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Abstract We propose a combinatorial framework for fixed point algorithms and constructive proofs of combi· 

natoriallemmas in topology. The framework consists of two sets of pseudomanifolds and an operator relating them. 

They have lattice structures which are dual to each other. We show that the set of "joins" of pseudomanifolds 

related by the operator is a homogeneous and orientable pseudomanifold under several conditions. By exploiting 

this framework we generalize Sperner's lemma on convex polytope. Namely, let C be a convex polytope with m 

facets Fl>"" Fm' S be a finite triangulation of C and S = {ol 0 is a face of some simplex of S}. Given a nondenerate 

vertex v of C and a labelling function Q from the set of verticI!s of S to { 1, ... , m}, the set of indices of facets, there is 

an odd number of simplices 0 of S such that Q(0)U{iI1 ;'i i ;'i rn, 0 C Fj} strictly includes {ill ;'i i ;'i rn, v E Fi} 

We also prove the generalization of Sperner's lemma by Fan and van der Laan·Talrnan·Van der Heyden's lemma 

as corollaries to the result. 

1. Introduction 

Since a new class of fixed point algorithms was proposed by van der 

Laan-Talman [13], a framework unifying the existing algorithms has been 

studied by several researchers, Kojima-Yamamoto [11], van der Laan-Talman 

[14], Freund [3], Yamamoto [20]. The framework is useful not only to 

interpret the existing algorithms but also to develop new algorithms see 

Kojima-Yamamoto [12] ), to prove the convergence of the algorithms ( see van 

der Laan-Talman [16] ) and also to give constructive proofs for fixed point 

theorems ( see Freund [16]). One of the frameworks is a subdivision of a 

space with an artificial dimension. It is a weakness, however, of this 

framework that it heavily depends upon the geometrical structure of the 

subdivision. The framework in Kojima-Yamamoto [11] is based on the "product" 
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20 Y. Yamamoto 

of two subdivided manifolds. This framework is simple and useful for the 

interpretation and development of fixed point algorithms with vector 

labelling but it still depends on the facial structure of polytopes. It 

should be stated that they have generalized it in [10] to overcome this 

weakness. The framework in Freund [3] consists of a pseudomanifold and a 

label set. It is combinatorial and free from geometrical structure. Hence 

it is suitable to fixed point algorithms with integer labelling and to the 

proof of combinatorial lemmas in topology. 

In this paper after reviewing several basic properties of orientation 

of pseudomanifolds we propose a combinatorial structure which consists of 

two sets of pseudomanifolds and an operator relating them. We will call it 

primal-dual pseudomanifold and abbreviate it by pdpm. We show in Sections 

4 and 5 that the set of "joins" of the pseudomanifolds is also a 

pseudomanifold and under some conditions it is homogeneous and orientable. 

In Section 6 some examples of pdpm are constructed from triangulations of a 

convex polytope and its polar. In Section 7 we generalize Sperner's lemma 

on a general convex polytope by using pdpm. It is shown that the 

generalization of Sperner's lemma on the cross product of simplices in van 

der Laan-Talman-Van der Heyden [15] and Freund [5] is readily obtained from 

the theorem. We also show the generalized Sperner's lemma by Fan [2] and 

Sperner's lemma as corollaries to the theorem. Finally we sketch another 

scheme to prove the theorem and corollaries by aggregating facets of the 

polytope. 

2. Preliminaries 

Let a be an abstract simplex of n vertices, i.e., 0= {vI' ••• ,vn}. 

The simplex a is usually called an (n-I)-dimensional simplex, but here 

we will call it an n-cardinal simplex ( abbreviated by Un-simplex ) to 

avoid the confusion of the dimension and the number of vertices. Any 

subset of a is called a face of a and an Hen-I)-face is especially 

called a facet. A set K of #n-simplices is called an #n-pseudomanifold 

( abbreviated by Un-pm ) if for any facet T of any simplex of K there 

are at most two simplices of K having T. We, however, mean a set of one 

#I-simplex by a #I-pm. The boundary of K, denote by oK, is the set of 

#(n-I)-simplices each of which is a facet of exactly one simplex of K. An 
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Generalization of Sperner's Lemma 

in-pm K is said to be finite if it consists of a finite number of 

simplices. It is said to be locally finite if for each vertex of K the 

number of simplices of K having v is finite. 

Two simplices ° and II of K are said to be neighboring if they 

share a facet, or equivalently 1") ° t; {v, u} for some v E ° and u ri 0, 

where t; means symmetric difference. An in-pm K is said to be 

homogeneous if for any pair ° and II Eo K there is a sequence °0' 
° 1 , ... 'at of simplices of K such that: ° = 0, °t = ll, °i_l and 0. 

0 1 

are neighboring simplices for i = 1, •. ,., t. 

The set of all #k-faces of all simplices of K is called the 

#k-skelton of K and denoted by K#k. We also denote Un K#k 
k=O by K. 

Let C be a convex polytope of Rn. A set L of geometrical 

n-dimensional simplices is said to be a triangulation of C if the union 

of all simplies of L is C and for any two simplices of L their 

intersection is their common face. For a triangulation L of C let L' 

= {{ v v is a vertex of o} I ° EL}. Then L' is a pm. In the 

sequel we will make no distinction between Land L'. 

3. Orientation 

21 

For an in-simplex ° {v 1 ' •.. ,vn} let Or(o,.) be a fUnction from the 

set of orderings of the n vertices of ° to the set {-1,+1} such that 

(3.1) 

for any permutation 'Tf of {l, .•. ,n}, ",here sgn('Tf) is the sign of 'Tf. Let 

° and II = ° t; {vk ' u} be neighboring simplices, where vk E 0, u ri 0. 

Or( 0,. ) and Or(ll,.) are said to be coherent iff 

(3.2) 

An in-pm K is orientable if there exists an orientation function 

Or(.,.) such that it is coherent for any neighboring simplices. Let T 

° \ {v
k

} for some vk E 0. Or(T,.) is called the induced orientation of 

T from Or(o,.) if 

(3.3) 

In the followings we give several lemmas about the orientation. Some 

of them are obtained directly from the above definitions. The readers who 

are familiar with the orientation theory could skip the following lemmas. 
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Lemmma 3.1. 

Then Or(a •. ) 

orientations 

Let a and n 

and Or(n •. ) 
a 

Or (T •. ) and 

Y. Yamamoto 

be neighboring 

are coherent if 
n Or (T •• ) of T 

respectively. have opposite signs. 

#n-simplices and T = ann. 

and only if the induced 

from Or(a •. ) and Or(n •. ). 

Proof. Let 0= {v1 •...• vn} and n = a ~ {vk.u}. Suppose Or(a •. ) and 

Or(n •. ) are coherent. Then by (3.3) 

n 
Or (T.(vl •...• vk_l.vk+l •... 'vn» 

k 
(-1) Or(n.(vl •.•.• vk_l.u.vk+l ••..• vn» 

k+l (-1) Or(a.(v1 •.••• vn» 

a 
-Or (T.(vl •..•• vk_l.vk+l ••.•• vn». 

a n Next suppose Or (T •. ) = -Or (T •• ). Then 

Or(a.(v1·····vn» 

k a 
(-1) Or (T.(vl ••..• vk_l.vk+l •...• vn» 

hI n 
(-1) Or (T.(vl ••••• vk_l.vk+l ••••• vn» 

-Or(n.(vl·····vk_l·u.vk+l·····vn»· 

Lemma 3.2. Let K 

distinct orientations 

be a homogeneous pm and orientable with respect to two 

Orl and Or2. Then Orl = _Or2. 

Proof. Since 
2 

Orl ~ Or2. there is a simplex a E K with Or 1(a •. ) 

= -Or (a •. ). Let n a ~ {vk.u} 
1 1 both pairs (Or (a •. ). Or (n •. » 

E K for some vk E a. u ~ a. Then since 
2 2 and (Or (a •. ). Or (n •. » are coherent. 

1 
Or (n.(vl •...• vk_l.u.vk+l •...• vn » 

1 2 -Or (a.(v1 •...• vn» = Or (a.(v1 ••..• vn» 

2 
-Or (n.(vl •...• vk_l.u.vk+l •••.• vn». 

Let n be an arbitrary simplex of K. Since K is homogeneous. there 

is a sequence of neighboring simplices from a to n. By applying the 

above argument along this sequence we have the desired result. 

Lemma 3.3. (compare with Lemma 26 in Freund [3] 

Let K be a locally finite and orientable In-pm. If oK is an #en-l)-pm. 

then it is orientable with respect to the induced orientation. 

Proof. Let a = {v1 •...• vn_1} and S = a ~ {v1.vn} be neighboring simplices 

of oK. Let £ be a function defined on the set of vertices of K into 
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Generalization of Sperner's Lemma 23 

U,2, ... ,n} such that 

R,(v l ) R,(v ) 1 n 

R,(v.) i for i 2, ..• ,n·-l 
l 

R,(v) 1 for any v ~ a. u 13. 

Then we will see that only a. and 13 are the simplices of 6K with R,(a.) 
= R,(13) = {I, ... ,n-l} where R,(a.) {R,(v) I v Ea.}. Suppose R,(y) 

= {l, ... ,n-l} for some YE 6K. Then by the definition of R, 

{v 2' ... ,v n-l} C y. Since 6K is an #(n-l)-pm, there are at most two 

#(n-l)-simplices of 6K having {v2 ' ... ,vn_l }. Therefore Y = a. or 13. 

Furthermore by the local finiteness of K, the number of simplices having 

{v 2' ... ,vn_l } is finite. Therefore there is a finite sequence of 

simplices 0
0
,01 , ... , at of K such that a. coo ' 13 cat' 0i_l and 

are neighboring and R,(o. 1 no.) = {l, ..• ,n-l} for all i = l, ... ,t. 
l- l 

o. 
l 

By 

applying (3.2) and (3.3) to these simplices ( see for example Lemke [17], 

Gould-Tolle [8] and Eaves [1] ), we see that the induced orientations 

Or(a.,.) and Or(13,.) are coherent. 

Lemma 3.4. Let 

that K n L = 0. 
Un-pm, and 6K n 

K and 

Suppose 

6L is a 

L be locally finite and orientable #n-pm's such 

6K and 6L are #(n-l)-pm's, K U L is an 

homogeneous pm. Then K U L is orientable. 

K#(n-l) n L#(n-l) 6K n 6L since K U L is a pm 

6K n 6L, OrK and OrL be the orientations of 

Let OrM<K and OrM<L be the induced 

orientations of M from OrK and OrL. By Lemma 3.2 M is orientable 

with respect to both OrM<K and OrM<L. Then by Lemma 3.2 OrM<K = OrM<L 

or _OrM<L. If OrM<K = OrM<L, then reverse the orientation of one of K 

and L. Then we have OrM<K = _OrM<L. By Lemma 3.1 we see that K U L is 

orientable. 

Proof. First note that 

and K n L = 0. Let M 

K and L, respectively. 

4. Pr~mal-Dual Pseudomanifolds 

Let K and L are #p- and #d-pm's which share no vertices. Let P p 
be a finite partition of K into #p-pm's. Let P p-l be a finite 

partition of U{ 6X I X E P into #(p-l)-pm's such that 6X l n 6X2 is p 
also partitined by P p-l for any Xl' X2 E P In general let Pk be a p 
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24 Y. Yamamoto 

finite partition of U{ oX I X E Pk+1 } into #k-pm's such that 

oX 1 n oX2 is also partitioned by Pk for any Xl' X2 E Pk+1. For 

consistency of notation we define Po = {0}. Let Dd' Dd_I"" , Dg be 
defined for L in the same way. Let P = Uk=o Pk and D = Uk=O Dk · 
When there are a subset A cPu D \ {0}, an operator denoted by * on A 

and a positive integer n satisfying the following conditions, 

(P,D,A,*,n is called an #n-primal-dual pseudomanifolds ( will be 

abbreviated by #n-pdpm ): 

(4.1) If X E Pk n A ( Y E Dk n A ) and o < k ::> n, then 

X* E D n-k ( y* E P n-k ). 

(4.2) If X E A and X* .;. 0, then X** = X. 

(4.3) If X, Y E A and X coY, then y* c oX*. 

(4.4) For each X E Pn- 1 ( Y E Dn_1 there is at most one member U E P 
n 

V E D such that X c oD Y c oV ). 
n 

For X E P n A let 

X • X* = a u n I a E X, n E X* }, 

which coincides with X**· X* when X*';' 0. 

Lemma 4.1. 

(4.5) X· X* is an in-pm. 

(4.6) o(X' X*) = (oX, X*) u (X • oX*). 

(4.7) (X' X*) n (Y • y*) = 0 if X t Y. 

Proof. Let X E Pk and X* E Dn_k • Since X· x* = X if X* = 0, (4.5) 

and (4.6) are clear in this 

#(n-1)-simplex of X· X*. 

cases: case 1: 1,1 = k and 

case. We suppose x*.;. 0. Let ,u n be an 

Then we have exactly one of the following two 

Iyl = n - k - 1, case 2 : 1,1 = k - 1 and 

IYI = n - k. It is sufficient to condsider case 1. Suppose 

, u yea U n EX' X*. Then a = ,. Since X* is a pm, there are at 

most two n E X* having y. Therefore we have (4.5). The assertion (4.6) 

also follows from the above argument. The assertion (4.7) is also clear 

since X n Y 0 when X.;. Y and any simplex of (X, X*) n (Y • y*) 

whould have n vertices. 

Lemma 4.2. Suppose that X E Pk n A, Y E Ph n A, X.;. Y, h::> k, and 

X • X* and y. y* share an #(n-1)-simplex. Then k = h + 1 and Y coX. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Generalization of Sperner's Lemma 25 

Proof. Let T U Y be an #(n-l)-simplex in X· X* n Y • Y*. Then there 

exist 01 U n I EX· X* and O2 U n2 E Y • y* having T U y. Therefore 

Teal n O2 and ye n I n n2. Suppose that k = h. Then ITI S 1011 - 1 

k - 1 and IYI ~ InII - 1 = n - k - t. This implies that IT U yl 

S n - 2, which is a contradiction. Suppose that k ~ h + 2. Then ITI 

~ 1021 = hand IYI ~ InII ~ n - k. Hence IT U yl ~ h + n - k S n - 2, 

again a contradiction. Therefore we have k = h + 1. If Y i oX, then 

101 n 021 ~ 1021 - 1 = h - 1 and 1nl n n21 S InII - 1 = n - k - 1. This 

is contrary to IT U YI = n - 1. 

Now let 

M = U( X • X* I X E P U A, X* ~ 0 } 
uU[ X X E P n A, X* = o } 
UU; Y Y E D n A, y* = o } 

Then we have the following theorem. 

Theorem 4.3. M is an in-pm. 

Proof. Let T U Y be an arbitrary #(n-I)-simplex of X • X* for some 

X E P n A. Suppose TUycounE M. We can assume without loss of 

generality X E Pk ' X* E Dh , ITI = k - 1 and Iyl = h, where h = n - k. 

We first consider the case where k > 1, which implies T ~ 0. When 

T i oX, T U y i o(X • X*) by (4.6) of Lemma 4.1. Then we have two 

#n-simplices of X· X* having T U Y by (4.5). We also see that no 

other #n-simplices of M have T U Y by (4.7). When T E oX, there is a 

unique a E X with Tea, and consequently T U yea U y EX· X* c M. 

Since T E oX, there is a unique Y E Pk- I such that T EYe oX by the 

construction of Pk- I . If YEA there is Y* E Dh+I and X* c oY*. 

Therefore there is a unique n E y* with yen. Thus we obtain 

TUn E Y • y* c M having T U y. Finally suppose that 

T U yea USE M. Then either lal = ITI + 1 and Isl = IYI or lal 

= ITI and Isl = Iyl + 1 holds. In the first case S = y E X* and 

a USE X** • X* = X • X*. Therefore a U S must be a U y above. In 

the second case we have a U y = TUn Thus we have seen that T U Y 

is contained in at most two simplices of M when k > 1. 

Next, we consider the case where k = 1. Note that h = n - 1. By the 

definition of #I-pm, X consists of a single #I-simplex, say {v}. 

Therefore we obtain {v} U y EX· X·* c M having T U Y = y. If D ~ 0. 
n 
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26 Y. Yamamoto 

at most one member Y E D such that X* c oY belongs to A from 
n 

condition (4.4). Therefore we have at most one simplex n E Y such that 

T U Y = yen 0 U n E M. Finally suppose that T U yea USE M. Then 

either lal 1 and Isl = Iyl or lal = 0 and Isl = Iyl + 1 holds. so 

that we see that a U S is either {v} U y or 0 U n. 

Corollary 4.4. oM is the set of #(n-1)-simplices T U Y satisfying one 

of the following conditions. Here T U Y E (X • X*)#(n-1). X E Pk and 

x* E Dh. 

(4.8) k > 1. 

(4.9) h > 1. 

(4.10) k 1. 

(4.11) h 1, 

T E oX 

Y E oX* 

T 0 

Y = 0 

and if 

and if 

and if 

and if 

T EYe oX. then Y i A. 

y EYe oX*. then Y i A. 

x* coY. then Y i A. 

Xc oY. then Y i A. 

Proof. The asssertion is readily obtained from the proof of Theorem 4.3. 

5. Orientability of M 

In this section we will show that M is a homogeneous and orientable 

pm under following conditions. 

(5.1) Each X E A is homogeneous and orientable. 

(5.2) For any pair X and Y E P n A U {0} there is a sequence 

XO·X1•· .. • Xt of P n A U {0} such that Xo = X, X = Y t and 

either X. 1 coX. or X. c oX
i

_
1 for i = 1 ..... t. 

1- 1 1 

(5.3) oX is a pm for any X E A. 

(5.4) (Shellability) There is an ordering Xl Y1•···• Xs • Ys of 

#n-pm's constructing M euch that for i = 2, .•. , s 

O(Uj :a _1 Xi· Yj ) n o(Xi • \) 

is a homogeneous #(n-1)-pm and 

• y.»#(n-2) 
1 

n o(X .• y.)#(n-2). 
1 1 

Lemma 5.1. X • X* is homogeneous. 
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Generalization of Spemer's Lemma 27 

Proof. We prove only the case where X~, f. {0}. Let 0 u nand 0' un' 

be arbitrary simplices of X· X*. Since X and X* are homogeneous from 

condition (5.1), we can find sequences of neighboring simp1ices 0 

= 00 , 01"", Ok 0' and n = nO' n1, ... , nh = n' such that 0i E X, 

nj E X*. Then the sequence 0 U n = 00 unO' 01 u no"'" ok u no 

= 0' uno' 0' u n1, ••• , 0' u nh = 0' u fI' is the desired sequence. 

Lemma 5.2. x X* is orientab1e. 

Proof. Let 0 u n EX· X*, 0 = {vI""" vk}, n = {u1 ' ••• , uh}, where h 

n - k. We define the orientation Or(O un,.) by 

Or(O U n,(v l , ... ,vk ,u1 , ... ,uh)) = Or(O,(vl, ••. ,vk)) x Or(n,(u1 , .•. ,uh)). 

Note that Or(O un,.) is uniquely defined by the above formula. Suppose 

0' u n' is a neighboring simplex of o u n. Then either 0' U n' 

= (ot-.{y.,v}) u n for some v. E 0, V ~ 0 or 0' u n' 
1 1 

= 0 u (n t-. {u., u} ) for some u. u n, u ~ n. Since X is orientab1e by 
1 1 

(5.1) , we have for the first case 

Or( O' un', ( )) v1,···,vi_l,v,vi+1,···,vk,u1,···,uh 

Or(0',(vl, ... ,vi_1"v,vi+l, ..• ,vk)) x Or(n',(ul, ... ,uh)) 

- Or(O ,(v1 , •.. ,vk )) x Or(n,(u1 , ... ,uh)) 

- Or(O u n,(v1 , .• ,vk ,u1 , .•. ,uh)). 

We have the same result also for the second case. 

Lemma 5.3. M is homogeneous. 

Proof. Let 0 u nand 

consider the case where 

0' u n' be arbitrary simp1ices of 

o f. 0 and 0' f. 0. Then there are 

M. 

X 

We first 

and 

Y E P n A such that 0 u n EX· X* and 0' u n' E Y • Y*. Since we have 

seen that there is a sequence of neighboring simp1ices between 0 u nand 

0' u n' by Lemma 5.1 when X = Y, we suppose X f. Y. By condition (5.2) 

we obtain a sequence X = XO' Xl"'" X
t 

that X. 1 c 6X. or X. c 6X. 1 for i 
1- 1 1 1-

Y of members of P n A such 

1, .•• ,t. As the inductive 

hypothesis we assume that there is a sequence of neighboring simp1ices from 

o Unto any TUn E Xt _1 • X~_l' 

Now consider the case where Y = X
t 

c 6Xt _1. Then there is a simplex 

T of X
t

_1 with 0' eT. On the othl;!r hand let Y be an arbitrary 

simplex of X~_l (let Y = 0 when X~_l = {0} ). Then there is a simplex 
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28 Y. Yamamoto 

a E X~ having y. By Lemma 5.1 there is a sequence of neighboring 

simplices from 0' u n' to 0' U a. Furthermore 0' u a and ,u y are 

also neighboring. Thus we have a sequence of neighboring simplices from 

o Unto 0' u n'. 

When Xt _1 c 6\ 

have the proof. 

6Y, exchange the roles of Xt and Xt _1 ' then we 

Next we consider the case where n = 0, 0' = 0, and hence 0 u n 
= 0 E X E P n A and 0' u n' n' EYE DnA. By condition (5.2) we 

obtain U E P n A and V E DnA such that U c 6X and V c 6Y. Note 

that there is a sequence of neighboring simplices between any simplices in 

U • u* and v*· V. Furthermore there are such sequences between 0 and 

any simplices in U· U* and between n' and any simplex of V*· V. 

Thus there is a sequence of neighboring simplices. 

Lemma 5.4. 6(X • X*) is an #(n-1)-pm. 

Proof. When X* = {0}, the lemma is an immediate consequence of (5.3). 

Then we suppose X* ~ {0}. Let ,U ye 0 un E 6(X • X*) and I, U yl 

= n - 2. Then by Lemma 4.1 either 0 E 6X and n E X* or 0 E X and 

n E 6X*. We suppose the first case without loss of generality. Let 

X E Pk ' X* E Qh' where h = n - k. 

case 1: I T I = k - 1, I y I h - 1, 

Then we have two possibilities: 

, = OJ case 2: 1,1 = k - 2, Iyl = h, 

= n. Now consider case 1. When y i 6X*, there are exactly two simplices 

n1 and n2 of X* having ,. 

and ,u n2 E 6(X • X*) having 

Therefore we find two simplices ,u n1 
, u y. When y E 6X*, there is a unique 

y 

simplex n of X* having ,. Therefore ,u ye, U n E 6(X • X*). On 

the other hand there is a unique simplex T' E X with T c ,', and 

consequently,' U y E 6(X • X*) has ,u y. We have seen that ,u y is 

contained in at least two simplices of 6(X· X*). Suppose ,u yea U S 
E 6(X • X*). Then either lal = 1,1 + 1 or Isl Iyl + 1. In each case 

a u S must coincide with one of the simplices of 6(X· X*) in the above 

argument. Therefore ,u y is contained in exactly two simplices of 

6(X • X*) in case 1. 

Next consider case 2. Since 6X is a pm from (5.3), there are at 

most two simplices 0 1 and O2 of 6X having ,. Hence there are at 

most two simplices of 6(X· X*) having TUn. 

Now let Xl • Y1 , X2 • Y2 , ... , Xs • Ys be the shelling order in 

condition (5.4). Let 
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K1 Xl· Y1 , 

Ki Ki _l U (Xi· Yi ), 

Li OK i n 0(Xi +1 • Yi +1)· 

Then we have seen that 

(5.5) K1 is an orientable pm, 

(5.6) OK
1 

is a pm, 

(5.7) X. . Y. is an orientable pm for any i, 
1 1 

(5.8) o(Xi Yi ) is a pm for any i. 

Furthermore by condition (5.4) 

(5.9) Li is a homogeneous pm for any i. 

Thus we assume as the inductive hypothesis that 

(5.5)' 

(5.6)' 

Ki is an orientable pm, 

oK. is a pm. 
1 

By (5.5)',(5.6)',(5.7),(5.8),(5.9), Lemma 3.4 and Theorem 4.3 we see that 

Ki+1 is orientable if each Xi· Yi is locally finite. To complete the 

induction we have to show that oKi+1 is also a pm. 

29 

Lemma 5.5. Let K and L be #n-pm's with K n L = 0. Suppose oK and oL 
are pm's, oK n oL is an #(n-1)-pm and oK#(n-2) n oL#(n-2) 

= (oK n oL)#(n-2). Then o(K U L) is an #(n-l)-pm. 

Proof. Let T E o(K U L)#(n-2). Since o(K U L)#(n-2) C oK#(n-2) 

U OL#(n-2), we have two cases: case 1: T E oK#(n-2) and T i oL#(n-2); 

case 2: T E oK#(n-2) n oL#(n-2). Since oK is a pm, we find at most two 

1. For case 2 suppose that 

°1' °2 and n of o(K U L) 

simplices of o(K U L) having T in case 

there are three distinct #(n-1)-simplices 

having T. If an #(n-1)-simplex ° is in o(K U L), it lies in exactly 

one simplex of K U L. Therefore ° i oK n oL, whose simplices lie in 

exactly two simplices of K U L. Therefore we see that 

01' 02' n i oK n oL. We assume without loss of generality that 

01' 02 E oK \ oL, n E oL \ oK. Since oK is a pm and it has already two 

simplices 01 and 02 containing T, oK n oL has no simplex containing 
T. Hence T i (oK n oL)#(n-2) = oK#(n-2) n oL#(n-2). This is a 

contradiction. Therefore we have seen that there are at most two simplices 

of o(K U L) having T also in case 2. 
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When X . .;, {0} 
1 

and only if both 

theorem. 

X. 
1 

and 

and 

Y. Yamamoto 

Y . .;, {0}, 
1 

X .• Y. 
1 1 

is locally finite if 

Y. 
1 

are finite Thus we have the following 

Theorem 5.6. Let Xl • Yl , X2 • Y2,···, Xs • Ys be the shelling order in 

(5.4). 
(i) 

(H) 

Then 

Suppose that for each i = l, ••. ,s either 

X. and Y. are finite or 
1 1 

one of them is and the other is locally finite. 

M = u~ lex. 
1= 1 

• Y.) 
1 

is a homogeneous and orientable In-pm . 

6. Polytopes and Polars 

In this section we investigate pdpm's derived from convex polytopes 

and their polars. 

polytope of Rn 

Through this section we denote an n-dimensional convex 

by C and its polar by Co. It is well-known that there 

is a one-to-one and inclusion-reversing mapping W from the set of faces 

C to that of CO such that w(C) = 0, w(0) = CO and dim F + dim ,!i(F) 

n - 1 for any face F of C ( see Grunbaum [9] ) . The set of all 

faces of C forms a lattice, called the face lattice of C and denoted 

F(C), with the partial order of inclusion relation. In terms of lattice 

theory the face lattice F(Co ) of CO is said to be dual to F(C) and 

W be dual isomorphism. 

Now let S and T be finite triangulations of C and CO , 
respectively. Let 

XF 0 a E S, ac F, dim a = dim F }, 

YG n n E T, n c G, dim n = dim G 

for each face F of C and for each face G of Co. The.n XF and YG 
are #(dim F + I)-pm and #(dim G + I)-pm, respectively. For k 

O,l, .•. ,n+l let 

Pk XF F is a (k-l)-dimensional face of C }, 

Dk YG G is a (k-l)-dimonsional face of CO } 

and let 

Un+l 
P = k=O Pk , Un+l 

D = k=O Dk · 

When we introduce the partial order -< on P such that XF -< XF ' iff 

by 

XF c 6X
F

, , P forms a lattice. It is clear that this is isomorphic to the 
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face lattice F(C). The set D with the same partial order is also a 

lattice isomorphic to F(Co). Let the operator * be defined by (XF)* 

= Y~(F) and (YG)* = X~-l(G). Then both (P,D,P U D \ (0},*,n+1) and 

( P,D,P U D ({0) U D 1),*,n+1) are #(n+1)-pdpm's. Let us denote the n+ 
#(n+1)-pm's derived from these pdpm's by M1 and M2 , respectively. The 
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pm M2 has a close relation to the H-complex in Freund [3]. By Corollary 

4.4 we see that OM1 = 0 and oM2 = oT. We also see that conditions (5.1) 

to (5.3) are satisfied. 

We will show that condition (5.4) is also satisfied if we choose the 

decreasing order of dimension of X. 's as the shelling order. Following 
1 

the definitions in the previous section let 

K1 Xl· Y1 = Xc • {0} = XC' 

K. K. 1 U (X .• Y.), 1 1- 1 1 

Li oKi n 0(Xi +1 • Yi +1)· 

By Lemma 5.4 0(Xi +1 • Yi +1) is an Un-pm. Then Li , a subset of 

0(Xi +1 • Yi+1 ), is also an #n~pm. Therefore it suffices to show that Li 

is homogeneous and oK~(n-1) n o(X. Y. )#(n-1) L~(n-1) in order to 
1 1+1 1+1 1 

see that M1 and M2 are orientable. 

Lemma 6.1. Li is homogeneous for i = 1, ••• ,s-1. 

G be faces of C and suppose that o(X • (X )*) F F Proof. Let F and 

n o(XG • (XG)*) # 0. Then by Lemma 4.2 either F is a facet of G or 

G is a facet of F. Now let us denote Xi +1 by XF• Since the shelling 

order is the decreasing order of dimension, we have by Lemma 4.1 (4.6) 

Li OKi n o(XF • (XF)*) 

LJ{o(XG • (XG)*) n o(XF (XF)*) I F is a facet of G} 

LJ{(XF • (XG)*) I F is a facet of G 

= XF • LJ{(XG)* I F is a facet of G}. 

Note that LJ{ (XG)* I F is a facet of G} = LJ{ YH I H is a facet of 

\I)(F)} and hence it is homogeneous. Therefore in the same way as in the 

proof of Lemma 5.1 we obtain that Li is homogeneous. 

L 6 2 sK#.(n-1) n o(X. • Y )#(n-1) = L#(n-1) for 1· 1 el'lIIla .• u 1 1+1 i+1 i ' ... , s--I. 

Proof. From the definition of L. it is clear that L~(n-l) 
c oK~(n-l) n o(X. 1 • Y. 1)#(n-l).l We will show the re~erse relation. I t 1 1+ 1+ "e 
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T U Y E OK~(n-l) n O(X. • Y )#(n-l) Then T U Y 
1 1+1 i+l • 

E O(X .• y.)#(n-l) n O(X. • Y )#(n-l) for some J.:S i. Since 
J J 1+1 i+l 

O(X .• y.)#(n-1) n O(X. • Y. )#(n-l) (X Y .)#(n-l). see the 
J J 1+1 1+1 i+1 • J 

proof of Lemma 6.1 ), there is 0 U n E Xi+l • Y
j 

having T U y. By the 

shelling order chosen and that Xi+1 • Yj ~ 0 we have Y
j 

C OY i +l . 

Therefore there is k such that j < k :s i+1 and Y
j 

C OYk . Thus we have 

found a simplex 0 U n' E Xi+l • Yk O(Xi +l • Yi +l ) n O(Xk • Yk ) C Li 

which contains 0 U n, and hence TUn. 

By these two lemmas we have seen that Ml and M2 are homogeneous 

and orientable #(n+l)-pm's. The pm Ml will play a central role in 

generalizing Sperner's lemma in the following section. 

Next we introduce a pdpm derived from face lattice F(C) of C and a 

triangulation of another convex polytope B. Let B be an n-dimensional 

convex polytope of Rn and let S be a finite triangulation of B. Then 

S is an #(n+l)-pm. Let Qn+l = {S}, Qn be a finite partition of OS 

into n-pm's, Qn-l be a finite partion of LJ{ OZ I Z E Qn} into 

#(n-l)-pm's, such that OZl n OZ2 is partition by Qn-l for any Zl' 

Z2 E Qn' In general let Qk be a finite partition of LJ{ OZ I Z E Qk+1 } 

into #k-pm's such that OZl n OZ2 is partition by 

Z2 E Qk+l see the definition of pdpm in Section 

lattice Q LJ~~5 Qk with the partial order ~. 
isomorphic to the face lattice F(C) of C. Then 

Qk for any 

4 ). Then 

Suppose the 

Q forms an 

Zl' 
we have a 

lattice Q 

#(n+l)-pdpm 

together with D derived from the polar Co, Q U D \ {0} and a natural 

D 
• 

[& 
--_ . 

• 

Fig. 1 M3 derived from a square and the face lattice of a triangle 

is 
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definition of the operator * Let us denote the #(n+l)-pm derived from 

this pdpm by M3 . Since M3 is essentially the same as Ml , it is 

homogeneous and orientable. We omit the proof. Figure 1 shows Q 
derived from a square B and the face lattice of a triangle. The #3-pm 

M3 is also shown. In this way we could treat the polytope B as another 

po1ytope C. This maneuverability will be used to prove combinatorial 

lemmas in the following section. 

The final pdpm is also derived from Band F(C). Let S' be a 

finite triangulation of bd.B, where bd .. B is the boundary of B with 

respect to the topology of Rn. Let R~" R~_l' ... ' Ra be the set of pm's 

constructed from S' as in the definition of pdpm. Suppose R' = U~=O R~ 
is isomorphic to the lattice of proper faces of po1ytope C. Let us denote 

the pm of R' corresponding to proper face F of C by Zp. Choose an 

arbitrary interior point b of B and let blzpl = {x x = Ab + (l-A)y, 

y E IZpl, 0 ~ A ~ 1 }, where we use the convention that b0 {b}. Let S 

be a finite triangulation of B such that it coincides with S' when 
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blzpl for each Zp E R' when 

restriced. Now let ZF = { 0 I 0 E S, a c blzpl, dim 0 = dim F + 1 }, then 

ZF is a #(dim F + 2)-pm. Let R = { ZF I F is a proper face of 

restricted on bd.B and it triangulates 

C } u {0} and (ZF)* = Yw(F)' 

(Y
G

)* Z0 = {b} if G CO 

then (R,D,R u D \ (0},*,n+2) is an #(n+2)-pdpm. Let us denote the 

#(n+2)-pm derived from this pdpm by M4 • We will not use M4 in the 

Fig. 2 pm M, ,+ 
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following section because it requires a special triangulation of B that 

triangulates each b!Zp!' But this pm is very important for the 

interpretation of variable dimension algorithms working on B. Figure 2 

shows R derived from triangle B and the face lattice of another 

triangle C, and also the pm M4 . 

7. Combinatorial Lemmas in Topology 

In this section we will show some combinatorial lemmas in topology. 

Here we require neither the boundary conditions on the labelling function 

nor the polytope to be a simlpex and give generalizations of Sperner's 

lemma. We will see that the theorem in this section implies the 

generalizations of Sperner's lemma on a simplex ( Fan [2], Freund [4] ) and 

on the cross product of simplices ( van der Laan-Talman-Van der Heyden 

[15], Freund [5] ). 

Now let C be an n-dimensional convex polytope with m facets 

F1, •.. ,Fm in Rn. Let S be a finite triangulation of C. For a simplex 

o of S we denote by 1(0) the set of indices of facets containing 0, 

i.e., 1(0) = { i ! i E I, 0 c Fi }, where I = {l, ••• ,m}. For a given 

labelling function ~ : S#l + I we have the following generalization of 

Sperner's lemma. 

Theorem 7.1. Let C be an n-dimensional convex polytope of Rn and let 

S be a finite triangulation of C. Then given a labelling function 

~ : S#l + I and a nongenerate vertex v of C there is an odd number of 

simplices 0 of S such that ~(O) u 1(0) contains I({v}) properly. 

Proof. Let CO be the polar of C and let T be a finite triangulation 

of CO that introduces no new vertices ( see, for example, Proposition 2.9 

in Rourke-Sanderson [18] for the existence of T). Since there is a 

one-to-one correspondence I\J from the set of facets of C to the set of 

vertices of Co, we extend the labelling function ~ so that 

~(u) = i if 1\J-1({u}) = F .• 
1 

Since vertex v is nongenerate, the corresponding facet I\J( { v} ) of CO 

an In-simplex. Therefore, by construction, we have seen that T has only 

one #(n+1)-simplex, say y, such that ~(y) contains I({v}) properly. 

Now consider the #(n+1)-pm M1 in the preceding section. Since M1 has 

is 
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no boundary, we see that Ml has an even number of simplices 0 u n such 

that ~(o u n) contains 1({v}) properly by the usual path-following 

argument ( see for example Eaves [1], Todd [19]). Since T c M1, we have 

already found one simplex 0 U Y = Y with the desired labellings. Hence 

Ml has an odd number of simplices 0 U n such that ~(o u n) contains 

1({v}) properly and 0 ~ 0. It is readily seen from the construction of 

Ml that ~(n) c 1(0) for 0 u n E MI with 0 ~ 0. Thus 0 has the 

desired property. 

To show the oddness we suppose that 0 of S has the desired 

property. First we consider the case where 1(0) has a label not in 

1({v}), i.e., 1(0) r/:. I({v}). Let 

H 1(0) n I({v}) 

K I({v})\H. 

Since H is a subset of I({v}), F = n{ F. liE H 
1 

is a face of C. 
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Furthermore since v is a nondegenerate vertex of C, dim F n - #H, so that 

(7.1) dim Fi~ = #H - 1 

and F* has #H vertices. Consequently 

(7.2) F* is a #H-simplex. 

By the definition of Hand K, we have 

(7.3) #0 ~ #~(o) ~ #K #I({v}) - #H = n - #H. 

Let G = n{ F. liE 1(0)}. Since H c 1(0), G is a face of F, which 
1 

implies that 

(7.4) F* is a face of G*. 

Since G contains 0, dim G ~ n - #H - 1 by (7.3). On the other hand, 

since 1(0) has a label not in H, 

(7.5) dim G ~ n - #H - 1. 

In fact, the contrary of (7.5) would imply that vertex v were degenerate. 

Therefore we have dim G = n - #H - 1 and 

(7.6) dim G* = #H. 

By (7.1), (7.4) and (7.6) we obtain that 

(7.7) F* is a facet of G*. 

By (7.2),(7.7) and that triangulation T introduces no new vertices, there 

exists a unique simplex n of f such taht n has F* as a facet and 
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n c G*. Let w be the unique vertex of n \ F*. Then t(w) E 1(0). If 

t(w) E l({v}), it should be in H, which is contrary to (7.2) and that 

t(F*) = H. Therefore t(w) i l({v}), and hence we see that t(o u n) 

contains l({v}) properly. 

Next, we consider the case where 1(0) c l({v}). By the similar 

argument to the above we see that G* is an #l(o)-simplex of T with 

labels 1(0). Therefore n = G* is the desired simplex. 

The uniqueness of simplex n might be clear from the above argument, 

however, we show the uniqueness. Suppose that there are two distinct 

simplices nand n' of T whose label sets together with t(o) contain 

l({v}) properly. Since #0 u n = #0 u n' = n + 1, t(o u n) 

= l({v}) u {j} and t(o un') = l({v}) u {j'} for some labels j and 

j'. Therefore ten) n ten') c l({v}). Note that vertex v is a 

nondegenerate vertex. Then there is a simplicial face of CO such that 

whose vertices are ten) n ten') = ten n n'). This contradicts the fact 

that both nand n' are the simplices of G*. 

We give an illustration of the theorem in Figure 3, where polytope C 

is a pentagon with facets F1 , •.. ,FS ' vertex v lies on the intersection 

of Fl and F2 . The odd number of simplices in the theorem are circled. 

o 

When vertex v is degenerate, facet W({v}) is not an Un-simplex but 

an (n-l)-dimensional convex polytope. Choose arbitrarily n indices out 

of l({v}) and let u1, .•. ,un denote the corresponding vertices of 

W({v}). Suppose we have a finite triangulation T' of W({v}) which has 

3 

v 

2 2 

F3 

Fig. 3 Example of Theorem 7.1 
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{u1,· .. ,un} as its simplex and introduces no new vertices. Then we can 

make a triangulation T of CO such that some simplex has {u1,··· ,un} 
as a facet and it introduces no new vertices. Since T has only one 

simplex having {u1, ••• ,un}, we see by the same argument as in the above 

proof that S has a simplex 0 such that ~(o) u 1(0) properly contains 

the previously chosen n indices. The author did not know whether the 

triangulation T' exists for n indices arbitrarily chosen out of 

l({v}). But he received a letter [7] from Freund which presented a method 

of constructing such a triangulation. It will be outlined in Appendix. 

In van der Laan-Talman-Van der Heyden [15] and in Freund [5] Sperner's 

lemma is generalized on the cross product of simplices, that is named 

simplotope by Freund. In the followings we show that their generalized 

lemma is derived from Theorem 7.1. Let Ci be an ni-dimensional simplex 

of in Rni for i = 1, ..• ,h and let C = Cl X ••• X Ch' Let S be a 

finite triangulation of C. Let the facets of C. be indexed by 
1 

(i,l), ... , (i,ni +1) for 

~ : S#l -+- { (i,j) I 1 :> 

i=l, ... ,h and consider the labelling function 

+ 1 }. Choose an arbitrary 

vertex v of C. 

i ~ h, 1::S j :£ n
i 

Then it lies in exactly n. facets of C. for each i 
1 1 

1, •.• ,h. By Theorem 7.1 we see that there is at least one simplex 0 of 

S such that ~(o) u 1(0) contains l({v}) properly. Then ~(o) u 1(0) 

contins labels (i,1), ... ,(i,n.+1) for some i. Thus we have the 
1 

following corollary. 

Corrollary 7.2. ( Lemma 2.3 in van der Laan-Talman-Van der Heyden [15], 
Theorem 1 in Freund [5] ) 

Let Ci be an ni-dimensional simplex of Rni and let F(i,l)"'" 

F( ) be its facets for i = 1, ... ,h. Let C = Cl x ••• X Ch i,n.+1 be the 

cross1 product of the simplices and let S be a finite triangulation of C. 

Given a labelling function ~ : S#l -+ { (i,j) I 1 :£ i :£ h, 1 :£ j 

:£ n.+1 }, there is at least one simplex 
1 

0 of S such that 

{(i,1), ... ,(i,n.+1)} c ~(o) u 1(0) for 
1 

some i, where 1(0) (i,j) I I 

::s i ::s h, 1::S j ::s ni +1, 0 C F(i,j) }. 

By applying Theorem 7.1 to a simplex, we obtain the generalization of 

Sperner's lemma in Fan [2]. 
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Corollary 7.3. Let C be an n-dimensional simplex of 

C. Given a labelling function 

Rn and let 

~ : S#l -+-

S be a 

finite triangulation of 
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{l, ..• ,n+l}, there is an odd number of simp1ices 0 of S such that 

1(0) U 1(0) = {l, ••• ,n+l}. 

Note that a simplex is indeed a simp10tope but the oddness property of 

Corollary 7.3 is not obtained from Corollary 7.2. For the sake of 

consistency we will also prove Sperner's lemma by Corollary 7.3 ( see Freund 

[4] for an inductive proof ). 

Corollary 7.4. Let C be an n-dimensiona1 simplex and let S be a 

fjnite triangulation of C. Given a labelling function 
#1 #1 1 : S + {l, .•• ,n+l} such that l(v) n l(v) = 0 for any v E S , there 

is an odd number, say 2h + 1, of simp1ices of S having all labels. 

Let Or(.,.) be the orientation of S. We suppose that the vertices 

v
1

, ... ,vn+1 of each of the above simp1ices are arranged so that 

= i for i = 1, ••• ,n+l. Then 

1Cv.) 
1 

+1 or -1 for h simp1ices of them, 

-1 or +1 for the other h + 1 simp1ices. 

Proof. Let 1T be a cyclic permutation of {l, ••• ,n+U such that 

1T(i) i + 1 if 1:;; i :;; n 

1 if i n + 1, 

and consider the labelling function 1T1. By Corollary 7.3 we obtain an odd 

number of simp1ices 0 of S such that (1T1)(0) u 1(0) = {l, ... ,n+l}. We 

show that 1(0) ~ {l, ... ,n+l} implies that 0 = 0 and hence a 

contradiction. Suppose that k i 1(0). Then k+l (1 when k 

n+l ) i (1Tl)(o). Since (1T1)(0) U 1(0) = {l, ..• ,n+l}, we have k+l E 1(0) 

LJ{ l({v}) I v EO}. Then by the condition of the labelling function 

k+l i 1(0). Repeating this argument we obtaind 1(0) = 0, and hence 0 

= 0. 
Since Ml is homogeneous and orientab1e, we have the latter half of 

the corollary by the usual path-following argument ( see Gou1d-To11e [8] 

and Eaves [1] ). 

In the fo110wings we will give a sketch that the Theorem 7.1 is obtained 

by using the pm M
3

. Let B be an n-dimensiona1 convex po1ytope of Rn, 

S be a finite triangulation of B and v be a nongenerate vertex of B. 

Then there are exactly n facets, say F1, ... ,Fn , having vertex v. Let 

Fn+l be the union of all the other facets of B. Construcing Q as 
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shown in Section 6, it is isomorphic to the face lattice of an 

n-dimensional simplex, which we will denote by C (see Figure 1 in 

Section 6). Since the polar CO of C is a simplex, we do not need to 

subdivide it to have a finite triangulation T, i.e., T consists of a 

single #(n+l)-simplex Co. Thus taking the set of all faces of CO as D 

we have an #(n+l)-pdpm ( Q,D,Q U D \ {0},*,n+l ) and an #(n+l)-pm M3. Now 

we extend the labelling function £, so that 

£'(u) = i if u is a vertex of CO and {u}* = RF .• 
l 

Then the simplex CO has labels 1, •.. ,n+l and consequently M3 has an 

odd number of simplices o U n such that £'(0 U n) ~ {l, ... ,n+U and a 

If we note that F n+l is the union of several facets and hence the 

label n + 1 represents several labels, we have Theorem 7.1. Corollary 

7.2 could be also proved in this manner. 
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Appendix 

Here we will sketch the proof of the existence of the triangulation 

T' referred after Theorem 7.1. This proof is due to Freund [7]. 

For simplicity we assume that the n-dimensional convex polytope C 

has the origin in its interior. Then C can be written as 

C X E Rn I Ax ~ e }, 

41 

for some m x n matrix A, and e, the vector of ones. We assume here that 

each inequality ofAx ~ e defines a facet of C. The polar CO of C 

can be written as 

Le., CO is the convex hull of the vectors of rows of A, because C is 

assumed to be bounded. We perturb C ':0 a simple poly to pe , which induces 

a perturbation of CO to a simplicial ?olytope and yields a simplicial 

subdivision of the boundary of Co. Let B be any nonsingular m x m 
o 1 m matrix and let E = (r ,r , ... ,r) for a sufficiently small positive 

number r. Define the perturbed polytope C as 

C(B,E) {x E Rn I Ax ~ [e,B]E }. 

Then C(B,E) is a simple po1ytope and its polar CO(B,E) is simplicial. 

A subset S of the index set {I, ..• ,m} of inequalities defining C(B,E) 

is called a basis for C(B,E) if 

F(B,E,S) = { x E C(B,E) I AS = [e,B]SE } 

is a vertex of C(B,E), where AS is the submatrix of A made up of rows 

of A indexed by S~ Defining 

nit G(B,E,S) = { y E R y = AS A, A ~ 0, etA = 1 }, 

we obtain the following proposition. 
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Proposition 1. The collection of G(B,€,S), 

for C(B,€), forms a triangulation T'(B,€) 

as S ranges over all bases 

of the boundary of Co. 

Then the problem is now reduced to how to choose the matrix B so that the 
, 1 n triangulation T (B,€) has the simplex with vertices u , ••• , u 

corresponding to the n indices chosen out of I({v}). Note that 

Proposition 2. G(B,€,S) is a simplex of T'(B,€) if and only if 

Isl = n, 

AS has rank n, and 
-1 

AaAS [e,B]S <£ [e,B]a' 

y,here a = {1, .•• ,m} \ Sand <£ denotes lexicographic ordering of a 

matrix. 

We will define the matrix B as 

B 

B a 

I 

A : 0 s I 
--------f-o--

I 
D I I 

I 
I 

where D contains as its first column a vector of very large positive 

numbers and I is 
-1 

Since v = AS eS' 

-1 
AaAs [e,B]S 

and also 

an identity matrix. Then B has clearly full rank. 

we have 

[e,B]a = [ea' D, I]. 

By the construction of D we see that 

[Aav, Aa' 0] <£ [ea' D, I]. 

Therefore G(B,€,S) is a simplex of T'(B,€). 
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