
Journal of the Operations' Research
Society of Japan

Vo!. 31, No. 1, March 1988

APPROXIMATE AND EXACT ALGORITHMS

FOR SCHEDULING INDEPENDENT TASKS

ON UNRELATED PROCESSORS

Kazumiti Numata
The University of Electro-Communications

(Received March 12, 1987; Revised July 27,1987)

Abstract The problem to sehedule n independent tasks nonpreemptively on m unrelated processors with the

objective of minimizing the finishing time is considered. For the case of m=2, an approximate algorithm which

has a worst-case performance ratio 1 +€ and runs in time 0 (nlogn) is proposed. For general m, by restricting the

number of task types to k, a polynomial time (in n, m) exact algorithm is presented.

1. Introduction

We are given a set Y={T
1
,T

2
,_ •• ,T

n
} of n ~ 2 independent tasks, a set

.'c7'={P
1

,P
2

, ... ,P
m

} of m;;; 2 unrelated processors, and a function \l(') mapping

from 3'X ? into the set of positive integers. There is no precedence relations

among tasks. A processor can work on only one task at a time, and a task can

be worked on by any (one) processor. Tasks are processed nonpreemptively,

i.e., once a task having started execution it will not be interrupted until

its completion.

time of task T.
~

The value \l(T.,P.), written shortly \l .. , denotes the execution
~] ~J

on processor P., where we assume without loss of generality
]

that the times are given in integral multiples of a unit time. The "unrelated"

processors system which we treat is a generalization of the identical proc-

essors sys tern where \l . . is cons tant wi th respect to j i. e. is equal to r;
~J ~

(execution requirement of task T
i

) and of the uniform processors system where

by using the notion of processor's speed(s.) \l .. is expressed as r.ls .. In
] ~J ~]

the unrelated case, processor's speed may vary according to the task being

executed. Rather, it models the heterogeneous multiprocessor system where

respectively specialized processors can execute the each type of tasks more

efficiently than others.

61

© 1988 The Operations Research Society of Japan

62 K. Numata

The problem is to schedule :7" on 9' so that the total time taken to

process 3' is minimized. Such a schedule is called an optimum schedule. The

decision problem of determining whether ,'T can be processed within a given

finishing time is known to be NP-complete even in the case of two(m=2) identi­

cal processors [1, 4]. Hence it is unlikely that the polynomial time exact

algorithm can be found to solve the problem. So the investigation has been

directed to the fast approximate algorithms and the error analyses, or realis­

tic simplifications of the problem.

For the identical and uniform processors system, simple heuristic

algorithms such as LPT or MULTIFIT have been intensively studied [5, 2], but

these seem not to be directly applicable to the unrelated processors system.

For this system, polynomial time approximate algorithms were first studied by

Ibarra and Kim [7]. They presented an nlogn time a-approximate (with fixed

which is worst-case performance ratio 1+a) algorithm for m=2 processors case,

guaranteed to be at most 1~15 times worse than the optimum (0=0.6). Horowitz
2m

and Sahni [6] proposed an E:-approximate algorithm of time complexity 0 (n If:.)

which can generate schdules arbitrarily close to the optimum for general m.

However the running time of their algorithm rapidly grows larger as desired

relative error bound, E:, gets smaller. Davis and Jaffe [3] presented poly­

nomial time approximate algorithms for the general m, and proved them to be at

most 21iil'V 1.51iil times worse than the optimum. Recently, Potts [10] developed

a linear programming based heuristic for general m. This algorithm has a

worst-case performance ratio of 2 for m>3, and a modified version of it for

m=2 has a ratio 1.5. As for the problem simplification, Leung [8] considered

the identical processors system under the restriction that the number of

different execution times is restricted to k(k«n), and presented a pOlynomial

time exact algorithm.

In this paper we first propose the new approximate algorithm for unrelated

processors system which runs faster than [6] and generates more accurate

schedules than [7] or [10]. Next, for the general unrelated case, we present

an exact algorithm which solves the simplified problem that the number of task

types is restricted to k(k« n). This problem is an extension of [8], and our
. hm .. (2 (k-1) 1 Q) h . h d . b algor~t runs ~n t~me 0 m'n • og ,were Q ~s t e ~fference etween

estimated values of upper and lower bounds for the optimum schedule length.

2. Scheduling on Two Processors

In this section we formulate the model for m=2 processors as 0-1 pro-

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Algorithms for Scheduling Independent Tasks

gramming problem. Based on the solution of its continuous relaxation, we

develop a new ~-approximate algorithm.~or the demonstration of its perfor­

mance, numerical comparisons with [7] and [6] are presented.

2.1 Formulation and relaxation

63

Let xi be the 0-1 variable which represents whether the task Ti ~s proc­

essed by processor P
1

(x
i

=1) or by P z (xi=O). Then, our problem to minimize the
n n

greater of L ~'l'x, and L ~'Z'(l-x,) is expressed in the form of 0-1 pro-
i=l 1. 1. i=l 1. 1.

gramming as;

minimize f = y

n

(Z.1)

subject to L ~ 'l' x , ;;; Y
i=l 1. 1.

n
L ~'Z'(l-x,) ~ y

i=l 1. 1.

Y ~ 0, xi = 0 or 1 (i=l,Z, ... ,n) .

We consider the continuous relaxation of problem (Z.l) where xi ~s a real

number in the interval [0 1], that means xi portion of Ti is processed by P1
and (l-x) portion by P

Z
' Here we aSSUID<= that the tasks have been sorted in

the non-increasing order of ~iZ/~i1 and reindexed so that

We also assume, for the conven~ence of later discussions, that the processors

become available (begin processing) at time a(P
1

) and S(PZ)' where a,S

Now by introducing slack variables sl'sZ' A
1

,A Z, ... ,An and using M for

(Z.l) is rewritten as follows.

minimize

subject to

(Z. Z)

f = y
n
L ~'l'x, - y + sl

i=l 1. 1.

n
L ~'Z·x, + Y

i=l 1. 1.

x,
1.

+ A,
1.

-a

M+S

(i=l,Z, ... ,n)

Direct application of the primal simplex algorithm to (Z.Z) produces the next

theorem.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

64

Theorem
p-I

I].J'I
i=1 1.

p

I].J'I
i=1 1.

1. Let p be the

n
+ a :;; I].JiZ + /3

i=p

n
+ a > I].J'2 + /3

i=p+1 1

n

K. NUrTIIlta

task index such that

and

n
(if a+ I].J'I :;; /3. let p be n+1 or

i=1 1.
if a > /3+ I].J'2' let p be 0),

i=1 1.

then the optimum solution x 1' (x~,x~, ... ,x~) for (2.2) is given by

{
~ i :;; p-l

x~ = e i p
1.

0 p+l ~ i :;; n .

where 8 (0:;; e <I) .

Proof: When p o or n+l the theorem LS trivial. so it is sufficient to
n n

consider the case that 10,-/31 <mine I].J'I' I].J'2). In this case. (2.2) is
i=1 1. i=1 1.

solved by the simplex method as follows. At first. we eliminate the variable

y from 1st and 2nd equations of (2.2) and rewrite it into a basic form with

the basis {Y.5
1

,A
l

,A
2

, ••. ,A
n

}. Since a-/3 < M is the case, resultant tableau

(a) of Table 2.1 is feasible. Starting with this. we repeat to select xi as a

new basic variable and eliminate Ai from the basis for i=I.2, •••• p-l to keep

the solutions feasible. The final (p-l-th) tableau of this step is shown in
p-l n p-l

(b). where M - a + /3 - I (].J, +].J,) = /3 + I].J, - (a+ I].J,) = B-A ~ O. Next
i=1 1. 1 1.2 i=p 1.2 i=1 1.1

we introduce x
p

into the basis. B-A Since --~~~- < 1. the variable to be
].Jp 1 +].Jp2

eliminated is 51 At this time all entries of the first row in the resulting

tableau (c) become nonpositive and the optimality condition is satisfied.

The solution given by tableau (c) is what Theorem 1 asserts. []

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Algorithms for Scheduling Independent Tasks 65

Table 2.1 Simplex Tableaux

(a)

f xl x
2 x y 51 52 "1 "2 " constant n n

\.1 12 \.1 22 \.In 2 a a -1 a a a M+S

a W
l

w
2

w a -1 a a a M-a+S n
a \.1 12 \.1 22 \.In 2 a -1 a a a M+S

a 1 a a a a a a a
a 0 a 0 a a a a

·1. ·1.

a 0 a a a a a a

n
M = L 1l'2 w, llil + lliZ .

i=l ~ ~

(b)

f xl x
p

_
l

x x y 51 52 "1 " p-l " " constant
p n p n

a a llp2 lln2 a a -1 -1l12 -llp-12 a a 11

0 a a w w a -1 -w
l

-w a a B-·A
p n p-l

a a a llp2 lln2 a -1 -1l12 -llp-12 a 0 11

0 a 0 0 a 0 a 1 a a 0

a ·1. ·1.

a a a a a a a a a a
a a a a a a a a a a

·1. ·1.

a a a a a a a 0 a a

p-l n
A = a + L ll'l B S + L lliZ

i=l ~ i=p

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

(c)
'" '"

f xl xp_ l xp x
p+l

x
k

x y 51 52 Al Ah A p-l A A constant
n p n

0 0 0 cp (p+O cP (k) cP (n) 0 -ll /w -ll /w -$ (1) -+ (h) -cp (p-l) 0 0 n p p p p2 p pl p p p p
0 0 0//1 wP+l/wP wk/wP w /w 0 l/w -l/w -w /w -w /w -w /w 0 0 e

n p p p 1 p h p p-l p
0 0 0 0 cp (p+l) 4> (k) 4> (n) -ll /w -llpl/wp -$ (0 -4> (h) -4> (p-1) 0 0 n p p p2 p p p p
0 0 0 0 0 0 0 0 0 0 0 0 0 0

"1-

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 -w /w -w /w -w /w 0 -l/w l/w w1/wp whlwp w l/w 0 1-8
p+1 p k P n P p P p- P

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 t":
~

n p-1 i
~+.I lli2 - (a+.I llil)

~

4>p(i) = lip 1 lli 1 (lli2/ 11il - llp2/ 11pl)/wp
e (B-A)/w = ~=P ~=1 (O~e<l)

p lip 1 + llp2

n p-l
II l(s+.I lli2) + II 2(a+.I llil)

n
p ~=p p ~=1

lip 1 + llp2

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Algorithms for Scheduling Independent Tasks 67

Rounding x*, the solution for relaxed problem given in Theorem 1, to 1 or
P

0, i.e. shifting one of the fractions of task T to another processor, we ean
P- -

obtain two feasible schedules whose lengths are f
1

(xp=1) and f 2 (x =0). Let:

f be the smaller of f1 and f
2

, fP be the length of the schedule f~r 3' - {Tp}

defined by x~ (i=1,2, ••• ,p-1,p+1, ••• ,n), f O be the optimum schedule length of
~

the 0-1 problem (2.1) and f* be the optimum value for the relaxed problem (2.2)

respectively (see Fig. 1.).

f1
fP --------..1

]..Ip1

1------ f*

Fig. 1 Rounding of Task T
p

Then we have the next inequality.

Theorem 2.

Proof:
definitions

Accordingly,

Obvious ly fP < f* and generally

fP = max(f 1- llp1 ,f2-]..Ip2)' then i1

f = min(f 1,i2) ;;:; min(fP+]..IP1,fP+]..Ip2)

< f
O

+ min(llp1 ' Ilp2)· 0

2.2 Partially enumerative algorithm

f* ;;:; f O,

;;:; fP +Il
p1

Ilp2

therefore fP < fO. By

P and f2 ;;:; f +]..Ip2·

The basic idea of our algorithm is that if min(lli1 ,1li2) < fO.£ for all.

l;;:;i;;:;n then Theorem 2 guarantees f being less than f O + fO.£ i.e. the relative

error i/fo being bounded by any given £>0. To make use of this fact, using
n

!. = L min(Il'l' 1l'2) /2 as the lower estimate for f
O

, we divide the set 3' of
i-=l ~ ~

tasks into two disjoint subsets;

Here we have the next theorem.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

68 K. NUmtlta

Theorem 3. I.r, I :;> r 2 /£1

Proof: In the case of q = r2/£1 ~ n the theorem is trivial, hence we

consider only the case of q < n. Sorting the tasks of fin nonincreasing order

of min(~'1'~'2)' we have the sequence, min(~ 1 ~ 2) ~
sl ' s1

> • () > = m~n ~s l'~s 2 =
q q

~ min(~s l'~s 2)· If rnin(~s l'~s 2)
n n q+1 q+1

;:: f·£ then rnin(~s l'~s 2) ~ .••
q+l q+l

we have the contradiction as follows;

~ (q+l)'rnin(~s 1'~s 2)
q+1 q+1

;;; (q+1) ',f.£ ;;; (rZ/£l +1) ',f.e) ;;; (Z/£+1) ',f'£ > 2·f

Therefore min (~s l'~s 2) < f·£ and this means I 3j I ~ q
q+1 q+1

The algorithm enumerates all the subschedules of ffl with finishing times

denoted by a(for Pl) and S(p2). For each (a,S) it adds the subschedule of ~2

determined by Theorem 1, and selects the total schedule of the minimum length

(see Fig. Z).

level
------- 1
------- Z

minimum (i)

Fig. Z Partial Enumeration

The formal description of the algorithm follows.

ALGORITHM A1: (n, ~11'·· ., ~nl' ~lZ'''·' ~nZ are given)

step 1 (* preparations *)
n

calculate f = I min(~'l'~'Z)/Z
i=l ~ ~

divide 5" into ff1 U 5"Z (* let I ~I be r *)

sort tasks of 5"Z in nonincreasing order of ~.2/~'1

(* suppose that 5"2 = {T ,T T } *)
sl Sz sr

let MIN be +00 (* current minimum schedule length *)

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Algorithms for Scheduling Independent Tasks 69

step 2 (* enumeration, addition, selection *)

for

do [

all subschedules of Y, (* a, S,

(* X,Y: current finishing times

x + a; Y +- S+. I II i 2 ; j + 1;
~E:f2

x. for T. E ..9"", are returned *)
~ ~

of
P" P

2
*)

while max (x + II s .1' Y - II s .2) < Y) and (j;£ r) do
]]

if Y < MIN then [MIN + Y; save x

x + ,;
s.

]

j+j+l;]

In step 2 each subschedule of ..9"", (specified by a, S and xi for Ti E Y ,),

combined with additional schedule of Y
2

determined by Theorem 1, produces a

total schedule with finishing time tas' Let f~S ~s the minimum schedule

length under the condition that 3J has been scheduled with the finishing

times a(p ,) and S(P2)' Here IaS is guaranteed to be less than f~S+ f'E: by

Theorem 2 and the property of 5'2 that min(ll", ll.2) of its any element is less

than f·E:. After repeated comparisons, at the end of step 2 we obtain I =

min I
a,S as
(length

S* (p 2)'

Now we assume that the restriction of the overall optimum schedule

fO) to ~ gives the subschedule with finishing times a*(p,) and

Th " h fO fO h" 1 fO b " " fO < fO ~s means t at a*S*;£ ,w ~ e, e~ng opt~mum, - a*S*

holds. Accordingly fO = f~*S* and obviously I ;£ Ia*S*' then we have

-f < -f fO f < fO fO " =f /fo 1 - a*S*;£ a*S*+ _ 'E: - + 'E:, 1.e. ;£ +E:.

We now consider the time requirement of Algorithm Al. It is easily seen

that step 1 takes at most O(nlogn) time and that step 2 takes
I ..9'11

(2 'n)

time. Let E: be, for example, 0.1 then step 2 executes· its for all loop at

most 2 r2 /E:l;. 1000000 times. This amount: of computation is not so excessive

for today's ordinary computers. Moreover it should be noted that 2 f2 /E:l is

a constant on n, i.e. however large n becomes. this coefficient never changes.

After all from the viewpoint of order in n. we can conclude that Algorithm Al

needs O(nlogn) time for fixed E:.

The time requirement of Al can be improved by eliminating the subschedule

of step 2 both a and S of which are longer than those of already appeared

subschedules, and by using the solution of the relaxed problem (f*) as ! to

decrease \ ~ \. Thus improved algorithm is refered as A2. On the other hand

the schedule length given by Al may be slightly shortened, at cost of running

time, by reassigning the tasks on the processor having the longer finishing

time to another as long as the schedule length can be reduced.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

70 K. Nunuzta

2.3 Numerical experiment and comparison
In the following, results of the numerical experiment to examine time

requirements of 4 algorithms, Al(E=O.l), A2(revised Al, E=O.l), IoK(o~0.6) by

Ibarra and Kim [7] and HoS(E=O.l) by Horowitz and Sahni [6], are presented.

We observe their running times for two types (case 1 and case 2) of data, and

discuss their performances. The results in case 1 where ~ s are uniformly

distributed random integers in the interval [1,100] are shown by Fig. 3, while

those in case 2 where min(~il'~i2) constant(=33) for all i and the others

are uniformly distributed in [34,83] are shown by Fig. 4. In both cases

problem size n is moved from 10 to 150 with the certain interval, and for

respective ns the averages of 25 trials (deviations are very small) are

plotted. The absolute times measured (we used a medium scale computer HITAC

M180 with speed of about 3 MIPS), of course, vary with the machine on which

algorithms are executed, but the tendency (or ratio of values) is considered

not to vary so much.

time (sec.) time (sec.)

100 100 t
311 sec.

At

0: roK
10 [::J: H"S 10

",: Al
'If: A2

0.1 0.1

0.01 0.01

o 0 00 1 L....I.----'--'---'--'------''------'-_. ! .. n
o ID 203040 50 70 ISO

Fig. 3 Time Requirements Ln Case 1 Fig. 4 Time Requirement in Case 2

In Fig. 3 the running time of roK appears to follow the theoretical

estimation O(nlogn), and that of HoS to grow very rapidly. Algorithm HoS

d · od h' [1 Or+l]. 01+1 . . LVL es t e Lnterval,l into nol equal subintervals of Size

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Algorithms for Scheduling Independent Tasks 71

r-1
fl0 1nl and executes dynamic programming type computation regarding integers

in a same subinterval as identical, where 10r
< f* < 101 + 1 and £ > 10-1 .

However, in our experiment, the size of subinterval is observed to be less

than 2 or so. The value of £ = 0.1 seems to be too small for the above idea

to work effectively. As for Al and A2 their running times first increase and

then decrease at the left side of n=50 or so where step 2 of algorithms

dominates the total running time and I ~ I is maximized at about =20, while

at the right side of it, they behave similarly to I'K, because O(nlogn) time

step 1 dominates the total running time. The difference between Al and A2

shows that our improvement mentioned at the end of 2.2 is effective.

Fig. 4 shows the case that is most unfavorable to algorithm Al or A2.

For n<20 the running time of Al appears to grow exponentially because I ~1 I=n

and step 2 dominates the total time, while that of A2 increase more slowly (at

the same rate as H·S). For n~20 where I .~ I is zero, running times of Al and

A2 coincide and behave similarly to I·K. As for I'K and H'S, their running

times are respectively almost same as in case 1. Through Fig. 3 and 4, I'K is

seen to be the fastest of 4 algorithms.

Next, we consider the lengths of generated schedules. In the above case

1+15 those of I'K, being far smaller than its theoretical bound f*'--2--' are only

a little longer than those of Al, A2 or H'S, but they are not always so. For

data like

lli 1

lln

22

35

2

52

82

3

89

140

4

10

17

5

75

118

6

64

101

7

70

110

8

800

1250

9

76

120

10

74

117

it generates the schedule with, length 1250, while H'S and A2(A1) generate

respective schedules with len~th 822 and 823 for the same data. The data

unfavorable to I·K like this can be systematically produced, in other words,

occur with certain probability.

Here we can conclude that algorithm A2 based on A1 is much. faster than

H·S under the same condition of accuracy and more accurate than I·K at the

moderate cost of running time.

3. Scheduling on m Processors

In this section we consider the case of m>2 processors by assuming that

the execution times list of each task, (1l'1,1l'2, •.. ,1l'm)' is drawn from an

arbitrary set of k different lists (task types). This restriction is a natural

extension of the idea introduced in [8], and reflects the situation that we

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

72 K. NUTnIlta

have the large number of tasks to be scheduled, while most of them have the

same suitability to processors.

In the following, we show that the above simplified problem can be solved

by a polynomial time (in m and n for fixed k) algorithm. First we construct

the algorithm for the special case that there are only two task types, and

then generalize it to the case of k different task types.

3.1 The algorithm for two task types
Suppose that we are given Nl tasks of type 1 having the execution times

list (~11'~12""'~lm) and N2 tasks of type 2 with the list (~21'~22""'~2m)'

where N
1

+N
2

= n. Let us consider the following decision problem: For a given

positive integer D, is there a schedule of these n tasks on processors P
1

,P2,

""P
m

whose length is less than or equal to D? If there is an algorithm to

olve this decision problem, by binary search method using this algorithm as

a test procedure, we can find the minimum value of D for which the decision

problem is feasible, i.e. the optimum schedule length. The search process

terminates because ~ •• s are all integral. If the above decision problem can

be solved in time T, then the overall algorithm will run in time T'log(P-p) ,

where P = rn/ml ·max(~ ..) and p = fn/ml ·min(~ ..) are the initial upper and
i,j ~J i,j ~J

lower bounds of the optimum schedule length. Our problem is now reduced to

solving the decision problem in pOlynomial time.

Let x 1j (x2j) be the number of type 1 (type 2) tasks which are scheduled

on processor P.(j=1,2, .•• ,m). Then, the decision problem is expressed as
]

follows: For given D, are there nonnegative integers X
1j

,X2j (j=1,2, ... ,m)

such that

(3.1)

m

L xl' ;:; Nl
j=l]
m
I X2 . ;:; N2 ?

j=l]

:;; D (j=1,2, ... ,m)

Regarding each pair (x 1j 'X2j) as a point on X
1
-X2 plane, we can interpret the

first m inequalities of (3.1) as the condition that the nonnegative integer

valued point (x 1j 'X2j) must locate on or below the straight line ~lj'xlj +

~2/x2j = D for j=l ,2, ..• ,m (see Fig. 5).

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Algorithms for Scheduling Independent Tasks 73

Fig. 5 Candidate Regions for Formula (3.1)

Thus the problem is changed to pick m points, one point from each region, so

that the sum of the first coodinate of the m points is at least NI and the

sum of the second coodinate is at least N
2

• In choosing these points, it is

enough to consider only "boundary point" of each region, the points whose

second coodinate are the largest for each (fixed) first coodinate, 0,1,2, ... ,

min(n, LD/~l.J), since every other point is subsumed by one of them.

~ .
t >!

~ ~

i' ~

r *
0 2 .

Fig. 6

@ boundary point

~
it ~ .
;,. ~ 1< <i)

D/~1j
t * r t, •
Boundary Points for P.

]

Xl

The number of boundary points of each region is O(n) (~n+l). So simple

enumeration of m points, choosing one points from each boundary points,

requires o (nm) time. However, as shown in the following, it is possible to

perform substantially same work in polynomial time.

First we consider the subsystem of two processors, say PI and P 2 , denoted

by <P
1
-P

2
>. Combining each boundary point of PI and each of P2 (respectively

(b
11

,b
21

) and (b
12

,b22 », we compute all composite points (bll+b12,b21+b22l.

Among O(n2) these composite points, only those the second components of which

are the largest for respective values of the first component are retained

since the other composite points are subsumed by them. The number of these

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

74 Ko Numata

"composite boundary points" is O(n) (;;0 n+1). Next, combining each of the

composite boundary points of <P
1
-P2> and each boundary point of P

3
, (respec-

o (12) (12)
tl.vely (b

1
,b2) and (b

13
,b23», we compute all composite points

(12)
b 13 ,b2 +b23)· Here, again, from o(n2

) computed points we choose

(b(12) +
1

O(n)

points of <P
1
-P3> processors system. Repeating these operations of <P

1
-Pj >

processors system (j=3,4, •••), at the end we have the composite boundary

points for total processors system. By examining the value of the second

component of the point whose first component is N
1

, we can determine the

feasibility of our decision problem. It it is less than N2 then x 1j and x 2j
(j=1,2, .•.• m) to satisfy (3.1) for given D do not exist else do exist.

For the formal description of the above procedure based on the dynami.c
o 0 0 1 0 d 0 f 0 h 1 0 (j) programml.ng prl.ncl.p e, we l.ntro uce two serl.es 0 arrays Wl.t n+ entrl.es y

and u(j) (j=1,2, •.• ,m) and the binary operation 0 between them. Each entry

of y(j) is computed as

0.2)
(0) { _Loo(D-to1l1J·) 11l2JoJ

y J [t] =
o ;;0 t ;;0 LD/1l

1j
J

LD I 111j J < t ;;0 n ,

that is, (t,y(j) [t]) is a boundary point of Po. We define 0 between two such
J

arrays by

a 0 b[t] max (a[s] + b[t-s])
O;;os;;ot

(t=1 ,2, ... • n).

Later, we refer the index s* (0 ;;0 s* ;;0 t) that realizes the right-hand side
(")

(maximizes a[s]+b[t-s)) as "realization index" of a ® b. Now, u J , which

represents the composite boundary points for <P
1
-Pj > processors system. can

be computed from y(j) and u(j-1) as

U
(j) = y(j) ~ u(j-1) (3.3) '<Y (j=1,2, •.• ,m).

Initial array y(O) which works as a unit element in this operation is given by

t=O

1St;;on

Note that y(j) [t] or u(j) [t] holds the maximum number of type 2 tasks that can

be processed by Po or P1~Po within time length D under the condition that t
J J

type 1 tasks have been assigned.

When given schedule length D is optimum, the actual schedule which

realizes this D is needed. For this purpose it is sufficient to record the

realization index of u(j) [t] in an array, say w(j)[t], at each step of com­

puting u(j)[tj = y(j) 0 u U -1)[tj (j=1,2, ••• ,m; t=0,1,2, ••• ,n). If uU)[t]

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Algorithms for Scheduling Independent Tasks 75

results in -00 the index is not needed. After all w(j)s are determined, we can

construct the schedule by backward iteration

0.4)

w(j) [N
1

m

- I x]
, 1 ls s=J+

(j =m, m-1 , ••• , 1) •

The formal description of the algorithm (named A3) for the decision problenl

fo llows.

ALGORITHM A3: (D is given)

(* initialization *)

let

for

u [0]

j: =1

(*

+ 0; u [1] + -00; U [2] -+- -00; ... u [n] + -00;

to m do (* main for loop *) [

computation of y *)

R + D; a + ~lj; b + ~2j; t + 0;

while R ;;; 0 do [y[t] + L.R/bJ; R + R-a; t + t+1]

while t ~ n do [y[t] + -00; t + t+1]

(* computation of next u *)

for t:=O to n do [u' [t] +- max(y[s] + u[t-sJ); w(j) [t] +, s*
s

(* u + u' *)

for t:=O to n do [u[t] + u' [t]

if U[N
1

] ;;; N2 then YES (* feasible *) else NO (* infeasible *)

The computations of u and w(j) (operation 0) may be carried out alternatively

in the following manner, where y [n+1] and u [n+1] are assumed to hold the vCllue

as sentinels.

(* computation of next u *)

for t:=O to n do [u'[t] + -00;]; S + 0;

while yts) ;;; 0 do r + 0; t + S;

while u[r] ;;; 0 do
(')

if u[r]+y[s] > u' [t] then [u' [t] + u[r]+y[s]; w J [t] + 5]

r + r+1; t + t+1

5 + 5+1

Theoretical order of the time requirement does not change, but the actual

running time will be shortend in most of cases.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

76 K. Numata

3.2 Illustrative example
To illustrate the above algorithm A3, we consider the following example.

Let m=3, k=2, N
1
=4, N2=7, ~1.=(2 4 3) and ~2.=(6 3 4). Suppose that 12 is

given as D (it is the optimum schedule length in this case).

At first u is set to

(0, -00, -00, -00, -00 -00 -00 -00 -00 , , , ,. , -00 , -00 , -00).

Next, y is computed at the first step of main for-loop as

y = (2, 1, 1, 1, 0, 0, 0, -00, -00, -00, -00, -00).

At the same time realization index
(1)

w = (0, 1, 2, 3, 4, 5, 6, -, - -)

are recorded. In the next iteration of the main for-loop, we have

and

y (4,2,1,0, -00 -00 , , -00 , -00,. -00, -00, -00, -(0),

u = (6, 5, 5, 5, 4, 4, 4, 2, 1, 0, -00, -00),

(2)
w = (0, 0, 0, 0, 0, 0, 0, 1, 2, 3, -, -).

Here u represents composite boundary points for P1 ~ P
2

• At the third itera­

tion of main for-loop we have

and

y (3,2, 1,0,0, -00 , -00 , -00 , -00 , -00 ,
u = (9,8,8,8,7,7,7,6,5,4,4,2),

(3)
w = (0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 4).

-00) ,

Since u[N 1]=7 and N2=7, the decision problem of this example with D = 12 is

feasible. As for the actual schedule that realizes this schedule length,

b k f . d (3) (2) d (1). h k . trace ac 0 Ln ex arrays w , w an w gLves t etas assLgnment

3.3 The general algorithm
The ideas in section 3.1 can be generalized to k > 2 different task

types. In this case we are given the number of type i tasks Ni' its execution

times list (~'1'~'2""'~') for i=1,2, ••• ,k (~N.=n) and positive integer D.
~ ~ l.m ~

The problem is to determine if there are nonnegative integral vectors (x
11

'

x 12 ,· .. ,x1m), (x21,x22, .. ·,x2m)' ... , (xk1,xk2, ... ,xkm) such that

(3.5) I
I~ .. ·X .. ;£D

i=1 ~J ~J

m
I x . . ~ N.

j=1 ~J 1

(j=1,2, ••• ,m)

Ci=1 ,2, ... ,k),

where x .. represents the number of type i tasks scheduled on processor P .•
~J]

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Algorithms for Scheduling Independent Tasks

To solve this problem, we can use the same method as in section 3.1 by

extending the boundary points on X1-X2 plane (Fig. 5) to those of candidate

regions bounded by surfaces

(j=1 ,2, ... • m)

77

(.) (.)
in k dimensional space. Corresponding to this. ins tead of y J [.] and u J [.],
., -(j) -(j)

k-1 dl.mensl.onal arrays y [t 1't 2 •.•• 'tk ._ 1] and u [tl't2' ••.• ~k_1] are

introduced U=l ,2, ... ,m), and they hold the maximum number of type k tasks

that can be processed by P. or <P
1
-P.> within time length D under the condi-

J J
tion that ti type i (i=1 ,2, ... ,k-1) tasks have been assigned. These values

stored in so indexed entries are computed as

k-1

0.6)
if * = (D- I 11. .' t .) /11 k' ~ 0

i=1 ~J ~ J

otherwise,

and

0.7) -(j) -(j-l)
max (y [sl,s2, ••• ,sk_l] + u [tl-s1,t2-s2,···,tk_l-sk_l])'

O:;;;s ,:;;;t,
~ ~

where O:;;;ti:;;;n for i=I,2, ••• ,k-l. After m repetitive computations of (3.6) and

(3.7), by comparing ~(m) [N
1

,N
2

, ••• ,N
k

_
1

] with N
k

, we can determine the feasi­

bility of the schedule with length D. The actual schedule for the optimum

value is constructed from ,the realization indexes s7,s;"",sZ_1 recorded in
-(J) ,

k-l dimensional arrays w
i

[t
1
,t

2
, ..• ,t

k
._

1
] (~=1,2, ••• ,k-1) at each step of

computing (3.7).

In the above manner algorithm A3 is generalized to the case of k > 2.

Generalized A3 (named A3g) is given in the form of a function returning "YES"

or "NO".

FUNCTION A3g (D)
-(0)

let u [0,0, ... ,0] + 0; let all other entries of ~(O) be -00;

for j:=1 to m do (* main for loop *) [

for all 0 :;;; ti :;;; n do

-(J') [](* d' f 1 (36)*) compute y t
1
,t

2
, .•. ,t

k
_

1
accor l.ng to ormu a .

-(j)
compute u [t

1
,t

2
, ••• ,t

k
_

1
] (* according to formula (3.7) *)

d [*' - (j) [] for i:=l to k-l 0 store Si l.nto w
i

t
1
,t

2
, •.• ,t

k
_

1

Nk then return "YES" (* feasible *)

else return "NO" (* infeasible *)

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

78 K. Numata

Lastly, formula (3.4) constructing an actual schedule is also extended to the

k-l dimensional version as

(3.8) I
x, ,

l.J

_(j) m
w, [N 1- L xl '

l. 5=j+l 5
(i = 1 , Z •••• , k-1)

m m

NZ- ~ x Z5 '···' Nk - 1- ~ xk - 151
5=J+l 5=J+l

(j=m,m-l, .•• ,1).

The overall general algorithm A4, which determines the optimum schedule length

and constructs the actual schedule for it, can be written as follows.

ALGORITHM A4 : (Ni and II i) are given)

step 0 p rn/ml . max(ll, ,); p"'" rn/ml . min(ll, .);
l.J l.J

step if P = p then goto step 3

step Z

step 3

D round ((P+p) /Z)

if A3g(D) "YES" then P D else p D

goto step

(* construction of the actual schedule *)

for i:=l to k-l do [z, N,] l. l.
m

(* z, holds N,- L x, in the following for-downto loop. *)
l. l. 5=j+l l.5

for j:=m downto 1 do [
(')

for i:=l to k-l do [Xij ui
J [Zl'ZZ' ••• 'Zk_l]]

k-l
x kJ' L (D - L ll, ,. x 'j) III k ,J

i=l l.J l. J

for i:=l to k-l do [Zl.'''''' Z,-X" l. l.J

The algorithm starts with appropriate upper and lower bounds (p and p) of the

optimum schedule length, and determines the optimum value by using A3g as a

decision function of bisectional choices, and constructs the actual schedule

according to formula (3.8).

Finally we shall estimate the time and space requirements of algorithm

A4. A4 repeats the loop step 1 ~ step Z O(logO) times, where 0 = P-p, so the

function A3g is
- (') entries of y J

needed for each
(') entry of ;; J •

called also 0(10g0) times. k-l For each call A3g computes n
-(j) '-and u for J-l,Z, ••• ,m. O(n) arithmetic operations are

-(') k 1
entry of y J and o(n -) additions and comparisons for each

At step 3, O(m(k+m» operations and references to ;~j) are
l.

performed in order to determine x,, (i=l,Z, ... ,k; j=l,Z, ••• ,m).
l.J

From these

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Algorithms for Scheduling Independent Tasks

accounts we can estimate that the total running time of algorithm A4 is

o(logQ)'{m' 0(n'n
k

-
1

) + m' 0(n
k

-
1
'n

k
- 1)} + m' O(k+n)

'V 0(10gQ'mn 2 (k-l).

k-l -(j)
be O(mkn) mainly for w. •

79

The space needed by A4 is easily seen to

It is possible to reduce this requirement to
k-l ~

O(n) by computing realization

indexes dynamically with increase of the running time.

4. Conclusion

We have presented an E-approximate algorithm for the case of m=2 proces­

sors. This algorithm runs in fairly practical time for E=O.l or so, while the

existing E-approximate algorithm works as almost exact (enumerative) one for

the same degree of E. We have also shown that the running time of our algo­

rithm is only a little (by constant term) larger than those of existing 6-

approximate (6 ~ 0.5'1,0.6) algorithms for any n.

Basic idea of our algorithm (introduced in [9]) is to treat dominant

variables enumeratively and the rest approximately (continuous relaxation and

rounding). The similar approach is found in [10], where a relaxation problem

is solved first and then all possible assignments of fractional variables are

generated. But the classification of variables according to their importance

is not considered there. Our simple idea seems to be applicable to some other

combinatorial optimization problems.'

For the case of m>2 processors, we simplified the problem and have

presented an exact algorithm to solve it. The running time of presented

algorithm is considered to be reasonable only when the number of different

task types (k) is small. Improvement of the running time may be possible by

tighter estimations of lower and upper bounds for the optimum schedule length

ff ' , 'f -(j) 1 . h h f or more e ~c~ent computat~on 0 U s, Jut lt cannot overcome t e growt 0

the time requirement when k becomes larger. To investigate various modifica­

tions of the original problem is the subject for a future study.

Acknowledgements

The auther wishes to thank Mr. Takao Hanada of the University of Electro­

Communications for his discussions. He also wishes to thank the referees for

their helpful comments and suggestions.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

80 K. Numata

References

[1] Bruno, J., Coffman, E.G.Jr., and Sethi, R.: Scheduling Independent Tasks

to Reduce Mean Finishing Time. Conun. ACM, Vo1.17, No.7 (1974), 382-387.

[2] Coffman, E.G.Jr., Garey, M.R., and Johnson, D.S.: An Application of Bin­

packing to Multiprocessor Scheduling. SIAM J. Comput., Vol.7, ~0.1

(1978), 1-17.

[3] Devis, E., and Jaffe, J.M.: Algorithms for Scheduling Tasks on Unrelated

Processors. J.ACM, Vo1.28, No.4 (1981), 721-736.

[4] Garey, M.R., and Johnson, D.S.: Computers and Intractability --- A Guide

to the Theory of NP-completeness. Freeman, San Francisco, 1979.

[5] Graham, R.L.: Bounds on MUltiprocessing Timing Anomalies. SIAM J. Appl.

Math., Vo1.17, No.2 (1969), 416-429.

[6] Horowitz, E., and Sahni, S.: Exact and Approximate Algorithms for Sched­

uling Nonidentical Processors. J.ACM, Vol.23, No.2 (1976), 317-327.

[7] Ibarra, O.H., and Kim, C.E.: Heuristic Algorithms for Scheduling Indepen­

dent Tasks on Nonidentical Processors. J.ACM, Vo1.24, No.2 (1977),280-289.

[8] Leung, J.Y-T.: On Scheduling independent Tasks with Restricted Execution

Time. Opns. Res., Vo1.30, No.1 (1982),163-171-

[9] Numata, K.: An Approximate Algorithm for Scheduling Independent Tasks on

Unrelated Processors (in Japanese). Proceedings of the 1984th Fall

Conference of the Operations Research Society of Japan, 77-78.

[10] Potts, C.N.: Analysis of a Linear Programming Heuristic for Scheduling

Unrelated Parallel Machines. Discrete Appl. Math., Vol.10 (1985), 155-

164.

Kazumiti NUMATA: Department of

Computer-Science and Information

Mathematics, The University of

Electro-Communications, 1-5-1,

Chofu-ga-Oka, Chofu- Shi, Tokyo,

182, Japan.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

