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We consider a continuous· time search model for a stationary object in which a searcher allocates a 

limited time not only to search the object but also to improve detection rates. The objective is to maximize the 

probability that the searcher detcts the object by a given time T. We show that there is an optimal policy which 

indicates us to improve detection rates until a certain time T 1 «T) and to search the object thereafter. The 

necessary condition for an allocation of time ot be optimal is given. We propose a method for solving the case 

of increasing concave detection rate functions and give a numerical example. Furthermore we derive a necessary 

condition for a policy to be optimal for a modified model in which the objective is to minimize the expected time 

before detection. 

1· Introduction 

Search models for a stationary object, in which detection probabil

ities remain unchanged during the search processes, have been studied well 

enough ([1]~[8]). Nakai [9] treats a search problem in which detection 

probabilities vary according to a given rule but cannot be improved by a 

searcher. In this paper we consider a continuous-time search model for a 

stationary object in which a searcher can improve detection rates as well 

as search for an object during the search process. Though such a search 

phase can be often seen in real life (for example, search for a lost ball 

in a field), it has not been studied yet. 

A stationary object exists in one of n boxes with a distribution P1=<P1' 

••• , P > where p. is the probability that the object is in box i :p.>O 
n ~ ~ 

n 
(i=1,···, n), .?:1 P .=1. At each time a searcher must decide rates of an 

~ - ~ 

allocation of effort not only to search the object but also to improve the 
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detection rate in each box and therefore his policy can be denoted by {t. 

g} where t={t1(t),···, tn(t) It~O} is a search policy and g={g1(t) •••• , 

g (t) It~O } is an improvement policy. The function t.(t)(g.(t)) denotes 
n ~ ~ 

317 

a density of search effort (improvement. effort) allocated in box i at time 

t. We suppose (i) t.(tl~O. g.(tli?;O for any di?;O) and any i (i=1, ••• , n) 
~ ~ n 

and (ii) .L1{t.(tl+g.(tl}=1 for any t. The assumption (i) is reasonable. 
~= ~ ~ 

The assumption (ii) means that the available effort at each time is limi·-

ted to unity (that is, the effort is identified with the time), but this 

assumption does not spoil the generality of the model. Let F. (t) (C. (t) ) 
~ ~ 

be the accumlated search (improvement) effort in box i by time t under the 

policy {t, g}, that is, Fi(tl=fg ti(s)ds and Ci(tl=f~i(s)dS (i=1,···,n). 

Let A. (x) be the detection rate in box i given that the accumlated impro·-
~ 

vement effort in box i is x. Suppose (i) O<A.(X)<OO for any x(~O) and 
~ 

any i and (ii) A. (x) is continuous, nondecreasing and piecewise differen·
~ 

tiable in x for any i. The detection rate A.(X) means that if the object 
~ 

is in box i and is not detected until time t by policy {f,g}, the proba-

bility that it is detected in the time interval Et, t+~tJ is given by 

A.Ec.(tlJt.(tlM+o(M). We want to find the policy maximizing the proba·-
~ ~ ~ 

bility that the object is detected by the given time r(>O). For the pur-

pose of excluding trivial cases, we suppose that there is at least one box 

i such that A.(r»O. Let O.(t) be the conditional probability that the 
~ ~ 

object is not detected by time t by the policy {t, g} given that it is in 

box i. By the definitions of A. (x) and O. (t ), we obtain 
~ ~ 

O.(t+M) = O.(tl{1-A.Ec.(tlJt.(tlM+ (~tl} 
~ ~ ~ ~ ~ 

from which we can derive a differentia:~ equation 

O.'(tl = -A.Ec.(tlJf.(tlO.(tl ; 0.(0)=1. 
~ ~ ~ ~ ~ ~ 

Then we can obtain 

(1) O.(tl = exp{-fot A.Ec.(s)Jt.(s)ds} .. 
~ ~ ~ ~ 

Let OEt: t, gJ be the probability that the object is not detected by time 

t by the policy {t, g}. Therefore 

n n ft (2) OEt: t, gJ = .~1 p.O.(tl = ·~1p·exp{- 0 A.Ec.(s)Jt.(s)ds}. 
~- ~ ~ ~- ~ ~ ~ ~ 

Our problem is to obtain a policy {f, g} minimizing oEr: t, gJ. 

2. The General Case 

In this section we show the existence of the special type of optimal 
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policy and obtain a necessary condition for a policy to be optimal. 

* * Theorem ,. There exists an optimal policy {f , 8 } which indicates 

us to improve detection rates until a certain time T1 (0 :cr'1<T) and to sear

ch the object thereafter, that is, 

(3) fi*(t){;\O and 8/(t){=}0 if tt;}T1 (i=1~ ••• ~ n)· 

Proof: Suppose that the optimal policy {f , g } satisfies the follow

ing property: For some time t1(0<t1<T) and some ~(>O), there are box i and 
* * j such that fi (t»O for any tE[t1-~' t1J and 8. (t»O for any t E[t1' t1+ 

~]. For a sufficiently small E(>O), we define ~ new policy {f, 8} as 

follows: 

{ 

/(t)-E if t1-~~t:it1 

fi(t) = f;(t)+E if t1 ~t:it1+~ 
* f.(t) otherwise 

fk(t) = fk'i) for any t(~O),any k(~i) 

{ 

8!(t)+E if t1-~:it:it1 

8 . ( t) = 8 . ( t ) -E if t 1 :it:it 1 + ~ 
J J 

* g .(t) otherwise 
* J 8

k
(t) = 8

k
(t) for any t(~O), any k(~j). 

That is to say, the new policy {f, 8} is obtained by exchanging the search 

effort E in box i in the time interval [t1-~' t1] for the improvement eff

ort E in box j in [t1' tl+~]~ We will prove that 

(4) Q[T: f, 8] :i Q[T: f , 8 ]. 

If so, the optimality holds even though the improvements in all boxes pre

cede the searches in all boxes. Then the proof is completed. In order to 

prove (4), 

* * (5) Q[T: f , 8 ] - Q[T: f, 8] 

T * * = p.[exp{-IOA.[C. (S)]f. (s)ds} 
2 2 2 2 

T * * + p Jexp{ -IoA.EC. (s)]f. (s)ds} 
J J J J 

Since 1...(.) is nondecreasing, 
2 

IbA. [C. (s) ]f . (s )ds 
2 2 2 

T * * =IOA.[C. (S)]f. (s)ds 
2 2 2 

T * * ~ Io A.[c. (S)]f. (s)ds 
2 2 2 

- eXP{-IbA.[C.(s)]f.(s)dS }] 
2 2 2 

- exp{ -IbA Jc . (s)]f . (s )dS } ] • 
J J J 

and therefore the first terms of the right-hand side of (5) is nonnega-
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tive. On the other hand, noting that 
* / • 

J J J J 

A.[G.(S») 
J J 

[

A .[G. (s) )+E:(s-t
1

+11)A. [G. (s) )+o(E:) 

* / • 
= A.[G. (s»)+e:(t

1
+11-s)A. [G. (s»)+o(E:) 

J J J J 

if t1-11~::it 1 

if t1~::it1+11 

* ~[Gj (s») otherwise, 

we obtain 

* * [G. (s) 1£. (s )ds 
J J 

t 1+11 / * * 
+e:f t (t 1 +ll-s) A. [G. (s) 1£. (s )ds + 0 (e:) 

1 J J J 

T * * ~IOA.[G .(s) 1£ .(s )ds 
J J J 

since A.(·) is nondecreasing. Then the second term of the right-hand si
J 

de of (5) is nonnegative and therefore the relation (4) is proved. 

(q.e.d.) 

* * Corollary 1. The optimal policy {f , g } mentioned in Theorem 1 de-
* * pends on values of F. (T) and G. (T) (;1=1,···, n), but is independent of 

~ ~ 
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the forms of the allocation functions fi*(t) and gi*(t) (i=1,···,nj O::it::iT) 

, that is , the order of the allocation is arbitrary as long as the accu-
* .* accumulated total efforts F. (t) and G. (T) in each box are optimal. 

~ ~ 

Proof: If we put 

T1 * * 
10 gi(t)dt = Gi and IT f. (t)dt = F~ (i=1,·.·, n), 

T ~ ~ 

* 1 * * * then from (3) we obtain F. (T) = F. , G. (T) = G. U=1,"',n) and 
* * ~ ~;l ~ 

A.[G. (t») = A.(G. ) for any t E [T
1

,T) and any i. 
~ ~ ~ ~ 

Therefore we obtain 

Q[T : 

which is 
* and G. 

~ 

* * n * * f,8 ] = E Piexp {-A.(G. )F. } 
i=1 ~ ~ ~ 

* independent of the forms of f. 
~ 

(i=1,···,n) are fixed. 

* * and g. (i=1,···,n) as long as F. 
~ ~ 

(q.e.d. ) 

Hereafter we restrict our attention to the type of policy mentioned 

in Theorem 1, and call the process of the effort allocation until time T1 

by the first stage and the process thereafter by the second stage. In the 

first stage we concentrate in the improvement of detection rates and in 

the second stage we concentrate in the search for the object. Noting Co-
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rollary 1, a policy can be denoted by {F,G} 

G,(F,) is the accumlated improvement (~earch) 
~ ~ 

{F1 , ••• ,F
n

;G1, ••• ,G
n

} where 

effort in box i in the first 

(second) stage. That is to say, 

F,= F,(T) = ·foT f,(s)ds and G,= G,(d=f~g,(S)dS (i=1,···n)· 
l ~ ~ ~ ~ IJO~ 

Prof. Sakaguchi of Osaka University showed the following formulation of 

the model in the discussion with the author. When an improvement policy G 

is used, at the start of the second stage we face the classical detection 

search problem with the new detection rates A,(G,) (i=1, •• ·n) and the to-
1. 1. n 

tal search effort T - L: G,. Charnes and Cooper [2] considers the follow-
i=1 1. 

ing classical search problem :The prior distribution of the object is p=< 

P1'···'Pn>. Associated with box i(=1 ,···,n) is the exponential detection 

function with rate A • The objective is to maximize the probability that 
i 

the object is detected by the total search effort T. 

Theorem 2. (Charnes and Cooper ) The solution of the above detecti

on search problem is given as follows: Without loss of generality, we can 

suppose that 

P1 A1 ;;; p2A2~····~Pn\· 
Define 

i -1 
T = L: A log[p ,A,/(p,A,)] (i=1,···,n; TO= 0, T +1 = 00 ) 

i j=1 j J J 1. 1. n 

and hence we can obtain TO< T1~ T2~ ••• ~ Tn < Tn+1· 
If Tk < r ~ T

kt1
, then the optimal allocation of search effort is 

Fi \- Uki (i=1,···,k) ; = 0 (i=k+ 1,···,n) 
where 

k -1 k 1 
Ukl.,=(T - L: A, log [p,A,/(p,A,)]/ t A -

j=1 J J J 1. 1. j=1 j 

The detection probability under the optimal search policy is given by 

* k 
p [Ti A1'···' An] =' L: p, [1- exp(-uki )]· 

j=1 1. 

Therefore our problem in the first stage is to solve the allocation pro

blem 

* n max 
P [T - L: G, i A1 (G1 ), ... , A (G )] ~( ) 

i=1 1. n n G1'····,Gn • 
But the set of the searched boxes in the second stage varies according to 

the values of G,(i=1,.·., n) and hence it is very difficult to obtain the 
1. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Search with Improvement.! of Detection Rates 321 

* optimal improvement policy G by this method. Then we treat the allocati-

on problems in both stages simultaneously. 

* * Theorem 3. A necesssary condition for a policy {F , G } to be opti-

mal is given as fllows : There exists a positive constant U, which depends 

on p., A.(·) (i=1,···,n) and T but is indepedent of i, such that 

~ ~ * * * {=) l·f F~*.{>=}O (6) p.A.(G.)exp[-A.(G.)F.] U 
~~~ ~~~ ~ 

(7) /** **{-l p.A.(G.)F.exp[-A.(G.)F.] U 
~~~~ ~~~ ~ 

Proof: The problem becomes a nonlinear programming: 

Q[T: F,G] 
n min 
Lp. exp[-A. (G.)F.] ------+- {F,G} 

i=1 ~ ~ ~ ~ 

subject to 
n 
L (F. + Gi ) = T j F., G. ~ 0 (i=1, ••• , n). 

i=1 ~ ~ ~ 

For a multiplier U, the Lagrangian is given by 
n n 

L(F, G: U) = - Lp.exp[-A.(G.)F.] + U{T- L (F.+G.)}. 
i =1 ~ ~ ~ ~ i =1 ~ ~ 

By the Kuhn-Tucker theorem, we can obtain the following relations for an 
* * optimal solution (F , G , U): 

(8) aaL
F 
I * * = P.A.(G.*) exp[-A.(G *)F.*] - U ~ 0 

i (F , G , U) ~ ~ ~ l i ~ 
for any i 

(9) aaL
G 

I * * = pJ/; (G; *)F. * exp[-A. (G *)F *] - U :5 0 for any i 
i (F , G , U) ......... ~ l i i 

n * 
T - L (F. * + G. ) o 

i=1 ~ ~ 

(10) n * * * * L F. {p.A.(G. ) exp[-A.(G. )F. ] - U} 
i=1 ~ ~ ~ ~ ~ ~ ~ 

n * ./ * * + L G. {p.A .(G. )F. 
i=1 ~ ~ ~ ~ ~ 

* * exp[-A.(G. )F. ] - U) 
~ ~ ~ 

o 

( 11) <: 0 for any i. 

From (8), (9) and (11), all terms of the left hand side of (10) are zero 

and hence the relations (6) and (7) can be obtained. By the relation (6), 
* the constant U is positive since there is at least one box with A.(G. »0. 

~ ~ 

(q.e.d. ) 
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RemarK. 

policy is to 

(i) When A.(x) = A.U=1,···, n) for any x (;~O), the optimal 
~ ~ 

search (not to search) in box i with no improvement if p.A. > 
~ ~ 

This agrees w (p.A.~W) where the constant W can be obtained if necessary. 
~ ~ 

with the well-known result. 

(ii) In order to consider the meanings of relations (6) and (7), we 

define peT ; F, Gl by the probability that the object is detected by time 

T under the policy {F, G}, that is, 

n 
peT j F, Gl = 1-Q[T j F, Gl 0: E p. {1- exp[-A.(G.)F.]}. 

i=1 ~ ~ ~ ~ 

Then the relations (6) and (7) become 

dP[T i FI Gl 

I 
* > 

* * {;:o} W if F. {J 0 
dF. (F , G ) ~ 

~ 

and 

dP[T i F, Gl 

I 
* 

> 
* * {~} W if G. {=} 0 

dG. (F , G ) ~ 
~ 

respectively. That is to say, the relation (6) denoted that the optimal 

policy maximized the marginal detection probability with respect to the 

search effort in boxes being allocated the search effort. The meaning of 

the relation (7) is similar. These relations are popular in the search 

theory. 

* * Corollary 2. An optimal policy {F , G } has the following properties 
* * (i) If F. = 0, then G. = 0, that is, a unsearched box should not be 

~ ~ 

improved. (ii) For any i, 
o 

(12 ) F. 
~ 

* 

if G. 
~ 

* if G. 
~ 

* I * * A. (G. ) / A . (G. ) if G. 

* and G. (>0) 
~ 

~ ~ ~ ~ ~ 

is a positive root of an equation 

(13) P.A. (x) exp[-A.
2

(x)/A.' (x)l 
~ ~ ~ ~ 

= U· 

o and p.A.(O) ~ w 
~ ~ 

o and p. A. (0) > u 
~ ~ 

> 0 

* * Proof: (i) If F. = 0 and G.>O for some i, then U 0: 0 by the relation 
~ ~ 

(7) which is contradictory. (ii) From (6) and (7), we know the followings 
* * * * : If F. = G. = 0, then p.A.(O) ~ w. If F. > 0 and G. 0: 0, then p.A.(O) > 
~* ~ 1 ~ ~ ~ * ~ * ~ ~ 

U and F. = A~ (O)log[p.A.(O)/WJ by (6). If G. > 0, then F. > 0 by the 
~ ~ ~~ ~ ~ 

assertion (i) and therefore the equations hold in (6) and (7). Hence we 
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* ~ * /* * 2* /* 
can obtain Fi \(Ci)/\(C

i
) and P/'i(C

i
) exp [-\(c

i
)/\(c

i
»)=)1' Then the 

result is clear. (q.e.d.) 

In conclusion of the discussion of the general case. we consider a 

single special case. that is. one-box case. [This example was showed by 

Prof. Sakaguchi of Osaka University.] In the case of n=1. our problem 

(20) becomes 

>..(C) (T - C) 
max 

-+ 
O~~T. * 

When >"(x) is increasing and concave. the optimal improvement effort C is 
I * I * as follows: If T~>"(O)I>" (0). then G 0 and if T > >..(0)1>.. (0). then C is 

I 
an unique root of an equation >"(C)(T-C) A(C) on the interval (O.T). That 

is to say. if the total time T is smaller than >"(0)/)../(0). then we must 

search the object immediately without improvement of the detection rate. 

Otherwise. it is optimal to improve the rate somewhat. 

3' The Case of Concave Detection Rate Functions 

In this section we add the assumption that all >... (x) (i.··· .n) are 
1 

concave in x, and propose a method for obtainning an optimal policy, that 

is. for deriving the value of )1 in Corollary 2 explicitely. In particu

lar, we explain the case of linear detection rate functions in detail. 

For box i (=1.···. n ). we consider a curve Cion the (x. y) -plane de·

fined by C. = C. 1U C. 2 where 
~ ~.~. 2 / 

C {(O.y)lY:;p.>...(O)exp[->... (0)/;\. (O)]) 
i. 1 ~ ~ ~ ~ 

') J 
C. 2 {(x.y) Ix>O. y=p.)... (x)exp[->..·~ (x) I).. . (x) 1}. 
~. ~ ~ J~ ~ 

Theorem 4· If all )...(x) (i=1.···"n) are increasing and concave in x. 
* ~ * * 

the following policy {F • C } is optimal: The improvement effort C. in 
~ 

box i is given by the x-coordinate of one of intersections of the straight 
* line y=)1 and the curve C. The search effort F. in box i is given by 

i ~ 
(12). Here the determination of the value of )1 and a selection of an ap-

propriate intersection must be carried out together with the satisfaction 

n * * of the relation E (F. + C. )=T. 
i=1 ~ ~ 

Proof: If all >... (x) (i=1, ••• ,n) are concave in x, conditions (6) and 
~ 
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becomes a concave programming. Therefore it is sufficient to find ~ sat

isfying the assertion (ii) of Corollary 2. Hence the result is clear. 

(q.e.d) 

In the following, we analyze the case of linear detection rate func-

tions in detail. Suppose that A. (x) a.x + b. (i=1, ••• , n j a. ,b.> 0) • 
1. 1. 1. 1. 1. 

By Corollary 2, we obtain 
* 

0 if G. 0 and p.b. ~ ~ 
1. 1. 1. 

* -1 * 
( 14) F. b. log(p.b .I~) if G. 0 and p.b. > ~ 

1. 1. 1. 1. 1. 1. 1. 

* * 
G. + b.la. of G. > 0 

1. _1 1. 1. 

* where G. (>0) is a positive root of an equation 
1. 2 

(15) p.(a.x + bJ exp [-(a.x + bJ la.] =~. 
1. 1. 1. 1. 1. 1. 

When the improvement effort x in box i increases from zero, we shall in-

vestigate the move of a point z.= (X., y.) where 
2 1. 1. 1. 

(16) X. = (a.x + bJ /a., Y. = P.(a. x + bJ. 
1. 1. 1. 1. 1. 1. 1. 1. 

Eliminating x from relations (16), we obtain 
2 2 

(17) Y. = a.p. X. 
1. 1. 1. 1. 

along which the point z. moves. On the other hand, by (15} we obtain 
1. 

(1 8) Y. = l..I exp (X.) 
1. 1. * 

on which the point z. lies at x=G. Therefore when the improvement effo-
1. 1. 

rt x in box i increases from zero, the point z. starts from the initial 
o 2 1. 

point Z. = (b. /a., p.b.), moves along the curve (17) and reaches the 
1. 1. 1. *1. 1. 

curve (18) at x = G. if possible. The condition, under which two curves 
1. 2 2 

(17) and (18) have at least one intersection, is given by a.p. ~ 2e~ 
1. 1. 

Thus we obtain Figure in which each region is defined as follows: 

= { (X,y) 

2 
<: 2 

if o < X ~ (2e)-1 

J 
Y 2e~ X 

Region A 
(2e)-1 < X Y :i l..I if 

= { (X,y) 
< Y and i< 2 

if (2e)-1 < X < 1/2 ~ 2e~ X 
Region B 

l..I < Y .$. ~ exp(x) if 1/2 :5 X 

Region C ((X,y) I y > ~ exp(x)} 

Region D {(X,y) I o < X ~ (2e)-1, y ~ 
2 2 

~, y ~ 2e~ X} 

1 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



R'gion E "{ (X ,Y) 

Search with Improvements of Detection Rates 

]J < Y :;; ]J exp(X) 

2 2 Y ~ 2e]J X and Y :;; ]J exp(X) 

if 0< X < (2e)-1 J 
if (2e)-1 < X < 1/2. 

For each i, consider three types of solution: 
* * Type (i) F. G. = ° ~* ~-1 * Type (ii) F. b. log (Pib/]J) and G. = ° 

~* ~* * ~ 
Type (iii) F. = G. + b ./a. and G. (> 0) is a positive root of the 

~ ~ ~ 1 ~ 

equation (15) • 

325 

Corollary 3. If A.(X) = a.x + b. (i=1,"', n 
* ~ 1. 1. 

ai' b
i 

> 0), then the 

following policy {F , G } is optimal; 

Case [A] IfZ.Oe 
1. 

Region A, then Type (i) occurs. 

Case [B] If Z ° i E: Region B, then Type (ii) occurs. 

Case [Cl If Z ° . E 
1. 

Region C, then either Type (ii) or (iii) occurs. 

In this case, the equation (15) has a unique positive root. 

Case [D] 

Case [E] 

In Case [D] 

lect one of 

If Z. ° E: Region D, then either Type (i) or (iii) occurs. 
1. 

IfZ.OE 
1. 

Region E, then either Type (ii) or (iii) occurs. 

and [E] , the equation (15) has two positive roots. When we 

two types in Case [C] , [D] and [E] , and when we select one 

se-

of 

two positive roots in Type (iii), all selections must be carried out under 

n * * the condition that the relation ~ (F. + G. )=T is satisfied. 
i=1 1. 1. 

Proof: IfZ.OE Region A, two curyes (17) and (18) have 
1. 

no intersec-

tion, that is, the equation (15) has no positive root. Furthermore p.b.:;;]J 
* 1. 1. * in Region A and therefore by (12) we can obtain F. 

1. 

case can be proved by the similar method. 

G. = 0. The other 
1. 

(q.e.d.) 

From Corollary 3, we can know the following property of the optimal 

policy in the case of A.(x) = a.x + b. (i=1,···n). When the initial de

tection rate p.b. is su}ficientiy smail and b. 2/a. is sufficiently large 
1. 1. 1. 1. 

(that is, the improvement rate a. is sufficiently small), the initial poi-

nt Z. ° (b. 2/ a . ,p.b .) is contai~ed in Region A and therefore no improve-
1. 1. 1. 1. ~ 

ment and no search in box i is optimal. This result is consistent with 

our common sense that both to improve and to search are nonsense when both 

the initial detection rate p.b. and the improvement rate a. are sufficient 
~ ~ 1. 
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small. When Pibi is somewhat large and b
i

2/a
i 

is sufficiently large, the 

point Z.O is contained in Region B and therefore the optimal policy indi-1. 
cates to search in box i with no improvement. When b. 2/a. is sufficiently 

1. 1. 
small (that is, the improvement rate a. is sufficiently large for the ini-

1.0 
tial detection rate p.b.), the point Z. is contained in one of three re-

1. 1. 1. 
gions C, D, and E and therefore it may occur that the optimal policy indi-

cates to improve and search in box i. These results are also consistent 

with our common sense. 

[Numerical ExampleJ 

We consider a two-box case in which p=<1/2,1/2>, A1(x)=3x+1 and A2 (X) 
=2x+2. Note that in box 1, the initial detection rate is smaller but the 

improvement rate is large than in box 2. Two curves C1 and C2 are descri

bed in the right-half of Figure 2. Let Ct.1 (]..I) and i3 1 (]..I) [We suppose that 

Ct.1(]..I)~i31(]..I)J be two positive roots of the equation (1/2)(3x+1)exp[-(3x+1)2 

/3J=]..I, and let i3 2 (]..I) be a unique positive root of the equation (x+1)exp 

[-2(x+1)2 J=]..I. When the value of]..l decreases continuously from infinity to 
2 

* * zero, we want to calculate the value of T= E (F. +G. ) for any value of ]..I 
i =1 1. 1. 

by Theorem 4. However for anY]..lE(0.358, 0.371) there are three intersec-

tions of the curve C1 and the straight line y=]J, and the value of T is di

fferent for each intersection. In order to guarantee the continuous chan

ge of the value of T, we force the value of ]..I vary overlappingly such that 

the intersection Zi of the curve Ci (i=1, 2) and the line y=]J moves conti

nuously. If we denote such a situation in Figure 2 concretely, ]..I and Z. 
1. 

(i=1, 2) moves along the following routes: 

]..I A --+ C --+ B --+ D --+ 0 

Z1 A --+ C --+ E --+ F --+ G 

Z2 A --+ C --+ B --+ D --+ H 

where letters A, ... , H indicate marks on the routes in Figure 2. We can 

calculate the value of T for each case. For example, when ]..I varies from C 
* * * to B, Z1 (Ct. 1 (]..I),]..I) and Z2= (0,]..1), and therefore G1 = Ct. 1 (]..I), G2 =0, F1 = 

* Ct.1 (]..I)+1/3 and F2=(1/2)log(1/]..I) from (14). Hence we can obtain 

2 * * T = E (F. +G. ) = 2Ct.1 (]..I)-(1/2)log]..l + 1/3. 
i=1 1. 1 

For other cases, the similar discussion can be developed. Values of Tare 

given in Figure 2. Using Figure 2, we can obtain an optimal policy. For 

given T(>O), we obtain the corresponding value of ]..I in the left-half of 

Figure 2 and the corresponding value of 

* values of F. (i=1,2) are given by (14). 
1. 

* G. (i=1,2) in the right-half. The 
1. 
The maximal detection probability 
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* * * * * * P (T) is given by P (T) = 1 - (1/2) exp[-(3G1+ 1)F1 J-(1/2)exp[-(2G2+2)F2 J. 

For comparison we consider the case without improvement, in which p=<1/2, 

1/2>, 1..1= 1 and 1..2 = 2. The solution for this ordinary detection search 

model is given by Theorem 2. The optimal allocation effort ft. in box i 
~ 

i=1, 2) is given as follows: If 0 :;; T ;, T1[=(1/2)log 2 ~ 0.347J, then 

F1= 0 and '#2 = T. If T1 < T < 00, then f¥1 = (1/3)(2T - log 2) and ft2=(1/3) 

(T + log 2). The maximal detection probability is given by (f(T) = 1-(1/2) 

'" '" exp(~1) - (1/2)exp(-ZF 2)· 

For values of T, we select 0.3, 0.6, 0.9, 1.0, 3.0 as representative va

lues in five regions of T in Figure 2. For these values, the above-menti

oned quantities are calculated in Table 1. Furthermore Table 1 contains 

* '" values of d (T) = P (T) - P (T) which is -~he increase of the detection pro-

bability by the improvement. From Table 1, we know the followings : 

[iJ If T is sufficiently small (T=0.3, 0.6), there is no time to improve. 

If T is somewhat large (T=O.9, 1.0), it is optimal to improve box 1 

rather than box 2. If T is suffieiently large (T=3.0), there is ti

me enough to improve both boxes. Note that in this example box 1 is 

more effective for the improvement than box 2 since it has a smaller 

initial detection probability and a large improvement rate. 
* [iiJ A remarkable point is that the optimal search effort allocation F2 in 

* box 2 is not necessarily increasing in T, for example, F2 = 0.501 
* for T= 0.9 and F2 = 0.495 for T=1.0. The reason is as follows: 

Since the detection rate in box 1 is improved enough in the case of 

T = 0.1 rather than in the case of T=0.9, it is profittable to allo

cate much search effort in box 1 even if the search effort in box 2 

decreases (note that P1 = P2= 1/2). 
* * In general, when G

i 
= 0 and )1<P

i
b

i 
in (14), ~ is decreaSing in )1 

and hence if )1 is nondecreasing i:'l T, then F. is decrasing in T. 
* '" ~ [iiiJWe observe that F. :;; F. (i=1 ,2) for five values of T. But it is not 

~ ~ 

necessarily clear that this property holds in general since it is 

possible that the improvement of the detection rate in box i stimu

lates us to allocate much search ·effort in box i. 

[iv] Since P*(T) ~ ~(T) for any T(>O) evidently, the difference d(T),which 

indicates the effect of the improvement, is nonnegative. Though in 

Table 1 d(T) is nondecreasing in T, this property is not true in gen

* we are interested in T = T eral because lim d(T) = lim d(T) = O. 
~O ~ * 

attaining max d(T) but it is difficult to obtain T explicitly 
Q<T<oo 

since the function d(T) is not necessarily unimodal. 
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Table 1. The solution of numerical example for 

T = 0.3, 0.6, 0.9, 1.0, 3.0. 

T 0.3 0.6 0.9 1.0 3.0 

G* 1 0 0 0.033 0.086 0.663 

G* 2 0 0 0 0 0.170 

F* 1 0 0.169 0.366 0.419 0.997 

F* 2 0.300 0.431 0.501 0.495 1.170 

P*(T) 0.226 0.367 0.482 0.519 0.942 

'PI 0 0.169 0.369 0.436 1. 769 

'P2 0.300 0.431 0.531 0.564 1.231 

f1(T) 0.226 0.367 0.481 0.515 0.872 

d(T) 0 0 0.001 0.004 0.070 

y 

~ ~-=~--~~----~----------------------

~------~~l----~l~--------------------------~X 

o :2e 2' 

Fig. 1. Optimal policy region ~n the case of linear detection 
rate functions. 
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-~----,--- D 

0.978 0.846 0.346 0 0.075 

The solution of the numerical example in which 

p= <1/2, 1/2> , ~1(x)=3x+l, ~2(x)=2x+2. 

rH] T=2Cll (\J)-(1/2)10g\l+ 1/3 

[iii 1 T=261 (\J)-(1/2)10g 11 + 1/3 

[iv] T=2B1(\J )+262(\I)+/t/3 

x 

c.., 
~ 
<l ::.-

~ 
t? 
'3 
Cl 

I ::: 
~ 

~ 
5' :: 

S' 
~ 

'" '" '0 
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4. Minimizing Problem of Expected Effort 

In this section we shall turn our attention to another objective un

der which we minimize the expected effort until detection. For this modi

fied model, a policy, which indicates us to improve detection rates until 

a certain time and to search the object thereafter, seems to be no longer 

optimal since this policy wastes much time in the early stage. But since 

the optimal policy in the privious section is uniformly optimal with res

pect to the total time T, it seems that the following conjecture holds. 

Conjecture : The policy, which satisfies the following property, is opti

mal: At any time t, the accumlated search effort and the accumlated 

improvement effort in box i (=1, ••• , n) until time t are equal to the 
* * optimal allocations F and G respectively in the previous model with 
i i 

time period T=t. 

* * If the optimal allocation F. and G. (i=1,···,n) of the previous model 
~ ~ 

are nondecreasing in T, then the above conjecture is true and therefore 

the optimal policy in the modified model can be constructed by the sequen

tial allocation method j otherwise , the policy in the above conjecture 

can not be constructed. Hence the above conjecture can not necessarl.ly 

hold. For example, the numerical example in Section 3 gives a counterexa-

* mple for this conjecture since F 2 is not nondecreasing in T. 

Let T. be the time at which the object is detected by a policy {f,g}, 
~ 

given that it is in box i. The distribution function of T. is given by 
~ 

H.(t) = PiT. ~ t} = 1-Q.(t) where Q.(t) is given in Section 1. Let e[f,g] 
~ ~ ~ ~ 

be the expected effort required to detect the object by a policy if, g}. 

Then the modified 
n 

problem is represented by 

Pi J: t dHi(t) e[f, g] = L 
i=1 

n 
L 

i=1 
P; J""exp {- Jt>".[G.(S)]f.(S)dsdt~min 
~ 0 0 ~ ~ ~ {f,g} 

* * Theorem 5· A necessary condition for a policy {f , g } to be optimal 

for the modified model is given as follows : There exist two nonnegative 

functions ~1(t) and ~2(t) such that 

(19) P.>...[G.*(t)] JooL.*(S) ds { : }~1(t) 
~ ~ ~ ~ -

(20) P.Joo{JS >..~ [G.~(U)]f.*(U)dU}L.*(S)dS 
~t t ~ ~ ~ ~ 

if 

* > if g.(tH } 0 
~ 
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L.*(s) = exp{-f
s 

A.[G.*(u)]f.*(u)du}. 
~ 0 ~ ~ ~ 

* Proof: First we prove the relation (19). Suppose that a policy {f , 

g
*} * is optimal. For any fixed t1 (~O), there is a box i such that f. (t»O, 

~ 

on the interval [t
1

, t
1

+6] where 6 is sufficiently small. For E=O(6»O 

and any j("'i), we difine a new search policy f= {f1(t),···,f (t)lt;;:O} as 
n 

follows : 

the first and third terms converge to zero since for any continuous func

tion z(s), 

. 1 Jt 1+
6 

llm ~ z(s)ds = Z(t1). 
6+0 t1 

Therefore we obtain 

(22) A [G *(t1)]f
co 

L.*(t)dt;;: p).lG'.*(t1)]J
co 

L.*(t)dt. 
Pi i j t1 ~ J J J t1 J 

* If we select box j(",i) such that f. (t) > 0 on [t1' t1 +6], the discussion 

obtained by exchanging i for j in {he a.bove discussion can be developed 

* and therefore the opposite inequality l:.olds in (22). Hence if f. (t) > 0 
* ~ 

and f. (t) > ° on [t1' t1+6], the equality holds in (22). In other words, 

-l 
if f. (t) > 0, the left-hand side of (;::2) is independent of i. Hence 

~ 
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* if f. (t) > 0, the left-hand side of (22) is independent of i. 
~ 

Hence 

there is a nonnegative function ~1(t) such that 

(23) PiAi[Gi*(t)]J:Li*(S)dS = ~1(t) * iff.(t»O. 
~ 

* On the other hand, if fj (t
1

) = 0, the opposite inequality cannot hold in 

(22) and therefore 

* (24) P.A.[G.*(t)]JooL.*(S)dS 
J J J t J 

if f. (t) 
J 

o. 

The relation (19) is derived from (23) and (24). The relation (20) can be 

proved by the same method as (19) and therefore its proof is omitted. 

(q. e. d.) 

We consider the case of A.(X)=A. (i=1,···, n) for any x(~O). By (20) 
* ~ ~ 

it is evident that 8. (t)=0(i=1,···, n) for any t(~O), that is, no impro
~ 

vement is optimal. From (19), we obtain that 

00 * 
J -A F (s) {=} ( * ( ) {>} P . A. e i i ds < ~1 t) if f. t _ O. 

~~t - ~-

* By the well-known method, the optimal policy f can be obtained as follows 

If i E I(t) 

If i ~ I(t) 

where 

I * max * I(t) = U p.A.exp[-A.F. (t)] = 1"'.<- p.A.exp[-A.F. (t)J). 
~ ~ ~ ~ -J~l J J J J 

The relation (25) denotes tht at any time it is optimal to allocate search 

effort in boxes having the maximum posterior detection probability in pro

portion to the inverse of the detection rate. This result is well-known. 
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