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Abstract This paper addresses itself to the maximization of the yield of some chemical process subject to various 

operational as well as physical constraints. Some of the operational constraints on such factors as the level of flows 

and the number of flow change are discrete in nature and standard mathematical formulation leads to a medium 

scale mixed integer programming problem. A typical problem contains 150 integer variables in addition to 150 con· 

tinuous variables and 200 constraints. A problem of this size may not possibly be solved by the general purpose 

mixed integer programming code in accordance with our basic requirement, i.e., in less than one minute on 1 MIPS 

computer. 

Thus we introduce a series of relaxation schemes by elaborating the special structure of the problem and 

reduce the original problem into a set of subproblems, all of which can be solved by standard methods. 

We tested this algorithm on a number of real scale problems and always obtained almost optimal solution 

within 1 minute, whose discrepancy from the true optimum was less than 1 % relative to the value of the objective 

function. 

1. Introduction 

Let us consider an optimization problem associated with a chemical 

process depicted in Fig. 1, where some chemical by-product generated while 

processing main product in plant F is sent to plant A to recover its valuable 

ingredients. The capacity of plant A is relatively small compared to largely 

fluctuating input, so that it is temporarily stocked in the intermediate 

storage 5 before processed in plant A. The amount in excess of the capacity 

of the storage S will be burned in plant B. 

We naturally want to maximize the amount of flow into plant A or equiva­

lently minimize the amount to be sent to plant B. There are, however, several 
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Optimizing Chemical Plant Operation 45 

constraints on the operation of each plant. 

First of all, the level of flow into plant A can be adjusted only once a 

day. 

Main product 

bet) Intermediate yet) 

by-product storage S Plant B 
Plant F 

! x 

Plan' J 
Fig. 1 

The level of flow into plant B can be adjusted more frequently, typically 

as many as ten times every twenty-four hours, but it is preferred to have as 

few changes as possible primarily because too many changes will put excessive 

load on the operator. In addition, it must be integer multiple of some posi­

tive constant. Also, lower and upper bound constraints are imposed on each 

variable. 

The traditional operation of this system can be described as follows. 

We set the amount of flow into plant A at the level much lower than'the 

presumably best achievable value to avoid the fatal violation of lower bound 

constraint of the storage S. According to this scheme, we usually have to 

(i) burn much more than necessary 

(ii) change the level of flow into plant B intolerably ·often 

which'motivated our present effort to optimize the operation using advanced 

mathematical programming technique. 

We will formulate this problem as a mixed integer programming problem in 

Section 2. A typical discretization of the original continuous time problem 

leads to a mixed integer linear programming problem consisting of some 150 

integer variables and 200 constraints. A problem of this size could not 

possibly be solved by a general purpose Dlixed integer programming code within 

one minute on 1 MIPS computer, which is the crucial requirement imposed on 

our solution strategy. 
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We therefore develop a special purpose algorithm in Section 3 where we 

incorporate a series of relaxations by exploiting the special structure of 

this problem. As shown in Section 4, our algorithm can generate an almost 

optimal solution for every input data we examined. It turned out that the 

difference of the value.of the objective function is always less than 1% from 

that of the true optimum. Also, we could significantly reduce the number of 

changes of flow into plant B. 

There are only a few publications on the applications of mathematical 

programming techniques to the optimization of chemical process in our country, 

at least to our knowledge [2,3,5,7]. 

In particular, we could find almost no published reports on the applica­

tions of mixed integer programming. We hope that this paper will call upon a 

new interest in the applications of mixed integer programming in this field. 

2. The Model 

Let bet) be an exogenous function representing the amount of flow into 

intermediate storage S at time t. Also, let 

x 

y (t) 

z (t) 

rate of flow into plant A 

rate of flow into plant B at time t 

amount in storage S at time t 

The following equation represents the flow balance at storage S 

d dtz(t) = bet) - x - yet), o ;;; t ;;; T 

z(O) = Zo ) 
where T is the planning horizon, usually twenty-four hours. Lower and upper 

bound constraints are imposed on the variables: 

0 ;;; x :;; x max 

(2) Ymin 
:;; y (t) ~~ Ymax ' 0 :;; t :;; T 

z min 
:;; z (t) ~; z max' 

0 :;; t :;; T 1 
Also, yet) should be an integer mUltiple of positive constant a, i.e.,. 

(3) 
yet) = w(t)·a , 

wet) LS a nonnegative integer for all t } 
Finally yet) should be a piecewise constant function with at most ten dis­

continuous points. Our problem is to maximize the yield x subject to 
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constraints described above. 

To solve this problem, we discretize time interval of 24 hours into L 

minutes subintervals to obtain the following discretized version of equation 

(1) 

(4) x + y. + a(z. - z. 1) = b., ] ] r ] j=1 , •.• ,n 

where n = 1440/L, a = I/L. Constraints on the number of discontinuities of 

y(t) can be represented by introducing n zero - one variables as follows: 

(5 ) 

Yj - Y j - 1 + mp
j 6 0, 

-Y
j 

+ Y
j

-
1 

+ mp
j 6 0, 

n 
LP. ~ 10 

j=1 ] 

Pj 
E {O, n, 

j=I, ••. ,n 

j=I, ..• ,n 

j=I, ••• ,n 

where m is a large positive constant. It is easy to see that P
j 

Y j = Y j -
1 

whereas Pj = 1 implies 

Y j - Y j-l ;;; -m 

° implies 

which imposes no restriction on Y
j 

- Y
j

-
1 

when m is large enough, so that 

constraints (5) judiciously represent our restriction on the number of dis-

continuities. 

(6) 

Our problem can now be written as follows: 

maximize x 

subject to x + y. + a(z. _. z. ) ] ] r 1 

° ~ x ~ x max 

Ymin ~ Yj 
~ 

z min 
~ z. ~ 

] 

Yma.x ' 

zmax' 

w. ~ 0, integer, 
] 

Yj - Yj - 1 + mp~i ;;; 0, 

-Y j + Yj - 1 + mp
j ~ 0, 

n 
LP. ~ 10 

j=1 ] 

Pj 
E {O, 1 }, 

j=I, ••• ,n 

j=I, ••• ,n 

j=I, ••• ,n 

j=I, •.• ,n 

j=I, ••• ,n 

j=I, ••• ,n 

j=I, ••• ,n 

j=I, ••• ,n 

47 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



48 H. Konno & H. Sekino 

Typically when T=20(minutes! this problem contains about 150 integer 

variables in addition to 150 continuous variables. Also it has about 200 

constraints other than lower and upper bound constraints on the variables. 

We are requested to supply an optimal yield x* and associated operation scheme 

within one minute after the input data b(t) is provided from the factory every 

morning. 

3. Algorithmic Strategy 

The problem formulated in Section 2 is a medium scale mixed integer 

programming problem which could not be solved in one minute on 1 MIPS computer 

by the state-of-the-art general mixed integer programming code. We are thus 

forced to devise an approximation of the model and a special purpose algorithm 

to solve a resulting approximate problem. 

We will describe here a very successful relaxation strategy consisting of 

the following four steps. 

[Step 1] 

We will first relax the complicating constraints related to the number of 

discontinuities of Y .'s and solve the resulting linear programming problem: 
] 

(7) 

Let 

ously x 

(8) 

maximize x 

subject to x + y. + a(z. - z. 1) ] ] r 
o ;;; x ;;; x 

max 

Ymin 
;;; Y j 

;;; 

z min 
;;; z. ;;; 

] 

Ymax ' 

z max' 

b., 
] 

x, Y
j

, Zj' j=l, •.• ,n be an optimal solution 

gives an upper bound of the optimal solution 

x ;;:; x* 

j=l, ••• ,n 

j=l, ••. ,n 

j=l, ••. ,n 

of this problem. Obvi-

* x of (6), i.e. , 

[Step 2] 

We are slmost done if the number of discontinuities associated with Y.'s 
] 

are less than 10. It is, however, an exceptional case and we try to reduce 

the number of discontinuities by solving another subproblem: 
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n 
minimize I 1 Y , - Y j-1 1 

j=1 J 

(9) 
subject to Y j 

+ a(zj - 2
j

_
1 

) b, - x, 
J 

j=1, ••. ,n 

Ymin 
:;; Y j 

:;; 
Ymax ' j=1, ••• ,n 

2 
min 

:;; 2, :;; 2 
J max, j=1, ••• ,n 

It is straightforward to see that this problem has an optimal solution 

Y j , ~j' j=1, ••• ,n, which can be obtained by solving an equivalent linear 

programming problem: 

n 
minimize I (v ~ + v~) 

j=1 J J 

subject to Y j 
+ a(2j - 2, 1) r 

(10) 
Ymin ~ Y j 

~ Ymax ' 

2 :;; 2, :;; 2 
max' m~n J 

+ 
- v, + v, 

J J 

v~;;;o,v,;;;o, 
J J 

[Step 3J 

b. - x, 
J 

0, 

j=1, ••• ,n 

j=1, .•. ,n 

j=1, •.• ,n 

j=1, ••• ,n 

j=1, ••• ,n 
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Since we want to have as few discontinuities as possible, we will try to 

further reduce it. Let k be the number of discontinuous points associated 

with Y
j

, j=1, .•• ,n and let j1' j2, ... ,jk be the time at which the jump takes 

place. We will introduce k variables n
1

, n
2

, ... ,n
k

, one for each interval 

on which Y ,'s are constant and rewrite the constraint of problem using these 
J 

k variables instead of y,'s. (See Fig. 2) 
J 

yet) 

-i-- n2 

6-----<0 

~ n4 
?-----

9-----<Q 

.',. n ----' ki 

------<> 
~------~------~'-------~~-----.I Ir/------•• --------4.~~.~ 

n 

Fig. 2 
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We thus solve a sequence of k linear programs LP(i) for i=l, •.• ,k: 

minimize 

subject to n; + a(z. - z. 1) = b. - x, 
~ ] r ] 

( 11) LP (i) 

Ymin ~ n. ~ Ymax ' ~ 
i=l, ... ,k 

z ~ z 
j 

~ z max' m~n 
j=l, .•. ,n 

ns - ns- 1 
0, S E: J

i 

where J
1

=<P and J
i 

is recursively defined as follows: 

if the optimal value of the objective 

function of LP(i) is zero 

otherwise 

If the resulting number of discontinuities is greater than 10, we have to 

gradually decrease the level of x from its best achievable value x and solve 

(9) again until this requirement is satisfied (Fortunately, this routine was 

not activated for all test problems.) 

Let j1' j2,···,jp be points of discontinuities of Yj'S, where p ~ 10. 

[Step 4] 

Solve the following mixed integer program generated from (6) by fixing p 

time points jl, ..• ,jp at which jump of Yj is possible. 

maximize x 

subject to x + Ys + a(z. - z. 1) b. 
] r ] 

js + 1 ~ j ~ js+l ' s=l, ... ,p 

(12) 0 ~ x ~ x 
max 

Ymin ~ Ys 
~ Ymax ' s=l, ... ,p 

z 
min ~ z. ~ z max' ] 

j=l, ... ,n 

Ys 
= integer multiple of a, s=l, ... ,p 

This problem contains less than ten integer variables Y
s

' s=l, •.. ,p so that it 

can be solved by standard branch and bound technique. We will employ the 

optimal solution (x, Yl""'Yp' ~l""';n) of (12) as our approximate optimal 

solution of (6) by nothing that it is a feasible solution of (6). 
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Fig. 3 shows the flow chart of our solution strategy. Note that each 

subproblem (7), (9) and (12) are significantly easier than (6). 

Solve (7) 

- - -
• x, Yj' z. j=l, .•• ,n 

] 

Solve (9) 

~ ~ 

• Yj' z . j=l, ••• ,n 
] 

j l' j2' .. • ,jk 

LP(£), I 
- - oj Solve £=1, .•• ,k x : = x -

~ 

• n£, £=1, ••• ,k 

-
Zj' j=l, ••• ,n 

No 

Yes 

Solve (12) 

- -• x, Ys ' s=l, .. • ,p 

-
Zj' j=l, ..• ,n 

( STOP 

Fig. 3 Strategy for Solving (6) 
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4. Computational Results 

We first compared our solution strategy with the traditional method which 

~s based upon the experience and intuition of the operator ~n charge of this 

system. Table 1 summarizes the result where T=60(minutes) in all four cases. 

Table 1 

Attained yield x (9, /hr) Number of jumps of 
, 

Y j s 

Traditional 
New method Traditional 

New method method method 

Case A 154.0 170.8 5 2 

Case B 152.0 164.4 7 2 

Case C 162.8 171.6 6 2 

Case D 164.8 181.7 9 2 

This table shows that our method always generates a solution whose yield 

~s about 10% better than the traditional method. Also the number of jumps is 

remarkably less. 

We next applied our method to the typical input data depicted in Fig. 4.1 

where T=20(minutes). Fig. 4.1 shows the optimal solution of (7) and Fig. 4.2 

shows the optimal solution of (9). Note that the number of discontinuities of 

y(t) dropped from 12 in Fig. 4.1 to 3 in Fig. 4.2. Fig. 4.3 shows the solu­

tion after solving k linear programs LP(9,), 9,=1, ••• ,k where the number of 

discontinuities decreased even further. Fig. 4.4 shows the optimal solution 

of (12) where ~ is greater than 0.99~. We thus obtained a feasible solution 

of (6) in which; satisfies 

x* f; x ~ 0.99x* 

by noting (8). 
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Table 2 shows some of the more important constants used Ln our computa-
- -

tion. Table 3 shows the value of x and x for four different input data. We 

observe from this that the difference fron x* are less than 1%. Also, we 

observe from Table 4 that the number of discontinuities is less than 3 Ln each 

case. (See in particular a remarkable success in Case 4.) 

Every result shows the validity of our solution strategy. It should be 

emphasized that these remarkable success 'Nas not expected at all before we 

started this study since T=20(minutes) problem has been too complicated to 

obtain a reasonably good operation scheme by traditional approach based on 

experience and intuition. 

Table 2. Physical Constants 

x Ymin Ymax 
a z . Z T max mLn max 

200 40 100 5 140 260 20 
(£/hr) (£/hr) (£/hr) (£/hrj (£) (n (min) 

Table 3. Attained Yields Table 4. Number of Flow Change 

~(£/hr) ;U/hr) - -x/x Step 1 Step 2 Step 3 

Case 1 187.4 186.8 0.997 Case 1 8 3 3 
, 

Case 2 172.0 171. 7 0.998 Case 2 5 4 2 

Case 3 162.8 161.5 0.993 Case 3 12 4 3 

Case 4 155.9 154.7 0.992 Case 4 14 3 3 

Finally, Table 5 shows the amount of time required to obtain this solu­

tion, which successfully meets the computational requirements. 

We expect from these results that this method can solve an even larger 

problem with smaller T (say 5 minutes) or l.onger planning horizon (say 1 week) 

by 

(i) using more elaborate implementation technique instead of the 

rudimentary upper bounded simplex method currently in use 

eii) skipping the most time consuming St.ep 3 and instead using the 

best least square approximation procedure [6] of a piecewise 

constant function by another piece.rise constant function with 

a fixed number of jumps. 
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Step 1 'V 3 

Step 4 

H. Konno & H. Sekino 

Table 5. CPU Time (seconds) 

Step 1 Step 2 Step 3* 

Case 1 10 8 

Case 2 9 20 

Case 3 10 10 

Case 4 4 12 

FACOM M 180 IT AD 

(hand-made simplex routine) 

IBM 3081 MPSX/MIP 

;£ 30 

;£ 36 

;£ 40 

;£ 32 

Step 4 

3.7 

3.8 

3.5 

9.7 

(These values are changed to M 180 IT AD at the rate 
of MIPS) 

* Include overhead jobs. Real execution time is considerably less. 
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