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Abstract The problem to sehedule n independent tasks nonpreemptively on m unrelated processors with the 

objective of minimizing the finishing time is considered. For the case of m=2, an approximate algorithm which 

has a worst-case performance ratio 1 +€ and runs in time 0 (nlogn) is proposed. For general m, by restricting the 

number of task types to k, a polynomial time (in n, m) exact algorithm is presented. 

1. Introduction 

We are given a set Y={T
1
,T

2
,_ •• ,T

n
} of n ~ 2 independent tasks, a set 

.'c7'={P
1

,P
2

, ... ,P
m

} of m;;; 2 unrelated processors, and a function \l(') mapping 

from 3'X ? into the set of positive integers. There is no precedence relations 

among tasks. A processor can work on only one task at a time, and a task can 

be worked on by any (one) processor. Tasks are processed nonpreemptively, 

i.e., once a task having started execution it will not be interrupted until 

its completion. 

time of task T. 
~ 

The value \l(T.,P.), written shortly \l .. , denotes the execution 
~ ] ~J 

on processor P., where we assume without loss of generality 
] 

that the times are given in integral multiples of a unit time. The "unrelated" 

processors system which we treat is a generalization of the identical proc-

essors sys tern where \l . . is cons tant wi th respect to j i. e. is equal to r; 
~J ~ 

(execution requirement of task T
i

) and of the uniform processors system where 

by using the notion of processor's speed(s.) \l .. is expressed as r.ls .. In 
] ~J ~ ] 

the unrelated case, processor's speed may vary according to the task being 

executed. Rather, it models the heterogeneous multiprocessor system where 

respectively specialized processors can execute the each type of tasks more 

efficiently than others. 

61 
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62 K. Numata 

The problem is to schedule :7" on 9' so that the total time taken to 

process 3' is minimized. Such a schedule is called an optimum schedule. The 

decision problem of determining whether ,'T can be processed within a given 

finishing time is known to be NP-complete even in the case of two(m=2) identi­

cal processors [1, 4]. Hence it is unlikely that the polynomial time exact 

algorithm can be found to solve the problem. So the investigation has been 

directed to the fast approximate algorithms and the error analyses, or realis­

tic simplifications of the problem. 

For the identical and uniform processors system, simple heuristic 

algorithms such as LPT or MULTIFIT have been intensively studied [5, 2], but 

these seem not to be directly applicable to the unrelated processors system. 

For this system, polynomial time approximate algorithms were first studied by 

Ibarra and Kim [7]. They presented an nlogn time a-approximate (with fixed 

which is worst-case performance ratio 1+a) algorithm for m=2 processors case, 

guaranteed to be at most 1~15 times worse than the optimum (0=0.6). Horowitz 
2m 

and Sahni [6] proposed an E:-approximate algorithm of time complexity 0 (n If:.) 

which can generate schdules arbitrarily close to the optimum for general m. 

However the running time of their algorithm rapidly grows larger as desired 

relative error bound, E:, gets smaller. Davis and Jaffe [3] presented poly­

nomial time approximate algorithms for the general m, and proved them to be at 

most 21iil'V 1.51iil times worse than the optimum. Recently, Potts [10] developed 

a linear programming based heuristic for general m. This algorithm has a 

worst-case performance ratio of 2 for m>3, and a modified version of it for 

m=2 has a ratio 1.5. As for the problem simplification, Leung [8] considered 

the identical processors system under the restriction that the number of 

different execution times is restricted to k(k«n), and presented a pOlynomial 

time exact algorithm. 

In this paper we first propose the new approximate algorithm for unrelated 

processors system which runs faster than [6] and generates more accurate 

schedules than [7] or [10]. Next, for the general unrelated case, we present 

an exact algorithm which solves the simplified problem that the number of task 

types is restricted to k(k« n). This problem is an extension of [8], and our 
. hm .. (2 (k-1) 1 Q) h . h d . b algor~t runs ~n t~me 0 m'n • og ,were Q ~s t e ~fference etween 

estimated values of upper and lower bounds for the optimum schedule length. 

2. Scheduling on Two Processors 

In this section we formulate the model for m=2 processors as 0-1 pro-
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Algorithms for Scheduling Independent Tasks 

gramming problem. Based on the solution of its continuous relaxation, we 

develop a new ~-approximate algorithm.~or the demonstration of its perfor­

mance, numerical comparisons with [7] and [6] are presented. 

2.1 Formulation and relaxation 

63 

Let xi be the 0-1 variable which represents whether the task Ti ~s proc­

essed by processor P
1 

(x
i

=1) or by P z (xi=O). Then, our problem to minimize the 
n n 

greater of L ~'l'x, and L ~'Z'(l-x,) is expressed in the form of 0-1 pro-
i=l 1. 1. i=l 1. 1. 

gramming as; 

minimize f = y 

n 

(Z.1) 

subject to L ~ 'l' x , ;;; Y 
i=l 1. 1. 

n 
L ~'Z'(l-x,) ~ y 

i=l 1. 1. 

Y ~ 0, xi = 0 or 1 (i=l,Z, ... ,n) . 

We consider the continuous relaxation of problem (Z.l) where xi ~s a real 

number in the interval [0 1], that means xi portion of Ti is processed by P1 
and (l-x) portion by P

Z
' Here we aSSUID<= that the tasks have been sorted in 

the non-increasing order of ~iZ/~i1 and reindexed so that 

We also assume, for the conven~ence of later discussions, that the processors 

become available (begin processing) at time a(P
1

) and S(PZ)' where a,S 

Now by introducing slack variables sl'sZ' A
1

,A Z, ... ,An and using M for 

(Z.l) is rewritten as follows. 

minimize 

subject to 

(Z. Z) 

f = y 
n 
L ~'l'x, - y + sl 

i=l 1. 1. 

n 
L ~'Z·x, + Y 

i=l 1. 1. 

x, 
1. 

+ A, 
1. 

-a 

M+S 

(i=l,Z, ... ,n) 

Direct application of the primal simplex algorithm to (Z.Z) produces the next 

theorem. 
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Theorem 
p-I 

I ].J'I 
i=1 1. 

p 

I ].J'I 
i=1 1. 

1. Let p be the 

n 
+ a :;; I ].JiZ + /3 

i=p 

n 
+ a > I ].J'2 + /3 

i=p+1 1 

n 

K. NUrTIIlta 

task index such that 

and 

n 
(if a+ I ].J'I :;; /3. let p be n+1 or 

i=1 1. 
if a > /3+ I ].J'2' let p be 0), 

i=1 1. 

then the optimum solution x 1' (x~,x~, ... ,x~) for (2.2) is given by 

{ 
~ i :;; p-l 

x~ = e i p 
1. 

0 p+l ~ i :;; n . 

where 8 (0:;; e <I) . 

Proof: When p o or n+l the theorem LS trivial. so it is sufficient to 
n n 

consider the case that 10,-/31 <mine I ].J'I' I ].J'2). In this case. (2.2) is 
i=1 1. i=1 1. 

solved by the simplex method as follows. At first. we eliminate the variable 

y from 1st and 2nd equations of (2.2) and rewrite it into a basic form with 

the basis {Y.5
1

,A
l

,A
2

, ••. ,A
n

}. Since a-/3 < M is the case, resultant tableau 

(a) of Table 2.1 is feasible. Starting with this. we repeat to select xi as a 

new basic variable and eliminate Ai from the basis for i=I.2, •••• p-l to keep 

the solutions feasible. The final (p-l-th) tableau of this step is shown in 
p-l n p-l 

(b). where M - a + /3 - I (].J, +].J, ) = /3 + I].J, - (a+ I ].J, ) = B-A ~ O. Next 
i=1 1. 1 1.2 i=p 1.2 i=1 1.1 

we introduce x 
p 

into the basis. B-A Since --~~~- < 1. the variable to be 
].Jp 1 + ].Jp2 

eliminated is 51 At this time all entries of the first row in the resulting 

tableau (c) become nonpositive and the optimality condition is satisfied. 

The solution given by tableau (c) is what Theorem 1 asserts. [] 
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Table 2.1 Simplex Tableaux 

(a) 

f xl x
2 x y 51 52 "1 "2 " constant n n 

\.1 12 \.1 22 \.In 2 a a -1 a a a M+S 

a W
l 

w
2 

w a -1 a a a M-a+S n 
a \.1 12 \.1 22 \.In 2 a -1 a a a M+S 

a 1 a a a a a a a 
a 0 a 0 a a a a 

·1. ·1. 

a 0 a a a a a a 

n 
M = L 1l'2 w, llil + lliZ . 

i=l ~ ~ 

(b) 

f xl x
p

_
l 

x x y 51 52 "1 " p-l " " constant 
p n p n 

a a llp2 lln2 a a -1 -1l12 -llp-12 a a 11 

0 a a w w a -1 -w
l 

-w a a B-·A 
p n p-l 

a a a llp2 lln2 a -1 -1l12 -llp-12 a 0 11 

0 a 0 0 a 0 a 1 a a 0 

a ·1. ·1. 

a a a a a a a a a a 
a a a a a a a a a a 

·1. ·1. 

a a a a a a a 0 a a 

p-l n 
A = a + L ll'l B S + L lliZ 

i=l ~ i=p 
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(c) 
'" '" 

f xl xp_ l xp x 
p+l 

x
k 

x y 51 52 Al Ah A p-l A A constant 
n p n 

0 0 0 cp (p+O cP (k) cP (n) 0 -ll /w -ll /w -$ (1) -+ (h) -cp (p-l) 0 0 n p p p p2 p pl p p p p 
0 0 0//1 wP+l/wP wk/wP w /w 0 l/w -l/w -w /w -w /w -w /w 0 0 e 

n p p p 1 p h p p-l p 
0 0 0 0 cp (p+l) 4> (k) 4> (n) -ll /w -llpl/wp -$ (0 -4> (h) -4> (p-1) 0 0 n p p p2 p p p p 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 

"1-

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 -w /w -w /w -w /w 0 -l/w l/w w1/wp whlwp w l/w 0 1-8 
p+1 p k P n P p P p- P 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 t": 
~ 

n p-1 i 
~+.I lli2 - (a+.I llil) 

~ 

4>p(i) = lip 1 lli 1 (lli2/ 11il - llp2/ 11pl)/wp 
e (B-A)/w = ~=P ~=1 (O~e<l ) 

p lip 1 + llp2 

n p-l 
II l(s+.I lli2) + II 2(a+.I llil) 

n 
p ~=p p ~=1 

lip 1 + llp2 
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Rounding x*, the solution for relaxed problem given in Theorem 1, to 1 or 
P 

0, i.e. shifting one of the fractions of task T to another processor, we ean 
P- -

obtain two feasible schedules whose lengths are f
1

(xp=1) and f 2 (x =0). Let: 

f be the smaller of f1 and f
2

, fP be the length of the schedule f~r 3' - {Tp} 

defined by x~ (i=1,2, ••• ,p-1,p+1, ••• ,n), f O be the optimum schedule length of 
~ 

the 0-1 problem (2.1) and f* be the optimum value for the relaxed problem (2.2) 

respectively (see Fig. 1.). 

f1 
fP --------..1 

]..Ip1 

1------ f* 

Fig. 1 Rounding of Task T 
p 

Then we have the next inequality. 

Theorem 2. 

Proof: 
definitions 

Accordingly, 

Obvious ly fP < f* and generally 

fP = max(f 1- llp1 ,f2-]..Ip2)' then i1 

f = min(f 1,i2) ;;:; min(fP+]..IP1,fP+]..Ip2) 

< f
O 

+ min(llp1 ' Ilp2 )· 0 

2.2 Partially enumerative algorithm 

f* ;;:; f O, 

;;:; fP +Il 
p1 

Ilp2 

therefore fP < fO. By 

P and f2 ;;:; f +]..Ip2· 

The basic idea of our algorithm is that if min(lli1 ,1li2) < fO.£ for all. 

l;;:;i;;:;n then Theorem 2 guarantees f being less than f O + fO.£ i.e. the relative 

error i/fo being bounded by any given £>0. To make use of this fact, using 
n 

!. = L min(Il'l' 1l'2) /2 as the lower estimate for f
O

, we divide the set 3' of 
i-=l ~ ~ 

tasks into two disjoint subsets; 

Here we have the next theorem. 
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Theorem 3. I.r, I :;> r 2 /£1 

Proof: In the case of q = r2/£1 ~ n the theorem is trivial, hence we 

consider only the case of q < n. Sorting the tasks of fin nonincreasing order 

of min(~'1'~'2)' we have the sequence, min(~ 1 ~ 2) ~ 
sl ' s1 

> • ( ) > = m~n ~s l'~s 2 = 
q q 

~ min(~s l'~s 2)· If rnin(~s l'~s 2) 
n n q+1 q+1 

;:: f·£ then rnin(~s l'~s 2) ~ .•• 
q+l q+l 

we have the contradiction as follows; 

~ (q+l)'rnin(~s 1'~s 2) 
q+1 q+1 

;;; (q+1) ',f.£ ;;; (rZ/£l +1) ',f.e) ;;; (Z/£+1) ',f'£ > 2·f 

Therefore min (~s l'~s 2) < f·£ and this means I 3j I ~ q 
q+1 q+1 

The algorithm enumerates all the subschedules of ffl with finishing times 

denoted by a(for Pl) and S(p2). For each (a,S) it adds the subschedule of ~2 

determined by Theorem 1, and selects the total schedule of the minimum length 

(see Fig. Z). 

level 
------- 1 
------- Z 

minimum (i) 

Fig. Z Partial Enumeration 

The formal description of the algorithm follows. 

ALGORITHM A1: (n, ~11'·· ., ~nl' ~lZ'''·' ~nZ are given) 

step 1 (* preparations *) 
n 

calculate f = I min(~'l'~'Z)/Z 
i=l ~ ~ 

divide 5" into ff1 U 5"Z (* let I ~I be r *) 

sort tasks of 5"Z in nonincreasing order of ~.2/~'1 

(* suppose that 5"2 = {T ,T ..... T } *) 
sl Sz sr 

let MIN be +00 (* current minimum schedule length *) 
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step 2 (* enumeration, addition, selection *) 

for 

do [ 

all subschedules of Y, (* a, S, 

(* X,Y: current finishing times 

x + a; Y +- S+. I II i 2 ; j + 1; 
~E:f2 

x. for T. E ..9"", are returned *) 
~ ~ 

of 
P" P

2 
*) 

while max (x + II s .1' Y - II s .2) < Y ) and (j;£ r) do 
] ] 

if Y < MIN then [MIN + Y; save x 

x + ,; 
s. 

] 

j+j+l;] 

In step 2 each subschedule of ..9"", (specified by a, S and xi for Ti E Y , ), 

combined with additional schedule of Y
2 

determined by Theorem 1, produces a 

total schedule with finishing time tas' Let f~S ~s the minimum schedule 

length under the condition that 3J has been scheduled with the finishing 

times a(p , ) and S(P2)' Here IaS is guaranteed to be less than f~S+ f'E: by 

Theorem 2 and the property of 5'2 that min(ll", ll.2) of its any element is less 

than f·E:. After repeated comparisons, at the end of step 2 we obtain I = 

min I 
a,S as 
(length 

S* (p 2)' 

Now we assume that the restriction of the overall optimum schedule 

fO) to ~ gives the subschedule with finishing times a*(p,) and 

Th " h fO fO h" 1 fO b " " fO < fO ~s means t at a*S*;£ ,w ~ e, e~ng opt~mum, - a*S* 

holds. Accordingly fO = f~*S* and obviously I ;£ Ia*S*' then we have 

-f < -f fO f < fO fO " =f /fo 1 - a*S*;£ a*S*+ _ 'E: - + 'E:, 1.e. ;£ +E:. 

We now consider the time requirement of Algorithm Al. It is easily seen 

that step 1 takes at most O(nlogn) time and that step 2 takes 
I ..9'11 

(2 'n) 

time. Let E: be, for example, 0.1 then step 2 executes· its for all loop at 

most 2 r2 /E:l;. 1000000 times. This amount: of computation is not so excessive 

for today's ordinary computers. Moreover it should be noted that 2 f2 /E:l is 

a constant on n, i.e. however large n becomes. this coefficient never changes. 

After all from the viewpoint of order in n. we can conclude that Algorithm Al 

needs O(nlogn) time for fixed E:. 

The time requirement of Al can be improved by eliminating the subschedule 

of step 2 both a and S of which are longer than those of already appeared 

subschedules, and by using the solution of the relaxed problem (f*) as ! to 

decrease \ ~ \. Thus improved algorithm is refered as A2. On the other hand 

the schedule length given by Al may be slightly shortened, at cost of running 

time, by reassigning the tasks on the processor having the longer finishing 

time to another as long as the schedule length can be reduced. 
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2.3 Numerical experiment and comparison 
In the following, results of the numerical experiment to examine time 

requirements of 4 algorithms, Al(E=O.l), A2(revised Al, E=O.l), IoK(o~0.6) by 

Ibarra and Kim [7] and HoS(E=O.l) by Horowitz and Sahni [6], are presented. 

We observe their running times for two types (case 1 and case 2) of data, and 

discuss their performances. The results in case 1 where ~ s are uniformly 

distributed random integers in the interval [1,100] are shown by Fig. 3, while 

those in case 2 where min(~il'~i2) constant(=33) for all i and the others 

are uniformly distributed in [34,83] are shown by Fig. 4. In both cases 

problem size n is moved from 10 to 150 with the certain interval, and for 

respective ns the averages of 25 trials (deviations are very small) are 

plotted. The absolute times measured (we used a medium scale computer HITAC 

M180 with speed of about 3 MIPS), of course, vary with the machine on which 

algorithms are executed, but the tendency (or ratio of values) is considered 

not to vary so much. 

time (sec.) time (sec. ) 

100 100 t 
311 sec. 

At 

0: roK 
10 [::J: H"S 10 

",: Al 
'If: A2 

0.1 0.1 

0.01 0.01 

o 0 00 1 L....I.----'--'---'--'------''------'-_. ! .. n 
o ID 203040 50 70 ISO 

Fig. 3 Time Requirements Ln Case 1 Fig. 4 Time Requirement in Case 2 

In Fig. 3 the running time of roK appears to follow the theoretical 

estimation O(nlogn), and that of HoS to grow very rapidly. Algorithm HoS 

d · od h' [1 Or+l]. 01+1 . . LVL es t e Lnterval,l into nol equal subintervals of Size 
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r-1 
fl0 1nl and executes dynamic programming type computation regarding integers 

in a same subinterval as identical, where 10r 
< f* < 101 + 1 and £ > 10-1 . 

However, in our experiment, the size of subinterval is observed to be less 

than 2 or so. The value of £ = 0.1 seems to be too small for the above idea 

to work effectively. As for Al and A2 their running times first increase and 

then decrease at the left side of n=50 or so where step 2 of algorithms 

dominates the total running time and I ~ I is maximized at about =20, while 

at the right side of it, they behave similarly to I'K, because O(nlogn) time 

step 1 dominates the total running time. The difference between Al and A2 

shows that our improvement mentioned at the end of 2.2 is effective. 

Fig. 4 shows the case that is most unfavorable to algorithm Al or A2. 

For n<20 the running time of Al appears to grow exponentially because I ~1 I=n 

and step 2 dominates the total time, while that of A2 increase more slowly (at 

the same rate as H·S). For n~20 where I .~ I is zero, running times of Al and 

A2 coincide and behave similarly to I·K. As for I'K and H'S, their running 

times are respectively almost same as in case 1. Through Fig. 3 and 4, I'K is 

seen to be the fastest of 4 algorithms. 

Next, we consider the lengths of generated schedules. In the above case 

1+15 those of I'K, being far smaller than its theoretical bound f*'--2--' are only 

a little longer than those of Al, A2 or H'S, but they are not always so. For 

data like 

lli 1 

lln 

22 

35 

2 

52 

82 

3 

89 

140 

4 

10 

17 

5 

75 

118 

6 

64 

101 

7 

70 

110 

8 

800 

1250 

9 

76 

120 

10 

74 

117 

it generates the schedule with, length 1250, while H'S and A2(A1) generate 

respective schedules with len~th 822 and 823 for the same data. The data 

unfavorable to I·K like this can be systematically produced, in other words, 

occur with certain probability. 

Here we can conclude that algorithm A2 based on A1 is much. faster than 

H·S under the same condition of accuracy and more accurate than I·K at the 

moderate cost of running time. 

3. Scheduling on m Processors 

In this section we consider the case of m>2 processors by assuming that 

the execution times list of each task, (1l'1,1l'2, •.. ,1l'm)' is drawn from an 

arbitrary set of k different lists (task types). This restriction is a natural 

extension of the idea introduced in [8], and reflects the situation that we 
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have the large number of tasks to be scheduled, while most of them have the 

same suitability to processors. 

In the following, we show that the above simplified problem can be solved 

by a polynomial time (in m and n for fixed k) algorithm. First we construct 

the algorithm for the special case that there are only two task types, and 

then generalize it to the case of k different task types. 

3.1 The algorithm for two task types 
Suppose that we are given Nl tasks of type 1 having the execution times 

list (~11'~12""'~lm) and N2 tasks of type 2 with the list (~21'~22""'~2m)' 

where N
1

+N
2 

= n. Let us consider the following decision problem: For a given 

positive integer D, is there a schedule of these n tasks on processors P
1

,P2, 

""P
m 

whose length is less than or equal to D? If there is an algorithm to 

olve this decision problem, by binary search method using this algorithm as 

a test procedure, we can find the minimum value of D for which the decision 

problem is feasible, i.e. the optimum schedule length. The search process 

terminates because ~ •• s are all integral. If the above decision problem can 

be solved in time T, then the overall algorithm will run in time T'log(P-p) , 

where P = rn/ml ·max(~ .. ) and p = fn/ml ·min(~ .. ) are the initial upper and 
i,j ~J i,j ~J 

lower bounds of the optimum schedule length. Our problem is now reduced to 

solving the decision problem in pOlynomial time. 

Let x 1j (x2j ) be the number of type 1 (type 2) tasks which are scheduled 

on processor P.(j=1,2, .•• ,m). Then, the decision problem is expressed as 
] 

follows: For given D, are there nonnegative integers X
1j

,X2j (j=1,2, ... ,m) 

such that 

(3.1) 

m 

L xl' ;:; Nl 
j=l ] 
m 
I X2 . ;:; N2 ? 

j=l ] 

:;; D (j=1,2, ... ,m) 

Regarding each pair (x 1j 'X2j ) as a point on X
1
-X2 plane, we can interpret the 

first m inequalities of (3.1) as the condition that the nonnegative integer 

valued point (x 1j 'X2j ) must locate on or below the straight line ~lj'xlj + 

~2/x2j = D for j=l ,2, ..• ,m (see Fig. 5). 
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Fig. 5 Candidate Regions for Formula (3.1) 

Thus the problem is changed to pick m points, one point from each region, so 

that the sum of the first coodinate of the m points is at least NI and the 

sum of the second coodinate is at least N
2

• In choosing these points, it is 

enough to consider only "boundary point" of each region, the points whose 

second coodinate are the largest for each (fixed) first coodinate, 0,1,2, ... , 

min(n, LD/~l.J), since every other point is subsumed by one of them. 

~ . 
t >! 

~ ~ 

i' ~ 

r * 
0 2 . 

Fig. 6 

@ boundary point 

~ 
it ~ . 
;,. ~ 1< <i) 

D/~1j 
t * r t, ... . • 
Boundary Points for P. 

] 

Xl 

The number of boundary points of each region is O(n) (~n+l). So simple 

enumeration of m points, choosing one points from each boundary points, 

requires o (nm) time. However, as shown in the following, it is possible to 

perform substantially same work in polynomial time. 

First we consider the subsystem of two processors, say PI and P 2 , denoted 

by <P
1
-P

2
>. Combining each boundary point of PI and each of P2 (respectively 

(b
11

,b
21

) and (b
12

,b22 », we compute all composite points (bll+b12,b21+b22l. 

Among O(n2) these composite points, only those the second components of which 

are the largest for respective values of the first component are retained 

since the other composite points are subsumed by them. The number of these 
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"composite boundary points" is O(n) (;;0 n+1). Next, combining each of the 

composite boundary points of <P
1
-P2> and each boundary point of P

3
, (respec-

o (12) (12) 
tl.vely (b

1 
,b2 ) and (b

13
,b23», we compute all composite points 

(12) 
b 13 ,b2 +b23 )· Here, again, from o(n2

) computed points we choose 

(b(12) + 
1 

O(n) 

points of <P
1
-P3> processors system. Repeating these operations of <P

1
-Pj > 

processors system (j=3,4, ••• ), at the end we have the composite boundary 

points for total processors system. By examining the value of the second 

component of the point whose first component is N
1

, we can determine the 

feasibility of our decision problem. It it is less than N2 then x 1j and x 2j 
(j=1,2, .•.• m) to satisfy (3.1) for given D do not exist else do exist. 

For the formal description of the above procedure based on the dynami.c 
o 0 0 1 0 d 0 f 0 h 1 0 (j) programml.ng prl.ncl.p e, we l.ntro uce two serl.es 0 arrays Wl.t n+ entrl.es y 

and u(j) (j=1,2, •.• ,m) and the binary operation 0 between them. Each entry 

of y(j) is computed as 

0.2) 
( 0) { _Loo(D-to1l1J·) 11l2JoJ 

y J [t] = 
o ;;0 t ;;0 LD/1l

1j
J 

LD I 111j J < t ;;0 n , 

that is, (t,y(j) [t]) is a boundary point of Po. We define 0 between two such 
J 

arrays by 

a 0 b[t] max (a[s] + b[t-s]) 
O;;os;;ot 

(t=1 ,2, ... • n). 

Later, we refer the index s* (0 ;;0 s* ;;0 t) that realizes the right-hand side 
(") 

(maximizes a[s]+b[t-s)) as "realization index" of a ® b. Now, u J , which 

represents the composite boundary points for <P
1
-Pj > processors system. can 

be computed from y(j) and u(j-1) as 

U
(j) = y(j) ~ u(j-1) (3.3) '<Y (j=1,2, •.• ,m). 

Initial array y(O) which works as a unit element in this operation is given by 

t=O 

1St;;on 

Note that y(j) [t] or u(j) [t] holds the maximum number of type 2 tasks that can 

be processed by Po or P1~Po within time length D under the condition that t 
J J 

type 1 tasks have been assigned. 

When given schedule length D is optimum, the actual schedule which 

realizes this D is needed. For this purpose it is sufficient to record the 

realization index of u(j) [t] in an array, say w(j)[t], at each step of com­

puting u(j)[tj = y(j) 0 u U -1)[tj (j=1,2, ••• ,m; t=0,1,2, ••• ,n). If uU)[t] 
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results in -00 the index is not needed. After all w(j)s are determined, we can 

construct the schedule by backward iteration 

0.4) 

w(j) [N 
1 

m 

- I x ] 
, 1 ls s=J+ 

(j =m, m-1 , ••• , 1 ) • 

The formal description of the algorithm (named A3) for the decision problenl 

fo llows. 

ALGORITHM A3: (D is given) 

(* initialization *) 

let 

for 

u [0] 

j: =1 

(* 

+ 0; u [1] + -00; U [2] -+- -00; ... u [n] + -00; 

to m do (* main for loop *) [ 

computation of y *) 

R + D; a + ~lj; b + ~2j; t + 0; 

while R ;;; 0 do [ y[t] + L.R/bJ; R + R-a; t + t+1 ] 

while t ~ n do [ y[t] + -00; t + t+1 ] 

(* computation of next u *) 

for t:=O to n do [ u' [t] +- max(y[s] + u[t-sJ); w(j) [t] +, s* 
s 

(* u + u' *) 

for t:=O to n do [ u[t] + u' [t] 

if U[N
1

] ;;; N2 then YES (* feasible *) else NO (* infeasible *) 

The computations of u and w(j) (operation 0) may be carried out alternatively 

in the following manner, where y [n+1] and u [n+1] are assumed to hold the vCllue 

as sentinels. 

(* computation of next u *) 

for t:=O to n do [ u'[t] + -00;]; S + 0; 

while yts) ;;; 0 do r + 0; t + S; 

while u[r] ;;; 0 do 
( ') 

if u[r]+y[s] > u' [t] then [ u' [t] + u[r]+y[s]; w J [t] + 5 ] 

r + r+1; t + t+1 

5 + 5+1 

Theoretical order of the time requirement does not change, but the actual 

running time will be shortend in most of cases. 
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3.2 Illustrative example 
To illustrate the above algorithm A3, we consider the following example. 

Let m=3, k=2, N
1
=4, N2=7, ~1.=(2 4 3) and ~2.=(6 3 4). Suppose that 12 is 

given as D (it is the optimum schedule length in this case). 

At first u is set to 

(0, -00, -00, -00, -00 -00 -00 -00 -00 , , , ,. , -00 , -00 , -00). 

Next, y is computed at the first step of main for-loop as 

y = (2, 1, 1, 1, 0, 0, 0, -00, -00, -00, -00, -00). 

At the same time realization index 
(1) 

w = (0, 1, 2, 3, 4, 5, 6, -, - -) 

are recorded. In the next iteration of the main for-loop, we have 

and 

y (4,2,1,0, -00 -00 , , -00 , -00,. -00, -00, -00, -(0), 

u = (6, 5, 5, 5, 4, 4, 4, 2, 1, 0, -00, -00), 

(2) 
w = (0, 0, 0, 0, 0, 0, 0, 1, 2, 3, -, -). 

Here u represents composite boundary points for P1 ~ P
2

• At the third itera­

tion of main for-loop we have 

and 

y (3,2, 1,0,0, -00 , -00 , -00 , -00 , -00 , 
u = (9,8,8,8,7,7,7,6,5,4,4,2), 

(3) 
w = (0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 4). 

-00) , 

Since u[N 1]=7 and N2=7, the decision problem of this example with D = 12 is 

feasible. As for the actual schedule that realizes this schedule length, 

b k f . d (3) (2) d (1). h k . trace ac 0 Ln ex arrays w , w an w gLves t etas assLgnment 

3.3 The general algorithm 
The ideas in section 3.1 can be generalized to k > 2 different task 

types. In this case we are given the number of type i tasks Ni' its execution 

times list (~'1'~'2""'~' ) for i=1,2, ••• ,k (~N.=n) and positive integer D. 
~ ~ l.m ~ 

The problem is to determine if there are nonnegative integral vectors (x
11

' 

x 12 ,· .. ,x1m), (x21,x22, .. ·,x2m)' ... , (xk1,xk2, ... ,xkm) such that 

(3.5) I 
I~ .. ·X .. ;£D 

i=1 ~J ~J 

m 
I x . . ~ N. 

j=1 ~J 1 

(j=1,2, ••• ,m) 

Ci=1 ,2, ... ,k), 

where x .. represents the number of type i tasks scheduled on processor P .• 
~J ] 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Algorithms for Scheduling Independent Tasks 

To solve this problem, we can use the same method as in section 3.1 by 

extending the boundary points on X1-X2 plane (Fig. 5) to those of candidate 

regions bounded by surfaces 

(j=1 ,2, ... • m) 

77 

( .) ( .) 
in k dimensional space. Corresponding to this. ins tead of y J [.] and u J [.], 
., -(j) -(j) 

k-1 dl.mensl.onal arrays y [t 1't 2 •.•• 'tk ._ 1] and u [tl't2' ••.• ~k_1] are 

introduced U=l ,2, ... ,m), and they hold the maximum number of type k tasks 

that can be processed by P. or <P
1
-P.> within time length D under the condi-

J J 
tion that ti type i (i=1 ,2, ... ,k-1) tasks have been assigned. These values 

stored in so indexed entries are computed as 

k-1 

0.6) 
if * = (D- I 11. .' t .) /11 k' ~ 0 

i=1 ~J ~ J 

otherwise, 

and 

0.7) -(j) -(j-l) 
max (y [sl,s2, ••• ,sk_l] + u [tl-s1,t2-s2,···,tk_l-sk_l])' 

O:;;;s ,:;;;t, 
~ ~ 

where O:;;;ti:;;;n for i=I,2, ••• ,k-l. After m repetitive computations of (3.6) and 

(3.7), by comparing ~(m) [N
1

,N
2

, ••• ,N
k

_
1

] with N
k

, we can determine the feasi­

bility of the schedule with length D. The actual schedule for the optimum 

value is constructed from ,the realization indexes s7,s;"",sZ_1 recorded in 
-(J) , 

k-l dimensional arrays w
i 

[t
1
,t

2
, ..• ,t

k
._

1
] (~=1,2, ••• ,k-1) at each step of 

computing (3.7). 

In the above manner algorithm A3 is generalized to the case of k > 2. 

Generalized A3 (named A3g) is given in the form of a function returning "YES" 

or "NO". 

FUNCTION A3g (D) 
-(0) 

let u [0,0, ... ,0] + 0; let all other entries of ~(O) be -00; 

for j:=1 to m do (* main for loop *) [ 

for all 0 :;;; ti :;;; n do 

-(J') [ ](* d' f 1 (36)*) compute y t
1
,t

2
, .•. ,t

k
_

1 
accor l.ng to ormu a . 

-(j) 
compute u [t

1
,t

2
, ••• ,t

k
_

1
] (* according to formula (3.7) *) 

d [ *' - (j) [ ] for i:=l to k-l 0 store Si l.nto w
i 

t
1
,t

2
, •.• ,t

k
_

1 

Nk then return "YES" (* feasible *) 

else return "NO" (* infeasible *) 
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Lastly, formula (3.4) constructing an actual schedule is also extended to the 

k-l dimensional version as 

(3.8) I 
x, , 

l.J 

_(j) m 
w, [N 1- L xl ' 

l. 5=j+l 5 
(i = 1 , Z •••• , k-1) 

m m 

NZ- ~ x Z5 '···' Nk - 1- ~ xk - 151 
5=J+l 5=J+l 

(j=m,m-l, .•• ,1). 

The overall general algorithm A4, which determines the optimum schedule length 

and constructs the actual schedule for it, can be written as follows. 

ALGORITHM A4 : (Ni and II i) are given) 

step 0 p ..... rn/ml . max(ll, ,); p"'" rn/ml . min(ll, .); 
l.J l.J 

step if P = p then goto step 3 

step Z 

step 3 

D ..... round ( (P+p) /Z ) 

if A3g(D) "YES" then P ..... D else p ..... D 

goto step 

(* construction of the actual schedule *) 

for i:=l to k-l do [ z, ..... N, ] l. l. 
m 

(* z, holds N,- L x, in the following for-downto loop. *) 
l. l. 5=j+l l.5 

for j:=m downto 1 do [ 
(') 

for i:=l to k-l do [ Xij ..... ui
J [Zl'ZZ' ••• 'Zk_l] ] 

k-l 
x kJ' ..... L (D - L ll, ,. x 'j) III k ,J 

i=l l.J l. J 

for i:=l to k-l do [Zl.'''''' Z,-X" l. l.J 

The algorithm starts with appropriate upper and lower bounds (p and p) of the 

optimum schedule length, and determines the optimum value by using A3g as a 

decision function of bisectional choices, and constructs the actual schedule 

according to formula (3.8). 

Finally we shall estimate the time and space requirements of algorithm 

A4. A4 repeats the loop step 1 ~ step Z O(logO) times, where 0 = P-p, so the 

function A3g is 
- ( ') entries of y J 

needed for each 
(') entry of ;; J • 

called also 0(10g0) times. k-l For each call A3g computes n 
-(j) '-and u for J-l,Z, ••• ,m. O(n) arithmetic operations are 

-( ') k 1 
entry of y J and o(n - ) additions and comparisons for each 

At step 3, O(m(k+m» operations and references to ;~j) are 
l. 

performed in order to determine x,, (i=l,Z, ... ,k; j=l,Z, ••• ,m). 
l.J 

From these 
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accounts we can estimate that the total running time of algorithm A4 is 

o(logQ)'{m' 0(n'n
k

-
1

) + m' 0(n
k

-
1
'n

k
- 1)} + m' O(k+n) 

'V 0(10gQ'mn 2 (k-l). 

k-l -(j) 
be O(mkn ) mainly for w. • 

79 

The space needed by A4 is easily seen to 

It is possible to reduce this requirement to 
k-l ~ 

O(n ) by computing realization 

indexes dynamically with increase of the running time. 

4. Conclusion 

We have presented an E-approximate algorithm for the case of m=2 proces­

sors. This algorithm runs in fairly practical time for E=O.l or so, while the 

existing E-approximate algorithm works as almost exact (enumerative) one for 

the same degree of E. We have also shown that the running time of our algo­

rithm is only a little (by constant term) larger than those of existing 6-

approximate (6 ~ 0.5'1,0.6) algorithms for any n. 

Basic idea of our algorithm (introduced in [9]) is to treat dominant 

variables enumeratively and the rest approximately (continuous relaxation and 

rounding). The similar approach is found in [10], where a relaxation problem 

is solved first and then all possible assignments of fractional variables are 

generated. But the classification of variables according to their importance 

is not considered there. Our simple idea seems to be applicable to some other 

combinatorial optimization problems.' 

For the case of m>2 processors, we simplified the problem and have 

presented an exact algorithm to solve it. The running time of presented 

algorithm is considered to be reasonable only when the number of different 

task types (k) is small. Improvement of the running time may be possible by 

tighter estimations of lower and upper bounds for the optimum schedule length 

ff ' , 'f -(j) 1 . h h f or more e ~c~ent computat~on 0 U s, Jut lt cannot overcome t e growt 0 

the time requirement when k becomes larger. To investigate various modifica­

tions of the original problem is the subject for a future study. 
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