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PROBLEM, 

PATHS 

Abstract A target x is a point on the real line given by the value of a random variable X, which has some 

distribution function F. A searcher starts looking for x from some point on the line, using a continuous path. He 

makes for x with un upper bound on his speed till he fmds it. The target being sought for might be in either direc· 

tion from the starting point, so the searcher has in general to retrace his steps many times before he attains his 

goal. It is desired to search in an optimal manner so as to minimize the expected cost of the search. All previous 

papers treated this problem using the origin as the starting point of the search. They have been proved that one can 

minimize the expected cost if the underlying distribution satisfies certain conditions. In this paper, the problem will 

be treated in the "General Case", which means that the sear.;h may start from any point on the real line. Conditions 

under which we can minimize the expected cost in the general case will be given. 

1. Introduction 

The linear search problem concerns with searching for a hidden target x 

on the real line R. The position of the target is given by the value of a 

random variable X, which has a known or unknown distribution function F. 

A searcher starts looking for the target at some point aO<!aO!<oo). He moves 

continuously along the line in both directions of the starting point aO until 

the target is located. The searcher would change his direction, at suitable 

points, many times before attaining his goal. Thus we might consider the path 

length as the cost of the search. It is the aim of the searcher to minimize 

this expected cost. Authors in [5], [6], [7]. [8], [10], [11] and [13] have 

considered only sequential search paths (S.S.p) with aO = O. We shall first 

give a review of their results: 
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400 z. T. Balkhi 

Define c = inf{t:F(t»O}, d = sup{t:F(t)<l}, 

A (S.S.P), then can be represented as a sequence a 

either 

(1.1) 

with a2i-
1 

+ c and a2i + d, or 

(1. 2) 

{a.; i~O} such that, 
~ 

with a2i -
1 

+ d and a2i + c. When all inequalities are strict, the search path 

is said to be strong, otherwise it is said to be weak. Denote by 00 the class 

of all such search paths, and by D(a,x) the total distance travelled from the 

starting point to x, using the search path a = {a.; i~O}. Then D(a,x) is a 
~ 

random variable and we denote by D(a,F) its expected value. As a notational 

convenience let a_
1 

= 0, then 

(1.3) 
n-l 

D(a,x) = Ixl + 2 I 
i=1 

la ·1 
~ 

Where x lies between an_
2 

and an' n = 1,2,3, •..• As further notational 

t t 
convenience we shall use f 2dF (t) in place of If 2dF (t) I regardless of the 

t1 tl 
order of t1 and t

2
• The expected cost is then given by 

(1 .4) 

where 

(1.5) 

(1. 6) 

d 
A(F) f Ixl dF(x) is the first absolute moment of F. 

c 

IX) n-1 a 
t.O(a,F) 2 I I lail f n dF 

n=1 i=1 

IX) a 
la I (1-! n dF) 

n 2 I 
n=l 

(see, [1], [5], [10] and [11J). Thus, our aim is to minimize D(a,F) (or 

equivalently t.O(a,F) for fixed F). Define 

(1. 7) 

then the main problem is to find a search path a i~O} from class QO 
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The Generalized Linear Search Problem 

such that D(a,F) = mOo If such a search path exists, we call it an optimal 

search path (O.S.P). 

The existence of optimal search paths in class QO has been established 

by many authors assuming that the underlying distribution satisfies certain 

conditions. Franck (10] proved the following result (see also (1]). 

Theorem 1.1: There exists a search path from class QO with finite 

expected cost if and only if A(F)<oo. 

Thus, whenever A(F)<oo, then the infimum mO<oo is guaranteed. However, some 

more conditions are to be imposed on F in order to attain such infimum. 

Franck (10] imposed the following condition: 

401 

"There exists a nondegenerate interval [a,b] with O£[a,b] and a constant k>O 

such that, for distinct cl' cZ£[a,b] we have 

(1.8) 

Beck [5], however, imposed the condition that: 

"At leas one of 

F-(O) lim 
F(t) - F(O) 

t-+O- t 
(1.9) 

F+(O) l' F(t) - F(O) 
lom 

t t-+O+ 

is finite" 

Both Franck [10] and Beck [5] proved the following theorem. 

Theorem 1.2: If A(F)<oo, then there exists an (O.S.P) from class QO if 

and only if (1.9) «1.8) in [10]) holds. 

Fristedt and Heath [11] adopted more general approach. Under some assumptions 

they proved the following two theorems. 

Theorem 1.3: If A(F)<oo, then there exists an (O.S.P) which loS sequential 

and has a constant speed equals 1. 

Theorem 1.4: If A(F)<oo then all optimal search paths are sequential. 

Thus, in view of the last two theorems, it is reasonable to restrict attention 

to sequential search paths for which the searcher's speed is equal to 1. The 

expected cost, then. is either the expeeted path length D(a,F), or the expected 

searching time T(a,F) i.e.: 

(*) Franck's condition and Beck's condition are not equivalent. One can 

easily show that (1.8) implies (1.9) but not conversely. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



402 Z. T. Balkhi 

(1.10) D(a,F) = T(a,F) = A(F) + ~O(a,F) 

It is intuitively clear that one might shorten the travelled distance, 

hence the expected cost, if he starts the search from some point on the real 

line, other than the origin (see Balkhi [1], Table - 1 through Table - 6). 

A new kind of search path in which the search may start from any point on 

the line has been shown by Balkhi [1]. The research of [1], in fact, has 

focussed on building the mathematical model for the expected cost for all 

possible cases of search, and on finding an algorithm for constructing minimal 

search paths at each possible case. A numerical solution, then has been found 

by means of computers considering, without proofs, that, there exists an 

optimal search path at each possible case. These numerical results. then con

firm the claim that: These new kinds of search paths give less expected cost 

than the earlier one. 

* * * 
In this paper, we shall use techniques and arguments, similar to those 

used by Beck [5], to establish the existence of optimal search paths in the 

"General Case". 

Let us first exclude some trivial cases. If a O = c (or a O = d), the only 

reasonable way to search, then, is to start from the point c (or d) moving to 

the right (or to the left) until the target is found. Using the above assump

tions and all other assumptions mentioned in Beck [5], then, there are only' 

five classes of possible search paths, one of which is class QO' The other 

four will be shown in section 2. Sufficient conditions under which there 

exists an (O.S.p) in each class will be developed in section 3. Some applica

tions of linear search problems can be found in section 4. 

2. Search Paths in the General Case 

In each of the following four cases we have two dual search paths depend

ing on whether aO~O or aO~O and for each search path, either a2i _1 + C a2i + d, 

or vice versa. 

Case (1) This case consists of all search paths such that, either 

(2.1) 

or 

(2.2) 
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The Generalized Linear Search Problem 403 

Case (2): In this case we have either 

(2.3) 

or 

(2.4) 

Case (3): Let J be a "finite and ll.onempty set" of odd numbers. For iEJ, 

we either take 

(2.5) •• • ::;a. 4::;a ·+2::;0::;a .::;a. 2::;···::;a 1::;aO::;a 2::.···::;a· l::;a. 1::;'" 
]+] ]]- ]- ]+ 

or 

(2.6) 

Case (4): We consider, in this case, J to be a "finite and nonempty set" 

of even numbers. For jEJ we either have 

(2.7) 

or 

(2.8) ••• ~a. 3!.a. 1!.a· 1!.···!.a 1!.aO!.a 2!.···!.a. 2!.a.!.0!.a. 2!.a. 4!. .. • 
]+ ]+ ]- ]- ] ]+ ]+ 

Designate by Q
k 

the class of all search paths in case (k); k=0,1,2,3 and 4 

(The earlier case mentioned in section 1 will. therefore, be referred as case 

(0». 

Theorem 2.': If a = {ai" i~O} E Qk; k=O,l,2,3, and 4, then the expected 

cost of the search is given by 

(2.9) 

where: 

(2.10) 

(2.11) t.
1

(a,F) 

(2.12) 

k 0,1,2,3 and 4 

00 

2 L 
i=l 

!a.!{l-sign(a.)[F(a.)-F(a. 1)]} 
~ ~ ~ ~-

a
O 

00 

-2!f !xldF(x)1 + laol + 2 I 
o i=l 

la ·Ix 
~ 

{l-sign(a.)[F(a.)-F(a. 1)]} 
~ ~ ~-

a 00 

-21f °lx!dF(x)1 - lao! + 2 L 
o i=1 

la ·Ix 
~ 

{1-sign(a.) [F(a.)-F(a. 1)]} 
~ ~ ~-
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(2.13) 

(2.14) 

Z. T. Balkhi 

aa 
L1 3(a,F) = -21f IxldF(x)1 + laa l - 2I a .I{1+sign(aa)[F(a.)-F(aa»)} + 

a J J 

(j-1)/2 
2 I (la2il-la2i_l 1){l+sign(aa) [F(a 1)-F(aa)]} + 

i=l 

2 L I a ·1 {l-sign(a .) [F(a . )-F(a. 1»)} 
i=j+l ~ ~ ~ ~-

aa 
L1 4(a,F) = -21f IxldF(X)1 - laa l - 2sign(aa)· la·1 [F(a .)-F(aO)] + o J J 

j/2 
2i~1 (la2i_ll-la2il){1-sign(aO)[F(al)-F(aO)]} + 

2 L la.IU-sign(a.)[F(a.)-F(a·_ 1)]} 
i=j+l ~ ~ ~ ~ 

Proof: Let a = {ai • i~O}EQk. The proof for k = 0 is apparent, because 

we need only to discuss the signs of ai • i~l (recall that aO=O for this case). 

We shall give the proof, in detail, only in one case, say k=3. The proof 

for the other cases can easily be given in the same way. The only possible 

locations of x, for k=3. are (see Figure - 1). 

. .~ •••• ea. a. 
J+4 J+2 

•• ••• • a e ........ ... 
j+3 

Figure - 1 

(10) x lies between a
n

_2 and an for n~j+3, then 

(2 0
) x lies between an_2 and an for n = 2.4, .••• j+l, then 

(3°) x lies between an_2 and an for n = 3,S, ... ,j, then 
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x is between 0 and a., then 
J 

x is between 0 and a. Z' then 
J+ 

(j-1) /Z 
D3 (a,x) = Ixl + laol + Z L (laz ·l-!az ·_ 11) - zla·1 + Zla. 11 

i=1 ~ ~ ] ]+ 

405 

It is to be noted that the search covers the whole interval [c,d]. Therefore, 

we find: 
00 ai a j +1 a j a 1 

T
3

(a,F) = D
3

(a,F) = {Iaol(. ~ f dF(x) + f dF(x) + f dF(x) + S dF(x) + 
~=J+3 a

i
_

Z 
a

o 
a

1 
ao 

a j a j +z a i a j +1 
f dF(x) + f dF(x»} + { L f IxldF(x) + f IxldF(X) + 
o 0 i=j+3 a

i
_

Z 
a o 

a j +Z a j a 1 a
j 

J IxldF(X) - f IxldF(X) - f IxldF(X) - J IxldF(X)} + 
o a

1 
a o 0 

a j aj +2 ai a j + 1 
f dF(x) + J dF(x»} + {-Zla .I( 1. J dF(x) + J dF(x) + 
o 0 J i=j+3 a. 

~-Z 

a j a j +Z a j a j +Z 
f dF(x) + S dF(x»} + {Zla '+1 I(f dF(x) + f dF(x»} + 
o 0 J 0 0 

n-1 
a 

n d d 

{Z L L 
n=j+3 i=j+1 

la·1 f dF(x)} 
~ a

n
_

Z 

{Iaol f dF(x)} + {f IxldF(X) -
c c 

ao (j-1 ) /Z a 1 
Zf IxldF(X)}+{Z L (laZil-laZi_11)(1-f dF(x»} + 
o i=1 a

O 
a j a j +Z 

{-Zla·1 (1-f dF(x»} + {Zla
J
·+1 1 f dF(x)} + 

] a o a j 
n an+1 

{Z L L 
n=j+Z i=j+1 

la.1 f dF(x)} 
~ a

n
_

1 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



406 z. T. Balkhi 

an+1 
But the sum of the last two terms 2 lai I J dF(x) 

n=j+l i=j+l 

a j +2 
21 a

j +1 I J dF(x) 
a. 

] 

a
n

_
1 

a j +3 
+ 2( la. 11 + 

J+ 
la. 2 1) J dF(x) + 

J+ 
a j +1 

a j +4 
la. 3 1) J dF(x) + 

J+ 
a j +2 

a j +5 
la. 4 1) J dF(x) + ••• 

J+ 
a j +3 

a j +2 a j +3 a j +4 
21 a. 1 I ( J dF(x) + J dF(x) + J dF(x) + ••• ) + 

J+ a. aj +1 aj +2 ] 

aj +3 aj +4 a j +5 
2(la· 21( J dF(x) + J dF(x) + J dF(x) + •• - ) + ••• 

J+ 
a j +1 a j +2 aj +3 

a j +1 
21 a. 1 I (1 - J dF(x) ) 

J+ 

a j +2 
+ 21a. 2 1 (t - J dF(x» 

J+ 
+ ••• 

2 I 
i=j+l 

a. 
] 

a. 
~ 

la.I(t - J dF(x» 
~ a

i
_

1 

2 L la
i

l{l - sign(a
i

) [F(a
i

) - F(a
i

_
1
)]} 

i=j+l 

d 
Since J dF(x) 

c 
1 and aO' a

j 
have the same sign, the proof is complete. 

Q.E.D. 

We have assumed that J is a finite and nonempty set of odd (even) numbers 

in case (3) (case (4». Owing to the nature of our. assumptions, the number of 

elements in J is not known. The following interesting result, however. will 

give us a high restriction on the number of elements that might belong to J. 

But let us first give the following definition. 
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The Generalized Lim'.tlr Search Problem 407 

Definition 2.2: Let 

(2.15) 

* * * * If a {ai' i~O}EQk such that ~ = Dk(a ,F) then a is said to be an optimal 

search path from class Qk" k=O,1,2,3 and 4. 

Theorem 2.3: Let Qk be a subclass of Q
k 

(k=3 or 4) for which J consists 

of only one element. If a* is an optimal search path from class Ok' then 

* a E Ok. 

Proof: If J consists of, at least, two elements, then for any search 

path a = {a
i

; i?OJEQk (k=3 or 4). the search path b = {bi i i?O}EQk defined by 

b
O 

= ao' b
i 

= a
i

+
2

, i?l has less expected cost than a = {a
i

; i~O}. To see 

this, let aO ? 0 (the other case is dual), Ok = ~k(a,F) - ~k(b,F) (k=3 or 4). 

If k=3, then by assumptions of the theorem and (2.13), elementary calculations 

yield: 

(j-3)/2 °3 = 2(!a2 !-!a 1 !){1+F(a 1)-F(ao)}+2 I (!b2i!-!b2i_l!) [F(a
1
)-F(b1)] 

i=l 

But, by hypothesis b1sa1, !allsla21 and j~3; hence 03~O. If k=4, then by 

(2.14) and assumptions of the theorem we similarly find; 

(j-2)/2 
04 = 2(lall-la21){1+F(aO)-F(al)}+2 L (lb2i _1 1 - Ib2il)X[F(bl)-F(al)] 

i=l 

Since, by hypotheses bl~al' la 11 ? la 2 1 and j?4, so 04?O. If aEQ3 and j=3 

we are through. If, however, j>3 then for a search path C = {ci' i?O}EQ3 for 

which cO=bO=aO' ci=bi+2=ai+4' i~l we obl:ain 03 = ~3(b,F)-~3(c,F) ~ O. If we 

continue in the same manner, we shall eventually reach to a search path which 

satisfies the desired conclusion, because J is a finite set. Similar argu-

ment holds for aEQ4 and j>4. Q.E.D. 

The conclusions of theorem 2.3 imply that all optimal search paths from 

class Q
k 

are contained in class Qk (k=3 or 4) where Q3 consists of all search 

paths such that: 

either 

(2.16) 

or 

(2.17) 

And Q4 consists of all search paths such that 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



408 Z. T. Balkhi 

either 

(2.18) 

or 

(2.19) 

We shall, therefore, assume, from now on, that Ok is originally of the type 

Ok i.e Ok = Ok" Thus we obtain, 

(2.20) 

(2.21 ) 

a O 
1I3 (a,F) = -21 S IxldF(X) I +Iao 1-2 1a 1 I {I +sign(aO) [F(a 1 )-F(aO)]} 

o 

+ 2 I la.I{I-sign(a.)[F(a.)-F(a· 1)]} 
i=2 ~ ~ ~ ~-

a o 
1I 4(a,F) = -21f !x!dF(x)I-laol+2Iall{l-sign(aO)[F(al)-F(aO)]} 

o 

[F(a.)-F(a. I)]} 
~ ~-

Remark 2.4: lI
k

(a,F) can be written in a common formula. Indeed, for 

k=I,2: 

(2.22) 

a o 
lI

k
(a,F) = -21f IxldF(X) - (-I)kl ao l + 2 I 

o i=1 
la.l{l-sign(a.)x 

~ ~ 

[F(a.)-F(a. I)]} 
~ ~-

On the other hand, if we add 21a11-21a1 I to the right hand side of (2.20) and 

21a21-21a21 to the right hand side of (2.21), then for k=3,4 we obtain: 

(2.23) 
a O 00 

lI
k

(a,F) = -21f IxldF(X)I-(-I)klaol-4Iak_21+2 I la.I{I-sign(a.)x 
o i=1 ~ ~ 

[F(a.)-F(a. I)]} 
~ ~-

One can easily see from (2.22) and (2.23) that class 00 might be embedded in 

the other classes by taking aO = 0, because then a
k

_
2 

= 0 for k = 3,4. 

Theorem 2.5: If a = {ai ; i~O} is an (O.S.P.) from class Ok' then 

lai +2 1 > lail for all i ~ k-l; k = 0,1,2,3 & 4. 
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The Generalized Linear Search Problem 409 

Proof: Suppose that the conclusion of the theorem fails, that is 

lam+2 1 = laml for some m ~ k-l. Define the search path b = {bi; i~O}EQk by: 

bi:=a
i 

for 0~~-1; b
i
=a

i
+

2 
for i~, then for k = 0,1,2,3 & 4 and m~l; (2.22) 

and (2.23) give: 

Ok ~k(a,F) - ~k(b,F) 

21a l{l-sign(a )[F(a )-F(a ,)1} + 21a , 1{l-sign(a ,)x m m m m- m+ m+ 

[F(a 1 )-F(a )] + 21 a 21 {l-sign(a 2) [F(a 2)-F(a +1)]} m+ m m+ m+ m+ m 

-21 a 21 {l-sign(a 2) [F(a 2)-F'(a ,)] }. m+ m+ m+ m-

Since sign(a ) = sign(a 2)' sign(a 1) =, -sign(a ) & la 1=la 2 1, so m m+ m+ m m m+ 

Ok = 21a l{l-sign(a ) [F(a )-F(a ,)J} + 21a , 1{l-sign(a)x 
m m m m+ m+ m 

[F(a )-F(a I)]} 
m m+ 

2(la 1+la , 1){l-sign(a ) [F(a )-F(a ,)]} 
m m+ m m m+ 

Unless la I = la 1 I = O. or a = e, a 1 = d or vice versa the differences 
m m+ m m+ 

0k>O. But if a = e, a 1 = d or vice versa, then a , a 1 are the last 
m ~ m ~ 

entries of the search path {a
i

; i~O} and no need to compare laml with lam+21; 

because, then, a 2 does not exis t. On the other hand, the condition I a I = 
m+ m 

lam+1 1 = 0 can not hold when m:!l and k:!l" because either laml ~ laol > 0 or 

I a
m

+
1 
I :! I a O I > 0 (Recall the exclusion of the case I aO I = 0 for k=l, 2,3 & 4 

and the fact that m~l for k=2, m~2 for k,.3, m~3 for k=4). It remains to show 

that, such condition can not occur when m=O for k=l and when m=-l,O for k=O. 

To see that la 2 1 > laol for k=l. We asslxme contrary to the conclusion that 

la2 1 = lao I· Define b = {b i ; i~O}EQ" bl) = a O and bi = ai +2 for i~l then 

because la 2 1 ~ laol > 0 and a" a O are not the last entries as indicated above. 

The fact that la , 1 > la_1 ~ = 0 and la2 1> laol = 0 has been shown by Beck [5] 

(see [5] theorem 6). Thus ,\>0 for all,lOssibilities, which contradict our 

assumption that a = {a;; i~O} is an (O.S.P.) from class Qk' Q D • .E •. 

Remark 2.6: We have, so far, proved that if a = {a.; i~O} is an (a.s.p.) 
~ 

from class Q
k 

then la. 21 > la.1 for all i~-l, k=O.l,2,3 & 4. Therefore, one 
~+ ~ 

can restrict his attention to such kind of search paths. But one should keep 

in mind that la
i

+
2

1 ~ lail for i<k-l when k=l,2,3 & 4. The justifications for 
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410 Z. T. Balkhi 

this might be, for instance, when k=3 and x is between 0 and a1, then D3(a,x) 

= -lxl+laol-2Ial 1+2I a21. Thus for this special location of x, the reduction 

in la 2 1 reduces the travelled distance, 

fies the possibility that la21 = laol. 
D3 (a,x) which justifies taking la11>0. 

hence the expected cost, which justi

But the reduction in la 1 I increases 

Thus, in the special cases when the 

target x lies between ak _
1 

and ak ; k=1,2,3 & 4, it is reasonable to consider 

weak inequalities, between la. 21 and la.1 for i<k-l, rather than strong ones . 
.l+ .l 

Therefore, in the "General case". the term "Strong search pathll would mean: 

a search path {ai' i~O} for which la i +21 > lail for i~k-l; k=O,l,2,3 & 4. 

Otherwise the search path is said to be weak. 

3. Existence of Optimal Search Paths in the General Case 

Besides the condition A(F)<oo, authors in [5], [10] and [llJ assumed 

certain conditions (necessary and sufficient), on the underlying distribution, 

* * under which, there exists a search path a {ai ; i~O} from class 00 such 

* that DO(a ,F) = mOo The techniques of those authors were to choose a search 

path a(n) = {a1n)}~00 such that lim Do(a(n),F) = mO (This choice is possible 
n+oo 

when mO<oo, which is equivalent to A(F)<oo, by theorem 1.1). Then they proved 

that, for each i, {a~n)} is bounded in n, which precludes the possibility that 
(n) .l 

a
i 

~ ± 00. The last result, then allows the possibility of getting a search 
(n) (n) * * path {a. } from class 00 such that lim a. = a .• Unless a. ~ 0 as a func-
.l n+oo.l.l.l 

* * * tion 0; i, t~en it can be shown that a = {ai}~OO and that DO(a .F) = mOo 

Thus a = {a.} is the desired search path. The heart of the work of Beck [5] 
.l 

and Franck [10J were lemma 3 in [5J and lemma 1 in [10]. in which they give 

* the necessary and sufficient conditions on F so that DO(a ,F) = mO (condition 

(1.9) in [5] and (1.8) in [10]). 
Therefore, we shall, for the General Case, reprove, in detail, lemmas 

similar to lemma 3 of Beck [5] giving thus a modified sufficient conditions 

I for the existence of an optimal search path in each of classes Ok' The rest 

~ the proofs, for the existence of an (O.S.p) in each Ok' are not essentially 

different from those of [5]. However, we shall include these proofs to show 

the modifications which suit the General Case. 

Theorem 3.1: There exists a search path from class Ok (k=O,l,2,3 & 4) 

with finite expected cost if and only if A(F)<oo. 

Proof: Suppose, first that a = {a i ; i~O}~Ok such that Dk(a,F)<oo. 
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It can be easily seen that for k=l,2.3 & 4 (Theorem 1.1 has already dealt with 

the case k=O), we either have Ixl $ Dk(a,x) or Ixl $ laol or Ixl $ Dk(a,x)+ 

laol. For simplicity we assume Ixl $ D(a,x)+laol, so we obtain 

d d d 

A(F) J Ixl dF(x) $ J Dk(a,x)dF(X) t J laol dF(x) 
e e e 

Conversely, let A(F)<oo. Assume e = -00, d = +00 (the proof when one of lel, Idl 

is finite and the other is infinity can be done in a similar way, see for 

example, Balkhi [1] ch.l, Theorem 1). If we take the search path a = {a.; 
~ 

i~Oh:Qk' so that ai (_2)i -15 for i ~ k-l (k=l,2,3 & 4) where 15>0 we have 

then laol $ la 1 1 215 for k=2; la 1 1 $ laol $ la 2 1 = 215 for k=3 and la 2 1 $ 

laol $ la 1 I $ la3 1 215 for k=4. And then one can easily verify that 

0.0 Dk(a,x) $ 91xl + (k-1)·c. k=0,1,2,3 & 4. 

This gives: 

Q.E.D. 

The preceding theorem ensures that A(F)<oo is equivalent to mk < 00 for k=0,1,2. 

3 & 4. 

Lemma 3.2: If F+(O) < 00, then we can find a constant M>O such that for 

any search path a = {ai • i~O} from class Q 1 with a2>aO>0;::a 1 and la 2 1 + la3 1 

$ M, the search path b = {bi • i;::O} defined by bO = aO; bi ai +2 for i~l, is 

a search path from class Q
1 

for which 

D1(b,F) ~ D
1
(a,F). 

Proof: By the hypotheses of the lemna, it is clear that b£Ql • 

Elementary calculations, then yield: 

(3.2) 

Cl = tl 1(a,F) -tl 1(b,F) = 2(la2I+1all){1-[F(aO)-F(al)]} 

- 2(la21+la31)[F(a2)-F(aO)]' 

> "', so we can find M>O, such that: 

(1°) F(aO) - F(-M) < (1/2) pr(x<aO) 

(2°) (F(t) - F(O»/t < 1/2M < '" V O<t<M 

Now: 0 $ la2 1 $ la 2 1 + la 1 I $ la2 1 + la3 1 $ M 

o $ la 1 I $ la2 1 + la 1 I $ M implies a 1 > -M which implies that 
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By (1°): 1/2 < l-[F(aO)-F(-M)] s: 1-[F(aO)-F(a1)]. 

And by (2°): (F(a
2

) - F(a
O
»/a2 ~ (F(a 2)-F(0»/a

2 
< 1/2M which implies that 

F(a 2) - F(aO) < la
2
1 ·1/2M. 

Hence: 

o 

which in turn implies our conclusion. Q.E.D. 

Lemma 3.3: If F-(O) < 00 then we can find a constant M>O such that for 

any search path a = {a i ; i:::O} from class Q1 with a2<aO<0~al and la 21 + la 31 
s: M the search path b = {bi ; i2:0} defined by b O = aO' bi = ai +2 ; i~' H a 

search path from class Q
1 

for which 

Proof: If we take M to satisfy 

(3.2) , 
(1°) F(M) - F(aO) < (1/2) pr(x>aO) 

(2°) (F(t) - F(O»/t < 1/2M < 00 ~ -M<t<O 

Then the rest of the proof is quite similar to that of the previous lemma. 

Q.E.D. 

Lemma 3.4: If F-(O) < 00 and F+(O) < 00, then we can find a constant M>O 

such that for any search path from class Qk; k=2,3,4 with lak+1 I + lak+2 1 ~ M, 

the search path b = {bi ; i~O} defined by bi = ai for Os:i<k-l and bi = ai +2 
for i~k-l is a search path from class Qk for which 

Proof: Let a
O 

> 0, the other case is dual, and let ok = ~k(a,F) 
~k(b,F). By the hypothesis of the lemma, simple calculations yield: 

02 = 2(lall+1a21){1-[F(al)-F(aO)]} - 2(la 2 I+1 a3 1)[F(aO) - F(a 2)] 

2I a
1 1{1-[F(a 1)-F(aO)]} - 2(la21+la31)[F(aO)-F(0)] 

+ 2I a
2 1{'-[F(a1)-F(aO)]} - 2(la21+la31)[F(0)-F(a2)] 

03 2I a2 1{1-[F(a2)-F(a 1)]} - 21a 41 [F(a,) - F(O)] 

+ 2I a3 1{1-[F(a2)-F(a3)]} - 21a 41 [F(O) - F(a 3)] 
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and 

04 2I a3 1{1-[F(a3)-F(a 4)]} - 2I a s l[F(a2)-F(0)] 

+ 2I a 4 1{1-[F(a3)-F(a4)]} - 21 as l [F(0)-F(a 4 )] 

Since both F-(O) and F+(O) are finite, so we can find M>O so that: 

(1 ° ) 
(3.3) 

(2°) (F(t) - F(O»/t < 1/2M < 00, V o<ltl<M 

Now: for k=2 we have 0<a 1<M, so F(a 1) S F(M), which implies from (1°): 

By (2°) we have 

F(a 1)-F(0) J..- > ____ _ 
2M 

On the other hand, since la 2 1+la3 1 S la]I+la4 1 So M, 0;::'a 2>-M so from (2°) we 

find 

1 
-> 
2M a 

Thus 

413 

By a suitable choice of M in (3.3), and similar arguments to those of k=2 we 

can easily verify that 03>0 and 04>0. Q.E.D. 

Remark 3.5: It is to be noted that the condition lak+1 1+lak+2isM and 

the two conditoins in (3.3) must be consistent. In fact, the inequality 

lak+ll+lak+215M gives us a wide choice of M, but (1°) gives us an upper bound 

of this choice. On the other hand (1°) and (2°) are consistent since if we 

choose M to satisfy (2°) then for all O<t<M we have 

1/2M > F(t)-F(O) > F(t)-F(O) ~ F(t) - F(O) < 1/2 
t M 

which is consistent with (1°). Similar argument can be done for 0 > t > -M. 

Lemma 3.6: Let a = {a i ; i;::'O} be a strong search path from class Ok' 

k=0,1,2,3 and 4, £ > 0, and M = M(F) defined as above. 

(i) If k=O or k=l, F-(O)<oo, then we can find a search path b = {bi; i;::'O} from 

class Ok (k=O or k=l) such that 
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(H) If k=O or k=l, F+(O) < ~, then we can find a search path b = {b.; i~O} 
~ 

from class Qk (k=O or k=1) such that bO = aO for k=l, b
1 

< 0 for k=0, 

Ib2 1 + Ib3 1 > M(F) and Dk(b,F) < Dk(a,F) + £ 

(iii) If k=2,3 or 4, F-(O) < ~ and F+(O) < ~, then we can find a search path 

b = {bi; i~O} from Qk so that Ibk+1 I + Ibk +2 1 > M(F) and Dk(b,F) < Dk(a,F) 

+ £. 

Proof: The proof for k=O has been already shown by Beck [S]. For k=l, 

2,3 & 4 we first show that for any search path a = {a.; i>O} from Qk' there 
~ -

is a search path e = {ei ; i~O}£Qk with Dk(e,F) < Dk(a,F) + E. To see this, we 

define e = {e.; i~O} as 
~ 

and a 7 so that 0 < lesl 

> I a 3 1 by theorem 2. S). 

ei = ai for all i except that eS be taken between a3 
< lasl (Recall that in all cases we have la 7 1 > lasl 

Then by (2.22) and (2.23) we find: 

Ok = Dk(e,F) - Dk(a,F) = 2I e s l{1-sign(es ) [F(eS )-F(a4 )]} 

+ 2Ie61{1-sign(e6)[F(e6)-F(eS)]} - 2I a s l{1-sign(aS)x 

from which we find ok < 2(l a
s l + la 6 1) I F(aS ) - F(eS ) I. The right hand 

side of the last inequality can be made sufficiently small, say less than £>0 

by taking eS sufficientlY near to as. Hence Dk(e,F) < Dk(a,F) + £. 

Now if I e
k

+
1 

I + I e
k

+
2

1 > M we are through. If not we take a new search path 

d = {d
i

; i~O} so that di = ei for Osi<k-l and di = ei +
2 

for i~-l then by the 

previous three lemmas we have 

If Idk +1 I + Idk +2 1 = le
k

+3 1 + lek +4 1 > M we are through. If not, then, since 

M is bounded above, as can be noted from (1°) in (3.2), (3.2)' and (3.3), so 

if we continue the same process, we shall eventually reach to the desired 

search path i.e. 

Dk(b,F) ~ 

and Ibk+ 11 + Ibk+2 1 > M Q.E.D. 
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The result of the last lemma implies that; if a(n) = {a~n); i~O} is a search 

path from class Qk then there is a constant M>O and a search path ben) = 

{b (n) . O} b d (n) . d' h f f h 1 i L~ ase on a as ment10ne 1D t e proo 0 t e emma such that 

I (n) I I (n) I' (n) bk+1 + bk+2 > M. Th1s means that bi can not converge to zero as n+oo • 

Moreover for a search path a(n) = {a~n); i~O}~Qk' it is possible that a~n) + 
L L 

too. This circumstance, however, can not happen when e = -00, d = +00 as will be 

shown in the next lemma. 

Lemma 3.7: If e = -00, d = +00, a = {ai ; i~O}~Qk; k=0,1,2,3 and 4 for 

which Dk(a,F) < 2mk , ther. ai is bounded for each i~O. 

Proof: Let Pk = min{pr(x>lakl), pr(x<-Iakl)}, k=0,1,2,3 and 4, then 

00 
21 ak+1 I'Pk S f 21 ak+2 1 dF(x) ~ f Dk(a,x) dF(x) < 2mk ~ 

-00 _00 

lak +2 1 < mk /Pk+1 = 
pr(x<-b

n
_

1
)}, then 

bk 1 and so forth; if we assume that p = min{pr(x>b 1)' + n n-
la 1 I < mk / p = b. Thus a. is bounded for all i ~ k+1. n+ n n L 

Since for OSi$k, ai 
those values of i. 

lies between ak+1 and ak +2, so ai is also bounded for 

Q.E.D. 

Lemma 3.8: Let M = M(F) defined as before. If a 

that Dk(a,F) < 2mk , lak +1 1 + lak +2 1 > M(F), and e < e 

{ai ; i~O}~Qk such 

< a
O 

< d+ < d, then 
- + 

ai ~ [e , d ] for at most nO values of i, where nO is constant. 

Proof: Let aO>O, p = min{pr(e- < x < a
k

), pr(ak _
1 

< x < d+)}, 

M<lak +1 I + lak+2 1 < lak +3 1 + lak +4 1 < ..• < la 2n_1 I + la 2n l, so for 
+ e < a2n $ aO or a

O 
S a2n < d we have 

d d 

since 

2(n-1)M'p $ f 2(n-1)M'p dF(x) $ f 2[lak +1 \+lak+21+ ..• +\aZn_1 \+\aZn\]dF(X) 
e 

d 

$ f Dk(a,x) dF(x) 
e 

e 

Zm
k 
~ n 

m
k 

< + 1 
p M(F) constant. 

Thus the number of even entries between c and a
k 

(or a
k

_
1 

and d+) is finite. 

A similar result holds for the odd entries. 

between e- and d+ is finite. 

Hence the total number of entries 

Q.E.D. 

Theorem 3.9: Let e = _00, d = +00 and A(F) <00 

(0 - (0)<00, (O.S.p) * * If k=O or 1 , F then there exists an a {ai ; i~O} from 

* * class Qk with a
1

>0 for k=O and aO<O for k=l 

(H) If k=O or 1, F+(O)<oo, then there exists an (0. S.P) * * a {a ; i~O} from 
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* * class Ok with a 1<0 for k=O and aO>O for k=l 

(iii) - + If k=2,3 or 4, F (0)<00 and F (0)<00, then there exists an (O.S.p) from 

class Ok' 

Proof: Since A(F) < 00, so mk < 00 for each k=0.l,2,3 & 4 (Theorem 3.1). 
. (n) (n) 

Therefore, for each k=O,1,2,3 & 4, we can f1nd a search path a = {a, , 
~ 

i~O} from class Ok so that Dk(a(n).F) + mk as n + 00. By lemma 3.6; for each 

k. there is a search path ben) = {b~n); i~O}, based on a(n) in the way 
~ 

mentioned in the proof of lemma 3.6. such that 

(n) where on + 0 as n + 00. By lemma 3.7, b
i 

is bounded in n for each i. So by 

the diagonal method we can find a subsearch path b(nm) = {binm ); i~O}~Ok so 

that b~nm) convergent for each i as m + 00. To avoid notational difficulties 
~ h b(nm) "d 'h ben) I * l' ben) '0 h we assume t at C01nC1 es W1t • Now et a, = 1m , ; ~~ , t en 

it is clear that a* is 

max {I )n) I, I a ~ I} for 
~ 

a search path from class 

i~k, Ic~n)1 = la~n)1 for 
~ ~ 

~ n+oo ~ 

Ok' Assume that Ici
n

) I = 
O~i<k and that c~n) has the 

~ 

Moreover, since b~n) + a~, so a~n) + 
~ ~ ~ 

, (n) h same s1gn as a
i 

t en lc~n)1 ~ la~l. 
~ ~ 

* , , . (n) * ai wh1ch 1mp11es ci + ai . Therefore we can find ~1>0 and n
1 

such that for 

a;l i~O we have la1
n

)-a:1 <~1' V n>n 1• Suppose that x lies between, saya;m' 

a2m+
1

; m~. Since by the above arguments 

I 
(n) I I (n) I . so we have c
i 

S ai + ~1 for all ~~, n>n
1 

and so 

Dk(C(n), x) S Dk(a(n), x) + 4m'~l' V n>n
1

(For instance D
3

(C(n),x) = Ixl + 

2m 2m 
Icci

n
) I - 2Ic~n)1 + 2i~2 Ic;n) I ~ Ixl + laci

n
) I - 2l a in )1 + 2i~1 (lain)1 + ~1) 

* * Assume that a2m < a2m+
1

, then 

* a2m+1 
J Dk(C(n) ,x)dF(x) S 

* a 2m 

* a 
2m+l ( 

J Dk(a n),x)dF(X) 

* a 2m 
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() * (n)' * But ci
n ~ ai implies that Dk(C ,x) ~ Dk(a ,x) for each k and for any loca-

tion of x. Therefore, we find £Z>O and n Z such that 

IJ 

* 
a Zm+l * a 

Zm+l * 
- S Dk(a ,x)dF(X) I 

* a Zm 

Let nO = max(n
1
,nZ)' £ = max(£l'£Z)' then from the above arguments, for n > nO' 

we have 

* a * 
Zm+l * 

S Dk(a ,x)dF(x) 

* 

a Zm+1 . 
< J Dk(C(n) ,x)dF(x)+£ 

* 

* a Zm+l 
~ J Dk(a(n),X)dF(X) 

* a Zm a Zm 

Taking the limits, as n ~ 00, of both sides we find 

* a 
Zm+l * 

S Dk(a ,x)dF(x) 

* a Zm 

* a 

a Zm 

+ £ 

From this we obtain: lim 
~ 

Zm+l * 
S Dk(a ,x)dF(x) 

* 
~ m

k 
which in turn implies 

a Zm 

* On the other hand Dk(a ,F) ;:: mk by the definition of mk • 

* * Hence Dk(a ,F) = mk which means that a is an (O.S.P) from class Qk' 

Q.E.D. 

Theorem 3.10: If C > _00, d = +00 and A(F) < +00, then theorem 3.9 holds. 

Proof: (n) ben) Choose a, as in the preceding theorem. If b~n) is bounded 
~ 

in n for each i, the proof of theorem 3 .. 9 is valid for this theorem. Otherwise, 
11 . f h' h (n). b d d' (n). b d d let m be the sma est ~ or w ~c b

i 
].s un oun e , ~.e., b

i 
~s oun e 

in n for each Od<m but b~n) is unbounded in n for i;::m. As before; for O~i<m 
~ (n.) (n .) 

there is a subsearch path {b. ] ; iLO} such that b. ] converges for each 
(n .) ~ ~ 

but b. ] diverges to +00 for i~ .. For simplicity we assume that 
~ 

i~O} coincides with {b~n); i~O}. 
~ 

(n) that Dk(b ,F) ~ Zmk then we have: 

Assume without loss of generality 
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which implies pr{x < b(n)} 
m-l 

* a . 
.1 

z. T. Balkhi 

+'" J Dk(b(n),X)dF(X) S 2mk 
c 

Since b(n) + '" as n + "', so 

O. Thus b(n) + c. 
m-l 

Assume as before 

Q.E.D. 

Theorem 3.11: If -"'<c<a<d<+'" and A(F)<"', then theorem 3.9 holds. 

Proof: Define a(n). b(n) as in theorem 3.9. If b~n) is bounded in n for 
.1 

each i then the proof of theorem 3.9 can be applied here. Otherwise. we 

define m as the least value of i for which bln
) is unbounded. As in the 

b(n) And if a~ = lim b~n) for previous theorem, one can eas i ly show that m + d. .1 .1 

* * * * * * Osi<m then for the search path a ={aO' a 1, ..• ,d,c} or a ={aO.a 1, .•.• C.d} we 

* have Dk(a ,F) = mk • Q.E.D. 

Remark 3.12: We have indicated in theorem 3.9 that there exists an 

* * * * (a.s.p) from class Q
1 

(QO) with aO < O(a
1

>O) if F-(O)<+oo and with aO>O (a
1

<O) 

if F+(O)<+oo. But we did not refer to the sign of a~ for k=2,3 or 4. However 

we have in general to find an (a.s.p) from all search paths with aO>O (a
1

>O 

for class QO) and an (a.s.p.) from all search paths with aO<O (a
1

<O for class 

QO) and then choose the one with the least expected cost (e.g. see [1], 

table - 3 and table - 6). 

4. Some Applications of Linear Search 

As an application of linear search problems. beck [5] and Beck and Newman 

[7] have considered a man as an automobile searcher for another man who is 

located at same point of a certain road or highway. In addition to finding 

hidden particles on the real line Fristedt and Heath [11] have also applied 

linear search on some game problems. Some other applications of linear search 

may be cited: 

(i) Search for a faulty unit in a large linear system such as: Petrol and 

gas supply lines (e.g. Algerian supply gas to Europe), many service systems 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



The Generalized Linear Search Problem 

like electrical power lines, telephone lines between cities or countries 

and some mining systems. 

(ii) Search for an item of information stored in a memory (e.g. computer 

tapes). 

419 

(iii) Search for an enemy or a mine on a battlefront whose extension may be 

approximated by a straight line. 

(iv) There are many kinds of search in ,yhich devices are used to detect 

targets or objects by finding their directions or azimuths (e.g. radar search). 

In cases when the target is located in a plane around the device, and the 

position of the target is given by the value of a random azimuth measured from 

a fixed azimuth (say zero azimuth). Then, one may start the search from some 

azimuth a O turn to the right (left) and to the left (right) until the target 

be detected. Restricting the support [c"dl of the target's azimuth distribu

tion to the interval [-TT, TTl, we can, then easily show the equivalence between 

this search problem and the linear search problem. An illustration for case 

(1) is given in figure - 2. 

Zero azimuth 

• • • • • • • • -TT •••••• a 4 o 

Figure - 2 
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Moreover. it is to be mentioned that some more interesting applications 

may be found if this problem can be generalized to two or three dimentions. 

Some other types of various search problems. in which the target is located 

in the Euclidean n-space (n~l), or in one of a set of cells. can be found in 

Stone [14] and in many others in the literature. 
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