problems 

In this section, we present a solution method for unconstrained varia­

tional inequality problems, which are actually systems of nonlinear equations 

F(x) = 0, (3.1) 

where F:Rn + Rn. Note that if the Jacobian of F is symmetric for each x, 

then there exists a function f:Rn + R such that F(x) = Vf(x), and hence 

(3.1) is considered the first order necessary condition for optimality of the 

unconstrained problem 

minimize f(x) over x e:: Rn. (3.2) 

Furthermore, if F is monotone, then (3.1) and (3.2) are equivalent because 

(3.2) becomes a convex minimization problem. 

From an optimization viewpoint, Hammond and Magnanti [12] propose a 

descent-like method for solving problem (3.1) that involves an asymmetric 

mapping. The following is an outline of this method in its simplest form. 

For a given point x, a search direction d is chosen as -F(x) , and line 

search is then performed to determine the step length a satisfying the 

condition 

< F(x + ad) , d > = O. (3.3) 

The next iterate is set x + 00. ( A similar method is considered in [13, 

p .164]. ) 

Note that, in the symmetric case, the search direction d = -F(x) is 

just the steepest descent direction of the objective function f of (3.2) and 

the criterion (3.3) corresponds to the exact line search rule 

< Vf(x + 00) , d > = 0 
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in unconstrained minimization. Hammond and Magnanti [12] also consider a 

generalization of the above method in which the search direction is chosen as 

d = -G' F(x), where G is a nonsingular scaling matrix, and the line search 

criterion is modified to be 

< G'F(x + ad) , d > = 0. (3.4) 

They show that a convergence condition for this method is the positive defi­

niteness of both G''YF(x) and (G°'YF(x»2. In what follows, we considl~r a 

line search criterion which slightly differs from (3.4), and show that such a 

modification yields a weaker convergence condition. 

Now consider the following algorithm. 

Algorithm 1 
Step 0. Choose an n by n nonsingular matrix G and an initial point xO. 

Set k := 0. 

Step 1. Calculate a search direction J< = - G' F(,t<). If 11 Jc 11 is small 

enough, then terminate. 

Step 2. Determine a step length a, such that 

(3.5) 

and set ,t<+1 := ~ + aJc. Set k := k + 1, and return to Step 1. 0 

Note that finding a such that (3.5) is satisfied amounts to solving the one­

dimensional problem 

minimize 11 Go F(~ + aJc) 112. 

Convergence properties of this algorithm are seriously affected by the 

eigenvalue structure of the matrices 17F(x) °GT• In fact, if we can choose 

'YF(x)'GT in such a way that it is positive definite and has a small condition 

number, then convergence of the above algorithm may be greatly enhanced. A 

practical choice of the matrix G would be, for example, 

or more simply 

where D is the diagonal matrix which consists of the diagonal part of the 

matrix 'YF(xO). The latter choice seems better from a practical viewpoint ~nd 
is adopted in the numerical examples o'f Section 6. 

We establish a global convergence theorem for the above method. 

Theorem 2. Suppose that G is chosen such that Go F(x) is strongly 

monotone or uniformly monotone, that is, there exists a > ° such that 
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< G' F(x1) - G' F(xf.) , Xl - ~ > l: a 11 ~ _ ~ 112 

for all ~ , ~ ERn. (3.6) 

Then, {xk} generated by Algorithm 1 globally converges to the unique solu­

tion of (3.1). 

Proof: Define h:Rn + R by 

hex) = i 11 G'F(x) 112. 

Since 

ilh (x) = ilF(x)' GT. G" F(x) (3.7) 

and (3.6) implies that ilF(x)'GT and G are both nonsingu1ar, the system of 

equation (3.1) is equivalent to the problem 

minimize hex) • 

It is well known [14, p.142] that (3.6) implies that, for any xk, 

< y , ilF(xk)'GTy> l: all y 112 for all yE Rn. 

Since ~ = -G'F(xk) , it then follows from (3.7) and (3.9) that 

< ~ , ilh(xk) > = - < G'F(xk) , ilF(xk)'GT'G'F(xk) > 

s - all G'F(xk) 112 < o. 

(3.8) 

(3.9) 

(3.10) 

Consequently, we conclude that the search direction ~ is a direction of 

sufficient decrease of the objective function hex) of (3.8). Moreover, by 

(3.7), we see that (3.5) is a restatement of the condition 

< ~ , ilh(xk + a~) > = 0, (3.11) 

that is, the line search in Step 2 is the exact minimization of the function 

h(xk +~) with respect to a. 

We define the level set T by 

then strong monotonicity condition (3.6) implies that T is compact set. In 

view of Theorem 14.3.2 of [14], global convergence of the algorithm follows 

form (3.10) and (3.11). 0 

4. Method for Inequality Constrained Problems 

In this section, we propose a solution method for the modified varia­

tional inequality problem (2.2) in which the set S is specified by the 

system of inequalities (2.4). For this problem, we also consider a modifi­

cation of methods for optimization problems. Specifically, we focus upon the 
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multiplier methods in nonlinear programming and extend them to the modified 

variational inequalities. 

We define the augmented mapping H(x,u) by (2.6). The variables u are 

Lagrange multipliers associated with the inequality constraints (2.4). If 

* * * * (x ,u) satisfies (2.5), then (x ,u) is a solution of 

H(x,u) = 0. 

* Moreover, if the assumptions of Theorem 1 are satisfied, then H(x,u) :i.s a 

monotone mapping of x in a neighborhood of x*. Therefore, if the value of 

* * u is a priori known, we may obtain x as a solution of the unconstrained 

problem 

* H(x,u ) = 0, 

by using the method described in the previous section. In practice, however, 

the exact value of * u cannot be known a priori. To obtain an estimate x 

* of the solution x, we may therefore apply a single iteration of the method 

of Section 3 to the mapping H(x,u) with u being fixed. For the value of 

x thus obtained, we then calculate a new estimate of * u by updating the 

value of u. We repeat these two steps alternatively. This method is explic­

itly stated as follows: 

Algorithm 2 

k := 0. Step 0. Choose xO € Rn and uO € Rm, and set 

Step 1. Calculate the search direction ~ H(,t< ,~). If 11 ~ 11 and 

Step 2. 

Step 3. 

I max( -u/ ' ogi (,t<) ) I, i=l, 2, ••• ,m, 

terminate. 

are all small enough, then 

Obtain the step length ak' and set ,t<+1 := ,t< + ak~. 
Update ~ to get ~+1, set k:= k + 1, and return to Step 1. [] 

In this algorithm, several choices are possible in the way of selecting 

the step length ak and updating the Lagrange multiplier estimate ~. Con­

cerning the step length, we may either simply use a fixed step length or 

perform the line search using the same criterion as in Algorithm 1. 

As far as the update of ~ is concerned, we may choose one of the fol­

lowing schemes: 

(1) First order iteration: This is a generalization of the first order itera­

tion scheme used in the multiplier method for constrained optimization 

[2]. In the presented context, this scheme is explicitly stated as 

u. k+1 := u.k + max( og.(,t<+l) , _ u.k ) 
1111' (4.1) 

which, in the case of optimization, corresponds to the steepest descent 

method for the dual problem. 
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(2) First order multiplier estimate: This estimate satisfies the condition 

that if 11 }c - x* 11 is of order £ for sufficiently small £ then 

11 ok - u* 11 is also of order £ [11]. Let V; consist of the gradients 

of the constraints which are supposed to be active at * x. Assume that 
" Vg is of full rank. Then, a typical example of the first order estimate 

* of u may be obtained by 

(4.2) 

(3) Second order multiplier estimate: This estimate satisfies the condition 

that if 11 }c - x* 11 is of order £ for sufficiently small £ then 

11 ok - u* 11 is of order £2 [11]. Let V; be the same as above. Also 

suppose that the matrix L(}c,~) := VF(}c) + I ~iV2gi(}c) is nonsingu1ar, 

where ~ is a first order estimate as given above. Then the second order 

estimate may be obtained by 

ok = ( V;(}c)T·L(}c,~)-l·V;(}c) )-1 

.( ;(}c) - V;(}c)'L(}c,~)-l'F(}c) ). (4.3) 

(Similar schemes are also considered in [18].) 

Among these three schemes, the second order estimate (4.3) is the most expen­

si ve to compute, and the first order iteration (4.1) is the least. From a 

practical viewpoint, (4.1) is most favorab1e and is therefore used in the 

numerical experiments of Section 6. 

Now, we establish a convergence theorem for Algorithm 2. 

Theorem 3. Suppose that * * (x ,u ) is a solution of the variational ine-

quality problem (2.2) where the constraint set S is specified by the ine­

qualities (2.4). Assume also that the conditions of Theorem 1 are satisfied. 

Then the sequence (}c,ok) generated by Algorithm 2 converges to the solution 

(x*,u*), provided that an initial point (xO,uO) is chosen sufficiently close 

to (x* ,u *), the step length is selected as Cl.k::: Cl. , where Cl. > ° is small 

enough, and the second order multiplier estimate is used to update ok. 

Proof: Since 

and 

we have 

* * H(x ,u) 0, 

11 }c+1 - x* 11 s 11 ( I - Cl.V~(x*,ok)T )( }c - x* ) 11 

+ Cl. 11 VrJI(x* ,u*)T( ok - u* ) 11 

+ O( 1I}c - x * 112 ) + O( 11 uk - u * 112 ). 
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From the basic property of the second order multiplier estimate, the last 

inequality yields 

Since 

nite 

such 

11 x"+1 - x* 11 :ii 11 I - a:vx!/(x* ,J<)T 11'11 x" - x* 11 

+O( 1Ix"-x*1I2). 
* * V,ll(x ,u ) is positive definite, Vx!/(x*,J<) is 

when J< is sufficiently close * Therefore, to u . 
that 

11 I - aV,ll(x* ,J<)T 11 :ii P < 1, 

(4.4) 

also positive defi-

there exists P > 0 

for each a small enough. Consequently, it follows from (4.4) that 11 x" -
X* 11 0 0 converges to • 

This theorem guarantees local convergence of Algorithm 2 with specific 

updating schema of x" and J<. We have been unable to prove convergence for 

the other schema mentioned above. But the numerical experiments to be 

presented in Section 6 suggest that-Algorithm 2 remains to be convergent for 

some classes of problems, even if the simpler scheme (4.1) is used to update 

J< and the line search criterion similar to (3.5) is adopted to determine 

step lengths ak • 

5. Application to Traffic Equilibrium Problems 

The traffic equilibrium problem on a road network is to find a traffic 

pattern characterized by the following property: For every origin-destination 

(a/D) pair, the travel costs of the paths with positive flow are equal to each 

other and no greater than those of the paths without flow. Here the travel 

cost on a road may be given as a composition of various things such as travel 

time, operating cost, and risks incurred [1]. 

In the transportation literature, various formulations of the traffic 

equilibrium problems have been presented by assuming that (i) the travel cost 

of each arc in the network is dependent on the traffic flow pattern and (ii) 

the travel demand between each OlD pair may either be fixed regardless of the 

travel cost (fixed demand) or depend on the travel costs (elastic demand). 

The assumption (i) reveals the congestion effect which may lead to the monoto-

nicity property of the cost mappings. Similarly, in the case of elastic 

demand, the traffic demand between an OlD pair would usually decrease as the 

travel cost between that pair increases [1]. (The reader may recall demand 

curves in economics.) In general, the negative of the demand mappings may 

thus be considered monotone with respect to travel costs. 
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In the classical traffic equilibrium model, it is usually assumed that 

the travel cost on each arc is dependent only on the traffic volume on that 

arc and, in the elastic demand case, the traffic demand between each OlD pair 

is dependent only on the travel cost between that pair. Under these assump­

tions, the traffic equilibrium problem can be formulated as an eqUivalent 

non linear programming problem [1]. However, when interactions between dif­

ferent arcs and DID pairs are present, the travel cost of each arc and the 

traffic demand of each OlD pair should be treated as functions of the entire 

flow pattern and travel costs of all DID pairs, respectively, and hence the 

traffic eqUilibrium problem may not be reduced to an eqUivalent optimization 

problem unless the Jacobian matrices of those functions satisfy the symmetry 

conditions. 

To deal with the traffic equilibrium problems containing asymmetric cost 

and demand functions, the variational inequality formulations have been pro­

posed and studied extensively (see [3,7,17] for the fixed demand case and 

[4,5] for the elastic demand case). In those models, the variables are flows 

on arcs and demands for OlD pairs. Recently, from the viewpoint of duality, 

an alternative variational inequality formulation was proposed [10], in which 

costs for travel on each arc and between each OlD pair were involved as 

variables. In the latter formulation, the constraint set is specified by ine­

quality constrains only, and hence, we may obtain the equilibrium solution by 

applying the method described in the previous section. 

We summarize the dual formulation of the traffic equilibrium problem with 

elastic demand. Let us introduce the following: 

A 

T 

the 

the 

the 

the 

the 

set of q directed arcs, 

set of s OlD pairs, 

travel cost on arc a, 

vector of all arc costs, i.e. t 

flow on arc B, 
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if arc a is contained in path P. 

otherwise. 

93 

We suppose that every arc flow fa depends on travel costs of all arcs and 

every travel demand dik is determined by travel costs of all OlD pairs. 

i.e •• there exist mappings £:Rq + Rq and d:Rs + RS such that 
A A A 

f = f(c) = (f1(c) •....• f q(c)) 

and 
A A A 

d = d(v) = (d1(v) •....• dS (v». 

respectively. Then. the traffic equilibrium conditions may be formulated as 

the variational inequality problem of finding a vector (c,v) E S such that 
A A 

< f(c) , c' - c > i: < d(v) , v' - v > for all (C',V')ES. ( 5.1) 

where S is the set of (c,v) satisfying 

vik :> L caOap ' p E Pik , (i ,k) E T. 
aEA 

It is noted that problem (5.1) contains as many constraints as paths 

between all OlD pairs in the network. Thus the number of constraints in 

problem (5.1) may become prohibitively large as the size of the problem 

increases. This fact causes a serious difficulty in applying Algorithm 2 to 

large problems directly. In the following, let us propose a modification of 

Algorithm 2, which does not require explicit enumeration of the constraints. 

At the equilibrium solution, each active constraint corresponds to a shortest 

path for some OlD pair. Hence, at each iteration, we may generate needed 

constraints by using a shortest path algorithm such as Dijkstra and Warsha1l­

Floyd methods [6], and add them to the list. say M. of constraints currently 

considered to be active. Also the multiplier estimate .;c associated with 

those constraints are updated using the first order iteration scheme described 

in Section 4, i.e., for p E Pik , we put 

U k+1 = max{ 0 k + o( ,~) } p , up v ik - l.. cauap , 
REA 

(5.2) 

where 0 is a penalty constant used in the definition (2.6) of the augmented 

mapping H. To be more specifiC, if path p is generated by the shortest 

path calculation and was not included in the list M at the previous itera­

tion, then we append such p to the list M and update Up
k+1 by (5.2) with 

U k = O. On the other hand, if the Lagrange multiplier vanishes, then such a p 
path p will be eliminated from the list M. In this approach, we only have 

to keep the data associated with the paths which belong to the current list 

M. This implies that the memory actually used will be greatly saved even for 
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large problems. 

It is worth pointing out that since Lagrange multipliers in problem (S.l) 

represent path flows, we are able to predict not only the flow on each arc and 

the demand between each OlD pair but also the distribution of the demand into 

shortest paths at equilibrium. 

6. Computational Results 

In this section, we present computational results for several problems. 

Computer programs were coded in PASCAL and the run was executed on a personal 

computer called NEC PC-980l. Firstly, we solve the next unconstrained problem 

using the method described in Section 3. 

Problem 1. Find x* * such that F(x) = 0 

where 

3 0. 04xl + 3.0xl - 3.0x2 + S.Ox3 - 6.0x4 - 4.0xS + SO.O 
3 0.08x2 + 3.0xl + lS.Ox2 -10.Ox3 -10.Ox4 + S.OxS + 2S.0 

F(x) 0. 04x33 - l.Oxl + l2.0x2 + 3.0x3 - 2.0x4 + l.OxS + 70.0 
3 0.08x4 - 6.0xl + 1O.Ox2 + 2.0x3 + 6.0x4 + l.OxS + 7.5.0 
3 0. 12xS + 4.0xl - s.Ox2 - l.Ox3 + 3.0x4 + ls.Oxs + 9.5.0 

The solution of this problem is 

* x = ( -5.0 , -5.0 , -5.0 , -5.0 , -5.0 ) • 

The computational results contain the following three cases: 

Case 1 Algorithm 1 in which G is set to be the unit matrix, 

Case 2 Algorithm 1 in which G is set to be the inverse of the diagonal 

part of VF(xO), and 

Case 3 : The method of [12] in which G is set to be the unit matrix. 

Note that VF(x*) is positive definite and VF(x*) 2 is not so. Therefore, 

convergence of the method proposed in [12] is not guaranteed as long as the 

unit matrix is used as a scaling matrix, while convergence of the method of 

Section 3 is guaranteed. In all cases, starting point xO is chosen to be 

(0,0,0,0,0). The results are summarized in Table 1, where· ACC is the rela­

tive error calculated by 

11 ,t< - x* 11 I 11 x* 11. 

Now, we proceed to solve inequality constrained variational inequality 

problems by Algorithm 2. Recall that the following two rules may be used to 

select the step length ak: 

(a): Line search by solving min 11 H(,t<+o.Jc ,J<) 11, and 
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Table 1. Results for Problem 1 

Algorithm 1 Algorithm 

Case 1 Case 2 of [12] 

ITE. k ACC (%) ACC (%) ACC (%) 

0 100.00000 100.00000 100.00000 
1 39.50811 60.53221 35.88979 
2 21.05737 58.87709 25.88979 
3 19.05737 55.29373 28.67679 
4 17.76561 49.98032 35.04149 
5 15.82546 43.39982 38.78901 
6 13.12302 36.75468 41.80199 
7 10.02321 30.02752 41.03937 
8 7.41510 23.10537 40.85535 
9 5.01001 17.71936 42.14634 

10 2.70386 13.70874 42.41044 

15 0.98543 6.63961 51.13631 
20 0.17887 2.51458 85.88710 
25 0.05021 1.02865 155.36122 
30 0.01280 0.40731 163.15505 
35 0.00297 0.18666 132.91551 
40 0.00079 0.09120 75.48271 
50 0.00004 0.01766 62.33397 

Case 1 : G :: I 

x 50 = ( -4.999998, -5.000005, -5.000004, -5.000001, -5.000000 ) 

Case 2: G :: [diagonal part of VF(xO)]-l 

x 50 = ( -5.000172, -4.999561, -5.001710, -5.001307, -4.999689 ) 

(b): fixed step length, i.e., ak :: a for some a > O. 

We shall primarily employ rule (a) in solving the following examples, and the 

both rules will be compared for Problem 4. As to the update of ok, we gave 

three schema in Section 4. In the present numerical experiments, we prefer to 

use the first order iteration scheme (4.1) because of its simplicity of imple­

mentation. 

Problem 2. * * * Find x such that < F(x ) , y > i: 0 for all yETS(x), where 

[ 
3x1 + x2 + 12 ), F(x) = 
Xl + 5x2 + 2 

S = ( x I T Xl - x22 sO}. 
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0 
x 

ITE. k Xl 

0 -10.000000 
1 -5.257541 
2 -2.751413 
3 -2.528436 
4 -2.544297 
5 -2.568648 
6 -2.569483 
7 -2.572109 
8 -2.572217 
9 -2.572492 

10 -2.572502 
11 -2.572531 
12 -2.572532 

solutions -2.572536 
------- -

Table 2. Results for Problem 2 

Algorithm 2 [ G = I, 0 = 0.500, step size rule (a) ] 

= ( -10, 5 ). u 0 = 0 
0 0 

x = ( -10, -10 ), u 

x? u x~ x2 u 

5.000000 0.000000 -10.000000 -10.000000 0.000000 
-1.201677 1.906757 -4.506526 1.379338 1.301977 
-1.472958 2.594548 -4.131664 1. 760908 1.817409 
-1.513578 2.713307 -4.024330 1.932186 1.962902 
-1.623098 2.668233 -3.999225 1.983669 1.995044 
-1.593982 2.682167 -3.995187 1.995765 2.001098 
-1.605866 2.677506 -3.995500 1.998633 2.001582 
-1.602930 2.678868 -3.999878 2.000860 1.999801 
-1.604121 2.678375 -4.000189 1.999997 1.999902 
-1.603808 2.678521 -4.000124 2.000020 1.999924 
-1.603934 2.678470 -3.999992 1.999969 1.999982 
-1.603902 2.678485 -3.999988 1.999987 2.000002 
-1.603915 2.678480 -3.999988 1.999996 2.000004 

-1.603913 2.678481 -4.000000 2.000000 2.000000 
---- ---- ----- . ------_ ..... -

'C 
0, 

~ 

S' 
;to 

~ 
~ 

~ 
~. 

~ 

~ 
i:! 
~ 
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Figure 2. 
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2.000000 ) , 

* * x2 = ( -2.572536 , -1.603913 ), u2 
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Note that this problem 

contains a non-convex con­

straint set and therefore 

can not be treated by 

earlier methods. Because 

of the lack of convexi ty , 

solution of this 

problem is not necessarily 

unique. In fact, it has 

two solutions as shown in 

Figure 2, Le., 

2.000000 , 

2.678481 • 

Thus, we may get either of the solutions depending on the choice of an initial 

estimate (xO, uO). The numerical results for two different starting points 

are shown in Table 2, where 

Case 1 xO (-10, 5), uO 0, and 

Case 2 : xO = ( -10, -10 ), uO = O. 

For each case, the scaling matrix G is chosen to be the unit matrix, the 

parameter a is set at 0.500, and the step length (J.k is determined by rule 

(a). 

Problem 3. The traffic equilibrium problem illustrated in Figure 3 is solved. 

In this problem, arc costs are determined by a linear monotone mapping of arc 

flows. The monotonicity property of the cost mapping reveals the congestion 

effect on each road. (Note that the cost mapping often contains higher order 

terms in more realistic models.) Since Vc(f) is constant, we calculate the 

inverse matrix of Vc(f) to obtain the arc flow function, and then set a 

scaling matrix G to be the inverse of the diagonal part of VF(xO), where x 
A A 

= (c,v) and F(x) (f(c), -d(v)). Since this example contains a convex con-

straint set, earlier methods for solving the ordinary variational inequalities 

may also be used to obtain eqUilibrium solutions. Among the existing methods, 

the relaxed projection method [8,10] seems to be appropriate as a measure of 

evaluating Algorithm 2, since they are both singly iterative methods. Table 3 
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Arc Costs 

cl(f) =5£1+2f2+500 

c .. (f) = 6£ .. + 3£5+ 400 

cif) = 8£7+ 2f8+ 400 

clo(f) = 4£10+ £l2+ 800 

c13(f) = 7f13 + 3£18 + 600 

cls(f) = 8£lS + 5£l2 + 300 

C19(f) = 8£19+ 3£17+ 600 

c22(f) = 6£22 + £23 + 500 

c~f) = 9£25+ 3£26+ 450 

c28(f) = 7f28 + 650 

c31(f) = 4£31 + £32 + 750 

c3'+(f) = 8£3'+ + 2f35 + 650 

cai.,f) = 7£37+ 3£38+ 700 

c'+O(f) = 8£'+0+ 3£ .. 1 + 600 

c '+3( f) = 7f '+3 + 2f '+5 + 400 

c'+6(f) = 6£'+6+ 2f'+8+ 400 

c'+9(f) = 6£'+9+ £so+ 600 

cdf) = 6£52+ 2£53+ 700 

T. Itoh. M. Fukushima. T. Ibaraki 

c2(f) =4£2+£1+200 

cs(f) = 6£5+ 4£s+ 600 

cif) = 5£8+ 2£9+ 650 

cll(f) = 7£11 + 4£l2 + 650 

cl .. (f) = 8£1 .. + 3£15 + 500 

clif) = 7£17 + 2f15 + 450 

c2O(f) = 6£20 + £21 + 300 

c23(f) = 9£23+ 2£2'++ 350 

C26(f) = 7£26+ 4£27+ 300 

c29(f) = 3£29 + £30 + 450 

c32(f) = 8£32+ 3£33+ 650 

cas< f) = 6£35 + £36 + 500 

caif) = 8£38 + 4£39 + 800 

c .. if) = 3£ .. 7+ £'+9 + 800 

cso(f) = 8£so + 2£51 + 500 

Figure 3. Problem 3 

cs(f) = 7fs + 3£7 + 500 

cg(f) = 6£9 + 2£10 + 700 

Cl2(f) = 8£l2 + 2f13 + 700 

C15(f) = 9£15+ 2£1 .. + 200 

c21(f) = 4£21 + £22 + 400 

c2'+(f) = 8£2'++ £25+ 400 

c2if) = 8£27+ 3£28+ 500 

c3O(f) =< 7f3O + 2f31 + 600 

C33(f) = 9£33+ 2f3'++ 750 

c 36(f) = 8£ 36 + 2f 37 + 450 

cag(f) = 7£39+ 3£..0+ 550 

c,.if) = 5£'02+ £'+3 + 350 

c,.s(f) = 9£'+5+ 6£ .. 7+ 350 

c'+8(f) = 7£'+8+ 2fso+ 700 

C51(£) = 7f51+ 3£52+ 600 
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css(f) = 8fss + 3f56 + 250 

cse(f) = 7fse + fSiJ + 250 

c51(f) = 7fs1+ 2f62 + 400 

c6II(f) = 5f611 + 100 

Demands 

OlD pair 1 1,20], 

OlD pair 2 1,25], 

OlD pair 3 [ 16,30], 

OlD pair 4 [24,40], 

OlD pair 5 [ 4,27], 

OlD pair 6 [22,40], 

VariatioTllll Inequalities 

(;56(£) = 6f56 + fST + 350 

CSiJ(£) = 6fSiJ + 3f60 + 400 

c62(f) = 5f62 + f63 + 200 

css(f) = 4f65 + 200 

dl(V) = - 0.010Vl + 60.0 

d2(v) = - 0.009V2 + 70.0 

da( v) = - O. OlOva + 50.0 

d..(v) = - 0.008V4 + 50.0 

ds(v) = - 0.01OV5 + 50.0 

ds(v) = - 0.008vs + 50.0 

Figure 3. (Continued) Problem 3 
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cS1(f) = 5fST + 2f58 + 200 

C60(£) = 4f60 + f51 + 300 

c63(f) = 4f63 + 2f611 + 100 

c66(f) = 7f66 + 300 

contains the computational results for (i) Algorithm 2 with a modification 

described in Section 5, where the parameter 0 is set at 0.010 and the step 

length ak is determined by rule (a), and (ii) the relaxed projection method, 

where a controlling parameter is adjusted in the same manner as in [10]. 

In Table 3, comparison is made in terms of the number of iterations to 

obtain approximate solutions with various degrees of accuracy (ACC) evaluated 

by 

ACC = max( 11 d< - c * 11 I 11 c * 11 , 11 0 - v * 11 I 11 v * 11 }. 

Since the two methods require almost the same CPU time per iteration, the 

number of iterations seems to be a good measure of estimating the computa­

tional efficiency. Table 3 shows that Algorithm 2 exhibits faster conver­

gence. 

Moreover, to see how convergence of Algorithm 2 is affected by the choice 

of the parameter 0, the same problem is solved using various parameter 

values. The results, which are summarized in Figure 4, suggest that the 

choice of the parameter 0 considerably influences convergence properties of 

Algorithm 2. However, since suitable parameter value actually depends on the 

problem to be solved, we have to resort. to an ad hoc method to determine a 

desirable value of o. 
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Table 3. Results for Problem 3 

ACC Algorithm 2* Algorithm of [ 10] 

10% 6 15 

5% 11 27 

2% 14 37 

1% 20 41 

0.5% 26 46 

* 0' = 0.001 and ~k is determined by rule (a). 

Problem 4. A larger traffic 

equilibrium problem which has 

100 nodes, 360 arcs and 10 OlD 
pairs is also solved by 

Algorithm 2 with a modification 

described in Section 5. We 

first apply the algorithm using 

step length rule (a), and 

summarize the computational 

results for various values of 

parameter 0' in Figure 5. 

Then, we also solved the same 

problem by adopting the fixed 

step length rule (b). Figure 6 compares the results for various values of the 

fixed step length ~ with that of using rule (a). (In all calculations, the 

parameter 0' was set at 0.010.) In Figure 6, the graph corresponding to each 

run is marked every 20 iterations. The results shown in Figure 6 indicate 

that step length rule (b) usually requires more iterations than rule (a) to 

attain the same level of accuracy. But because rule (b) spends less CPU time 

per iteration, approximate solutions with high accuracy may be obtained quick­

ly if we choose suitable step length ~. Also it is noted that the algorithm 

may fail to converge if the fixed step length is too large. In fact, Figure 6 

shows that convergence is not obtained for ~ = 0.018. 

7. Conclusion 

The proposed method for unconstrained variational inequality problems is 

constructed by modifying the line search criterion of the algorithm due to 

Hammond and Magnanti [12]. We have shown that the present method is conver­

gent under weaker conditions than those for the method of [12]. The numerical 

result given in Section 6 also indicates this. 

For the inequality constrained problems, a new solution method is also 

presented, which is a modification of the multiplier methods in nonlinear 

programming. This method may deal with problems containing non-convex const­

raints and can be shown to converge under appropriate conditions. Moreover, 

this method can be applied to the traffic equilibrium problems by using a 

shortest path calculation. The numerical results of Section 6 are quite 

satisfactory and would en~ourage further study of solution methods for 

variational_inequalities form optimization viewpoints. 
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[1] : 0= 0.0040 

[2]: 0=0.0060 

[3]: 0= 0.0080 

[4]: 0= 0.0120 

[2] ----.. 
C4J 

50 100 

Number of iterations 

Figure 4. Results for Problem 3 

[1]: 0= 0.0040 

[2]: 0=0.0060 

[3]: 0=0.0100 

[4] : 0= 0.0140 

100 

Number of iterations 

Figure 5. Results for Problem 4 
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Figure 6. Results for Problem 4 
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