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We consider a zero-sum average cost stochastic game with the unbounded lower semi-continuous cost 

function, and by using the contraction property ([6, 7]) for the average case we give sufficient conditions for which 

there exists a minimax stationary strategy. Also, we formulate a rninimax inventory model as a stochastic game and 

show that for any € > 0 there exists an €-minimax .random (s, S) ordering policy, which is a modification of (s, S) 

ordering policy, under some weak conditions. 

1. Introduction and Notation 

A zero-sum stochastic game has been investigated by many authors and the 

existence of equilibrium strategies has been discussed. For example, see 

[9,11] for the discounted case and [2,13] for the average case. 

In this paper we consider an average cost stochastic game with the un

bounded lower semi-continuous cost function, ·and by using the contraction 

property ([6,7]) for the average case we give sufficient conditions for which 

there exists a minimax stationary strategy. Also, we apply these results to 

the inventory model with an unknown demand distribution and show that for any 

£ > 0 there exists an £-minimax random (s,S) ordering policy, which is a modi

fication of (s,s) ordering policy, under some weak conditions. 

By a Borel set we mean a Borel subset of some complete separable metric 

space. For a Borel set X, ~ X denotes the Borel subsets of X. If X is a non-
+ + 

empty Borel set, B (X) [ B (X) ] denotes the set of all non-negative real 
s 

valued Borel measurable [lower semi-continuous] functions on X. The product 

of the sets D
1

,D
2

, .•• will be denoted by D
1
D

2 
•..• 

A zero-sum stochastic game is specified by five objects: S, {A(x),XES}, 
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A verage Cost Stochastic Games 233 

B, c, Q, where S is any Borel set and denotes the state space, for each XES, 

A(X) is a non-empty Borel subset of a Borel set A such that {(x,a): XES, 

aEA(x)} is closed, and denotes the set of actions available to player 1 at 

state x, B is a non-empty Borel set and denotes the set of actions available 

to player 2, CES+(SAB) is a one-step cost function for player 1 and Q = 

Q('lx,a,b) is the law of motion, which is taken to be a stochastic kernel on 

..E SSAB; i. e., for each (x,a ,b) E SAB, Q ('Ix,a ,b) is a probability measure on 

..E
S

; and, for each DE..E
S

' Q(DI·) ES+(SAB). 

A strategy of player 1 will be a sequence TI = (TI
O

' TI
1

, ••• ) such that, for 

each t ~o, TIt is a stochastic kernel On..EAS(ABS)t with TIt(A(xt)lxo,aO,bO"'" 

a t - 1 ,bt
_

1 
,Xt) = 1 for all (x

O 
,a

O 
,b

o
'" ., a t _1 ,bt

-
1 
'Xt) E S (ABS) t. Let IT denote 

the set of all strategies for player 1. A strategy TI = (TI
O

,TI
1

, .•• ) is called 

[analytically measurable] stationary strategy if there is a [analytically 

measurable] measurable function f:S + A with f(x) E A (x) for all x E S such that 

TIt (f(x t ) IXO,dO,bO"'" dt-l,bt_l,Xt) = 1 for all (xO,aO,bO'"'' at-l,bt_1,Xt) 

E S(ABS)t and t ;;;0. Such a strategy will be denoted by f"'. 

A strategy of player 2 is a sequence ° = (00' 01'''') such that, for each 

t;;;O, 0t is a stochastic kernel on ..EBSll.(BSA)t. We note that the t-th action 

of player 2 is taken after knowing the action taken by player 1 at the t-th 

time. Let ~ denote the set of all strategies for player 2. Stationary 

strategies of player 2 are defined analogously. 

The sample space is the product space rl = S(ABS)"'. Let X
t

' b. t and r t be 

random quantities defined by Xt(w) xt:' b.t(w) = at and ft(w) = b t for W = 

(x
O

,a
O

,b
O

,x
1 

,a
1 

,b
1

, ••• ) E rl. 

Let Ht ,= (xO,b.O,rO'·'" b.t_l,rt_l'Xt)' It is assumed that, for each 

TI = (TIO,TI 1, ... )E IT and ° = (00'01'''') E~, P(b.tED1IHt) = 1Tt(DlIHt)' 

p(rtE D2IHt,{lt) = 0t(D2IHt,b.t) and P(Xt:+l E D3IHt_l,b.t_l,rt_l'Xt=x,b.t=a, rt=b) 

= Q(D3 Ix ,a,b) for every Dl E..E A' D2E..EB and D3 E ..E S· 

Then, for each TIE IT, OE ~ and starting point XE S, we can define the 

probability measure pX on rl in an obvious way. 
TI,O 

We shall consider the following average cost criterion: 

For any strategies TI E IT, ° E ~ and x E S let 

(1. 1) 

where EX 
TI,O 

Let l/J (x, TI) 

minimax if 

is the expectation operator with respect to pX 
TI,O 

= sup "l/J(x,TI~o). Then for any E~O) we say that TI*E IT is E° E t.. 

l/J(x,TI*) $ l/J(x,TI) + E for all XE S and TIE IT. A O-minimax strategy 

is simple called minimax. 
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234 M. Kurano 

In Section 2, we give sufficient conditions for which a minimax station

ary strategy exists. In Section 3, a minimax inventory problem is formulated 

as a stochastic game and it is shown that for any £ > 0, there exists an 

£-minimax random (5,S) ordering policy under weak conditions. 

2. Existence of Minimax Strategy 

In this section we shall give sufficient conditions for the existence of 

a minimax stationary policy. 

In order to insur,e the ergodicity of the process, we introduce the fol-

lowing contraction property ([6,7]). 

Condition A. There exist a measure y on S such that 0 < y (S) < 1 and 

O(Dlx,a,b) ~ y(D) for all D£JJ
S

' X£S, a£A(x) and b£B. 

Under Condition A, we define the map U on B+(s) by 

(2.1) Uu (x) inf a £A(x) sup b £B U(x,a,b,u) 

if this expression exists, where 

(2.2) u(x,a,b,u) = c(x,a,b) + fU(Y)O(dylx,a,b) - fu(y)y(dy) 

for each u£B+(S), x£s, a£A(x) and b£B. 

Condition B. The following Bl-B2 holds: 

Bl. c£B+(SAB) and Q('lx,a,b) is weakly continuous in (x,a,b) £SAB, that is, 
5 

whenever xn -+ x, an -,. a and b -+ b, Q('lx ,a ,b ) converges weakly to 
n n n n 

B2. 

Q(·lx,a,b). 

When xn £S -+ x £S as n -+00, for 

n i;; 1, there exist a subsequence 

a -+ a as j-+oo. 
n. 

] 

any sequence {a } with a £ A (x ) for 
n n n 

{a } of {a } and a £ A (x) such that 
n. n 

] 

We need the following condition to treat with the unbounded cost. 

all 

Condition C. There exists a v£ B+(S) such that the following Cl-C3 hold: 
5 

Cl. c(x,a,b);;;; vex) for all X£S, a£A(x) and bEE. 

C2. Uv;;;; iT. 

C3. fV(Y)O(dyjx,a,b) is uniformly integrable for (x,a,b) £ SAB. 

In the next section we shall show that the usual inventory model satisfies 

Condition Band C. 

For any non-empty Borel set X, we denote by S+(x) the set of all non-negative 
5 

real-valued, bounded lower semi-continuous functions on X. 
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Average Cost Stochllstic Games 235 

Lemma 2.1. Suppose that Conditions Band C hold. Then for any U E:B+(s) 
s 

with ° ~ u::o v it holds that (i) fU(Y)Q(dylx,a,b)E:B+(SAB) and (ii) 
s 

+ 
sup b E: B V (x ,a , b, u) E: B s (SA) • 

Proof: From C3, for any E: > 0 there exists a constant M for which 

fDv(Y)D(dylx,a,b) ~ E:/2 for all XE:S, aE:A(x) and bE:B, where D = {YE:Slv(y) 

<: M}. Let U E: B; (S) with 0 ~ U ~ v. And, for the above M, let uM(y) = U (y) if 

u(y) < M, = M if u(y) ~ M. Then since U E: B+(s) , it holds from Lemma 4.1 of 
M s 

Maitra [8] that 

(2.3) 
-+ 

fu (y)Q(dy!x,a,b)E:B (SAB). 
M s 

Also, we obtain 

(2.4) fu(y)Q(dylx,a,b) - fuM(y)Q(d1llx,a,b) 

~ fDv(Y)Q(dylx,a,b) ~ E:/2 

for all (x,a,b) E: SAB. 

Therefore, by (2.3) and (2.4) it holds that when (x ,a ,b ) ->- (x,a,b), 
n n n 

lim inf fu(y)Q(dylx ,a ,b ,) 
n+oo n n n 

~ lim inf fu (y)Q(dy!x ,a ,b ) - E:/2 
n->-oo M n n n 

<: fuM(y)Q(dylx,a,b) - E:/2 

<: fu(Y)Q(dylx,a,b) - E:. 

As E: ->- 0, lim inf fu(y)Q(dylx ,a ,b ) ~ fU(Y)Q(dylx,a,b) , which means (i). 
n->-oo n n n 

Clearly (ii) follows. Q.E.D. 

LEmma 2.2. Suppose that Conditions A, Band C hold. Then, for any 

u£B+(s) with O~U~V, uu£B+(s). 
s s 

Proof: 

V(x ,a ,b,u). 

For any fixed UE:B;(S) with O~U~V, let V(x,a,u) = sUPbE:B 

Then since V(x,a,u) E: B+(SA) , by the definition of Vu, for any 
s 

state sequence. {x } with x E: S ->- X E: S as n ->- 00 and E: > 0 the.re exists an action 
n n 

sequence {a } such that 
n 

VU(x ) ~ V(x ,a ,u) - E: for all n~ 1. 
n n n 

Using the condition B2, there are a subsequence {a } of {a } and a E: A(x) for 
n. n 

which a ->- a as j ->- 00 and 
n. 

J 

J 

lim inf Vu(x) ~ lim inf v(x ,a ,u) - E: 
n-+ oo n n-+ CX) n n 

1 im . V (x , a , U ) - E ~ V (x ,a , U ) - E: 
J+oo nj nj 

~ Vu(x) - E:. 
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236 M. Kurano 

As £ ~ 0 in the above, Uu £ B+(s) follows. 
s Q.E.D. 

We denote by B(S~A) the set of all Borel measurable functions f:S-~A with 

f(x) £ A (x) for all x £ S and by B (X-+ B) the set of all lower semi-analytic 
a 

functions h :X~ B, where X is any Borel set. 

Lemma 2.3. Suppose that Conditions A, Band C hold. Then, for any u, 

w£B+(s) with o;:;;u, w;:;;vand £>0 there exist f£B(s~A) and h£B (S~B) such 
s a 

that 

(2.5) Uu(x) - Uw(x) ~ !(u(y) - w(y»Q(dylx,f(x),h(x» + £ 

for all x£ S, 

where 

(2.6) Q(dylx,a,b) = Q(dylx,a,b) - y(dy). 

Proof: By Lemma 

tion theorem ([1,12]) 

such that U(x,f(x),w) 

all x£ s. 

2.1 U(x,a,w) £ B+(SA) , so that it holds from the selec
s 

that for any £ > 0 there exist f£ B(S~A) and 

= Uw(x) and U(x,f(x),h(x),u) ~ U(x,f(x),u) -

Thus, by the definition of U, we have 

Uu(x) - Uw(x) ;:;; U(x,f(x),u) - U(x,f(x),w) 

;:;; U(x,f(x),h(x),u) - U(x,f(x) ,h(x) ,w) + £, 

which implies (2.5). 

h £ B (S~ B) 
a 

£ for 

Q.E.D. 

Theorem 2.1. Suppose that Conditions A, Band C hold. Then there exist 

a constant ljJ* and a v £ B+ (s) with 0;:;; v;:;; if such that 
s 

(2.7) vex) = infa£A(X) sUPb£B {c(x,a,b) - \IJ* + JV(Y)Q(dylx,a,b)} 

for all X£S, 

and if 

(2.8) lim EX [v(XT)]/T 
T~oo 11,0 

o for all x£ S, 11£ IT and O£ L:, 

it holds that 

(2.9) \IJ* ;:;; \IJ(X,lI) for all X£ Sand 11£ IT. 

Proof: Let us define the sequence {~ } and {v } respectively by Vo v, 
n -n 

v = 0, v 1 = Uv and v 1 = Uv for all n ~ 1. -0 n+ n -n+ -n 

Then, from Lemma 2.2 and the monotonicity of U we have vo ~ vn ~ vn+l ~ ~~n+l 

~ v '" 0 arid v £ B + (s) (n f; 1). 
-n -n s 

Now, we show by induction that there exists a constant M such that 
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(2.10) 
n-l 

if (x) - v (x) :;; MS for all nf: 1, 
n -n 

where S = - y (5) and 0 < S < 1 • 

In fact, from C3 there exists some M sueh that Jv(y)Q(dyjx,a,b) :;; M for all 

x£5, aEA(x) and b£B. For any £ >0 from Lemma 2.3 there exist f£B(S-+A) 

and h £ B (S -+ B) for which 
a 

VI (x) - ~1 (x) :;; J(VO(Y)-~O(Y»Q(dyjx,f(x),h(x» + E 

:;; JVO(Y)O(dyjx,f(X),h(x» + E :;; M + E, 

so that as E -*0 we observe that (2.10) holds for n = 1. 

Suppose that (2.10) holds for n. Similarly, for any E >0 there exist 

f £ B (5 +A) and h £ B (5 -+B) such that 
n n a 

V 1 (x) - v 1 (x) :;; J(vn(y) - v (y»Q(dylx,f (x),h (x» + £ 
n+ -n+ -n n n 

:;; MS
n

-
1
Q(slx,f (x),h (x» + E 

n n 

which shows that (2.10) holds for n+l. Thus, if we let v = lim if, then 
n-+ oo n 

237 

v = lim v and v£B+(s). Also, since ifn 
n-+oo -n s Uv n-l <;: uv and ~n = U~n-l ;;; Uv, 

we get v <;: Uv and v :;; Uv, which implies 

(2.11) v= Uv. 

If we let lji* = Jv(y)y(dy) in (2.11), (2.11) means (2.7). 

For lji* and v£B+(s) as in (2.7), we define 
s 

~(x,a,b) = e(x,a,b) - lji* - vex) + JV(Y)O(dyjx,a,b) 

for each x E S, a E'~(X) and b EB. 

Then, it holds from (2.7) that SUPbEB .p(x,a,b) <;: 0 for all x£s and a£A(x), 

so that using the selection theorem ([ 1,12]) for any E > 0 there exists 

hEB (SA-+B) such that .p(x,a,h(x,a» <;: -E for all xeS and aEA(x). So, for 
a 

this stationary policy h
oo

, we have 

x 
E 00 

T,h 

which derives 

for all 11 E IT, 
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238 M. Kurano 

Therefore, as T-+oo and £ ->-0 in the above, we get \jJ(X,TT) ;;;\jJ*. Q.E.D. 

The next theorem shows the existence of a minimax stationary strategy in 

a stochastic game model. 

Theorem 2.2. Suppose that Conditions A, Band C hold. Then it holds 

that 

(i) there exists f £ B (s -+A) such that 

(2.12) sUPb£B CP(x,f(x) ,b) = ° for all x£S 

and 

(ii) if (2.8) holds·, the stationary strategy foo is minimax. 

Proof: From the selection theorem ([1,11]), (i) follows. 

For (ii), from (2.12) it holds that CP(x,f(x) ,b) :;; ° for all b £B, so that by 

the similar discussion as that of Theorem 2.1 we obtain \jJ(x,f
oo

) :;; ~*, which 

implies from (ii) of Theorem 2.1 that foo is minimax. Q.E.D. 

3. A Minimax Inventory Model 

In this section we consider the single-item stochastic inventory model 

whose demand distributions for each period are assumed to be unknown but are 

restricted to a class of distributions on R+ = (0,00). 

And by transforming this model equivalently to a stochastic game between 

a decision maker and Nature we shall give a characterization of a minimax 

ordering policy which minimizes the maximum average expected cost over the 

infinite planning horizon. Here, the demands in successive periods are 

assumed to form a sequence of independent random variables whose distributions 

can change from period to period in a restricted class of distributions and 

any unfilled demand in a period is backlogged. We note that a reader may 

refer to Jagannathan [5] for the discounted minimax case. 

Let P(R+) be the set of all probability measure or, equivalently, dis

tributions on R+. Then it is known that P(R+) is a complete separable metric 

space with respect to the weak topology (for example, see [1]). Let ~ be a 

Borel subset of P(R+). Define S = (-00 ,M] and A = [O,M], where M is a capacity 

of inventory. For each x cS, A(x) = [OVx,M]cA is the set of actions avail

able to a decision maker (player 1) at state x and denotes the set of inven

tory after ordering, where xVy = max {x ,y}. And B = (7 is the set of aetions 

available to player 2. 

Then, the stochastic kernel Q ~s as follows: 
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Q(Dix,a,F) = p(a-';( ED) for each x ES, a EA(x) and FE:7, 

where ~ is a random variable with the distribution F. For one-step cost, let, 

for each XES, aEA(x) and FE:7, 

(3.1) c(x,a,F) = K·I(O,oo) (a-x) + c·G~-x) + L(a,F), 

where L(a,F) is the expected holding and shortage cost at the inventory a after 

ordering when the demand distribution is F and K > 0 is a set-up cost and ID 

is the indicator function of D. 

We introduce the following conditions to apply the results of Section 2. 

Condition D. The following Dl-D2 hold. 

Dl. There exist K > 0 and 6 > 0 such that 

00 1 +6 
f 0 y dF (y) $ K for all F E :7 . 

D2. L (a ,F) is convex in a E A for each F E .7 and bounded with 0 $ L (a ,F) ~; L 

for some L and all a E A and FE.7. 

Condition E. There is a measure 'I on S such that 0 < 'I (S) < 1 and 

Q(Dix,a,F) ~ y(D) for all DE .1J
S

' XES, aEA(x) and FE:7. 

Example. 
We denote by N ()J,02) the normal distribution which is truncated at 0 on 

+ 
the left. For any given d

i 
(i=1,2,3,4) with 0 <d

1 
<d

2 
and 0 <d

3 
<d

4 
let 

In this case, Dl holds for 6 2 and D2 holde for any linear holding and 

penalty cost functions. Let f+(x;)J,02) be the density of N+()J,02). 

We observe that 

Q(Dix,a,N+()J,02) = f D f (Y;)J,02)dy for any D E .1J
S 

and a E A(x). 
a-y E + 

We define a function f(y) by f(y) = min < <d d < 2 f+(a-y;]J,02) 
d 1 ~)J ~ 2' 3 ~ 0 $ d 4 ,a EA 

if y $ 0, o if 0 < y $ M. 

Then, it is easily verified that 0 < '1(5) < 1 and 

Q(Dix,a,N+()J,02» ~ y(D) for any DE .1J
S

' x ES, a EA(x) and N+(]J,02) E :7, 

where y(D) = fDf(y)dy. 

That is, Condition E holds for this :7 • 

Lemma 3.1. Suppose that Conditions D and E hold. Then, Conditions ,\, B 

and C in Section 2 are satisfied in a stochastic game defined above. 

Proof: For any integer m and real number S' such that 
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0< 13' 
-1 

~ yeS) - c·K·{K+L+c·(M+m)} ,let define a function v on S by 

vex) (K + L + c· (M+m» /13 ' if x E (-m ,M] , 

(K + L + c·(M+j+1»/S' if x E (-j-1,-j] for j ~ m. 

Then, it holds that U(x,a,F,v) ~ vex) for all XES, aEA(x) and FE:;i, where 

U(x,a,F,v) is defined in (2.2). 

In fact, for example, when x E (-m,M], we have 

U(x,a,F,v) = c(x,a,F) + !v(Y)Q(dylx,a,F) 

~ K + L + c·(M+m) + {(l-y(S»(K+L+c·(M+m» + cd/S' 

~ vex), 

where Q is defined in (2.6). Thus we get Uv ~ v. 

Also, it is easily verified that other conditions in Conditions A, Band C 

hold. Q.E.D. 

Before stating the theorem, we give the following lemma. 

Lemma 3.2. Suppose that g(X,A) is K-convex in x ER+ for each A E I". 

Then, SUPA Er g(X,A) is K-convex in x ER+. 

Proof: Let g(x) = sUPA 
Er g(X,A). 

For any E>O and XES, g(x) :Sg(X,A) + E for some AEr. Thus, 

K + g(x+d) - g(x) - d{(g(x) - g(x-e»/e} 

K + g(x+d) + dg(x-e)/e - (l+d/e)g(x) 

~ K + g(X+d,A) + dg(x-e,A)/e - (l+d/e)g(x,A) - (l+d/e)E 

~ -(l+d/e)E from the hypothesis of K-convexity. 

As E + 0 in the above, we have 

K + g(x+d) - g(x) - d{(g(x) - g(x-e»/e} ~ 0 

for all x ES, d >0 and e >0, 

which implies K-convexity of g. Q.E.D. 

Theorem 3.1. Under Conditions D and E, a minimax (s,S) ordering policy 

exists. 

Proof: By Theorem 2.1, there exist a constant 1jJ* and vEB+(s) such that 
5 

vex) = inf sup .., {K.I(o )(x-a) + c'(a-x) 
a EX FE,"" ,ex> 

+ L(a,F) - 1jJ* + !v(a-y)dF(y)} . 

Now, we show that v is K-convex. For the operator U defined in (2.1), 

let Uo = 0 and un = uU
n

_
1 

for n ~ 1. First, we show by induction that u is 
n 
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K-convex for all n ~O. If we define G(x,a,F,u) = c'a + L(a,F) + !u(a-y)Q(dy[ 
+ x,a,F) for eaeh XE:S, a E:A(x) , F,-:; and UE:Bs(s), we can write 

u(x,a,F,u) = -C'X + min{G(x,x,F,u), K + G(x,a,F,u)I(x,M] (a)} - !u(y)y(dy). 

From the results of Iglehart [3,4], G(x,a,F,u ) is K-convex in a EA if u is 
n n 

K-convex. 

Since sUPF E::; G(x,a,F,un ) is K-convex in a E:A for Lermna 3.2, by using 

the results of Iglehart again it holds that u
n

+
l 

= uU
n 

is K-convex. There

fore, since v = limn -+00 un by the similar discussion as Theorem 2.1, v is K

convex. By Theorem 2.2, the minimax stationary strategy foo exists. Since 

sUPF E::; G (x ,a ,F, v) is K-convex in a E: A, we can prove, by the same way as used 

in Iglehart [3,4], that foo is an (s,S) ordering policy. Q.E.D. 

We say that n (nO,n
l

, ... ) ,-IT is a random (s,S) ordering policy if there 

exist '-1 (0 < [;1 < 1) and a map f:S -+ A satisfying that f(x)=Sl' if x $ 51' =x 

if x > Sl for some 51 < Sl such that n
t 

selects the action 6t f(X
t

) with 

probability 1 -E: l and the action x
t 

V Sl with probability E:
l

. 

Then we can state the main theorem. 

Theorem 3.2. Suppose that Condition D holds and L(a,F) is linear in 

F '- P(R+) for each a E: A. 

Then for any E: > 0 there exists a random (s,S) ordering policy which is 

E:-minimax. 

In order to prove Theorem 3.2, we shall introduce a subsidiary stochastic 

game for which Condition E holds. 

Let ~ E P(R+) be such that ~ has density ~(x) with ~(x) = (2M)-1 if 

M $ x $ 3M and = 0 otherwise. For this ~ and '-1 (0 < '-1 < 1), put :; E: 1 

{E:l~ + (l-E:
l
)F:F ,-:;}. 

Now we consider a subsidiary inventory model G(:; ) in which the set of 
'-1 

actions available to player 2 is:; but the state space and the set of 
E:l 

actions available to a decision maker (player 1) at state x are respectively 

S=(-oo,M] and A(X)=[OV x,M]. 

Notice that the sample space of G(:; ) is It' = SeA:; S)oo. In G(~7 ), 
E: 1 El E: 1 

we denote respectively by x~, 6~ and r~ the state and the actions at the t-th 

time taken by players 1 and 2 (t ~ 0). Also, in G(:; ) let IT' and L' be 
E:l 

respectively the classes of strategies for players 1 and 2 and ~'(x,n',o') the 

average cost defined by (1.1) for any x '- S, n' E: IT' and 0' E: L'. In the 

proof of Theorem 3.2 given later it is shown that Condition E holds for 

G(:; ), so that applying Theorem 3.1 under Condition D there exists a minimax 
'-1 

(s,S) ordering policy for G(:;E:l)' 
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To investigate the relation between IT (L) and IT' (L'), we introduce the 

following transformation. 

Let {Y
t

} be a sequence of independent random variables such that for each 

t ~ 0 Y
t 

is uniformly distributed on (0,1). 

For any t ~ 0 and the random quantity H~ 

t 
E S (A.7 S) , we 

E 1 
t 

ES(A:7S) by 

• • 'V 
def~ne a random quant~ty Ht 

'V 
Xo = X'O' 'f j = (fj - E1~)/(1-E1)' ~j = 6j 

'V 
and x. 1 

J+ 

'V '};-1 
6. - J'. (Y.) for each j ~ 0, 

J J J 

... , 

... , 

where for any F E P(R+) F-
1 is a left continuous inverse and F-

1 (t) 

inf {x: F(x) ~ t}. 

We note that 'f, E .7 because f '. E .7 
J J E1 

Using the above transformation, from n = (n
O

,n
1

, ... ) E IT and 0 = (0
0

,0
1

, 

... ) E L we construct n' = (1IO,n 1, ... ) E IT' and 0' = (00,0 1, ... ) E L' by 

n' ( • I H ') = n (. I il ) and 
t t t t 

0~(DIH~,6~) = Prob(E1~ + (1-E1)~ E D) for any Borel subset D of 

.7 and t ~ 0, 
E 1 

where ~ is distributed with 0t('lilt'~t)' 

To make the above definition possible, we only need to show that 

n t (A (X~) lilt) = 1 for all t ~ O. In fact, since x~ = 6~_1 - W~_1 and f(t 

6~_1 - Wt -
1 

and W;_1 and Wt - 1 are respectively distributed with f;_1 = E1~ + 

(1-E 1)I<t_1 and 'f t -
1

, it holds from the property of ~ that Prob(X~ ~ Max{}t'O}) 
'v 'V I'V = 1. Thus Prob(A(X~):::lA(Xt» = 1 so that by nt(A(X

t
) Ht) = 1 we get 11 t(A(X;) 

lilt) = 1 for all t ~ O. 

For convenience, we say n' E IT' (0' EL') a strategy constructed from 

11 E IT (0 E L) using the random transformation (p). 

Conversely, we try to construct 11 E IT and 0 E L from n' E IT' and 0' E L'. 

Let {n
t

} and {Zt} be sequences of independent random variables with 

prob(n
t 

= 1) = 1 - Prob(n t = 0) = E1 and Zt is distributed with ~ for all 

t ~ O. 

For any t ~ 0 and the random quantity Ht = (XO,60 ,fO' ... , 6t-1,ft_1,Xt) 

E S (A ::; S); we 
t 

SeA::; S) by 
E1 

'V ('V, 'V, ');, 'V, '};, ') define a random quantity H~ = X
O

,60 ,1'0' ... , 6t _
1

,l't_1,Xt E 

XO' ~I j 6 ., 'f' 
] j 
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~'. 
J+l 

'V 
6. - z. if n. = 1, = x. 1 if n. 

J J J J+ J 
o 

for each j <; O. 

(n~,n;, ... ) £ Il' and any strategy And for any (s,S) ordering strategy n' 

0' = (o~,o;, ... ) £ E', we construct n 

£ l: by 

(n 0' n l' ... ) £ 11 and 0 = (0
0

,0
1

, ... ) 

n' ( ° 111') and 
t t nt(oIHt) 

°t(DIHt ) 

where D' 

I
'V 'V 

o'(D' H' 6') for each t 
tt' t 

o and any Borel subset D of J , 

{£1~ + (l-£l)F : FED}. 

We say n £ 11 (0 £ l:) a strategy constructed from n' £ 11' (0' £ l:') using the 

random transformation (v). 

In this case, since n' is an (s,S) ordering policy, n becomes a random (s,S) 

ordering policy. 

Lemma 3.3. Suppose that Conditions in Theorem 3.2 hold. Then for any 

£ > 0 there exists £1 > 0 satisfying the following: For any n £ 11, there is 

n' £ 11' such that for any 0 £ E there exists 0' £ l:' for which 

(3 . 2 ) I 1jJ (x , n , 0) - 1jJ' (x , n ' ,0 ') I < £.1 2 

and conversely for any 0' £ l:' there exists 0 £ l: satisfying (3.2). 

Proof: For any given n £ 11 and £1 > 0 let n' £ 11' be a strategy con

structed from n using the random transformation (p). Then when £1 is suffi

ciently small, we will show that this n' £ 11' is the desired strategy. 

For any 0 £ l:, let 0' £ E' be a strategy constructed from 0 £ l: using the 

random transformation 
x 'V 

that P, ,(Ht £ D) 
n ,0 

(p). Then, by the method of construction we observe 

pX (H £ D) for all t <; 0 and any Borel subset D of 
n ,0 t 

SeA :;r S) t, so that 

(3.3) 

From the property of ~ we can assume that L(a,~) ~ L' for all a £ A and some 

L' • Thus we get, by the linearity of L, 

(3.4) IL(a,F) - L Ca ,£ 1 ~ + (l-£l)F) I ~ £ 1 (L + L'). 

Also, by the definition we have 

(3.5) 

and 

(3.6) I x 'V I E, , [c ° (X
t 

- X
t
')] ~ 

n ,0 

Thus, we have 
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IE:"O,[C(~t'~t'~t) - C(X~,~~,r~) 1 

I<"o'[c(~t'~~}t) - c(x~,~~,r~)] I, from the definition of ~t' 

:;; 1<, ,0' [L(~~,l\) - L(~~,r~)] 1 + 1<, ,0' [c· (~t - X~)] 1 
+ 1<"O,[KI(O,co)(~~ - ~t) - KI(O,co)(~~ - X~)] I, from (3.1), 

:;; £1 (L + L') + 2£l K + £1 (3M + K), from (3.4) - (3.6). 

Therefore, for any £ > 0 there exists £1 > 0 such that 

(3.7) 

By (3.3) and (3.7), we get Ilji(S,1T,O) -lji'(x,1T',o')1 :;; £/2. 

Conversely, for any 0' £ L', let 0 £ L be a strategy constructed from 0' 

£ L' using the random transformation (v). Then, similarly as the above dis

cussion we can prove that for any £ > 0 there is £1 > 0 such that Ilji(X,1T,O) -

lji' (X,1T' ,0') I:;; £/2, which completes the proof. Q.E.D. 

Lemma 3.4. Suppose that Conditions in theorem 3.2 hold. Then for any 

£ > 0 there exist £1 > 0 satisfying the following: 

For any (s,S) ordering policy 1T' £ Il', there exists a random (s,S) 

ordering policy 1T £ Il such that for any 0 £ L there is 0' £ L' for which (3.2) 

holds and conversely for any 0' £ L' there existe 0 £ L satisfying (3.2). 

Proof: For any (s,S) ordering pol icy 1T' £ Il', we construct a random 

(s,S) ordering policy 1T from 1T' using the random transformation (v). Then, 

similarly as the proof of Lenuna 3.3 we can prove that this 1T has the desired 

property. Q.E.D. 

PROOF OF THEOREM 3.2. We try to approximate the inventory game model by 

a subsidiary inventory model G(7£1)' For any £ > 0, let £1 be such that 

Lenuna 3.3 and 3.14 hold. In G(7£1)' if we define y(.) by y(D) £llJ(Dn 

[-2M,-M])/2M for D £ --8 s , we observe that for x £ S, a £ A(x) and F' £ 7£1' 

Q (D I x , a , F ' ) Q(Dlx,a,F') - y(D) 

i': £lfD(q,(a-y) 

£1/2 > 0, 

-1 
(2M) I[-2M,-M] (y»d]J 

where lJ is the Lebesque measure. 

This means that Condition E holds for G(::;r ). 
£1 co 

Therefore, by Theorem 3.1 there exists a minimax (s,S) ordering policy f £ IT' 

for which 

(3.8) . f ' ( , ') ~n , Il' sup, ", lji x , 1T , 0 
1T £ 0 £ '" 
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Applying Lemma 3.4, there exists a random (s,S) ordering policy n* £ IT 

for which the properties in. Lemma 3.4 hold. 

For this n*, 'Ne have 

sup,; £ Z 1J;(x,n*,o) ;;; sUPo ' £ :~' 1J;'(x,/''',o') + £/2, 

from Lemma 3.4" 

inf, 11' sup, 'C' w'(x,n',o') + £/2, from (3.8), 
n £ 0 £ '" 

;;; inf n £ IT sup 0 £ Z 1J; (x, ·1 ,0) + £, 

from Lemma 3.3, 

245 

which implies that the random (s,s) ordering policy n* is £-minimax. Q.E.D. 

Remark: Let d (~,02) be the class of distribution functions F on R+ such 

that /xdF(x) = ~ and /x2dF(X) ~2 + 0
2 where ~ and 0

2 are finite constants. 

We suppose that the holding and penalty cost functions are both linear. Then, 

since d (~,02) is a Borel set and Condition D is satisfied, it holds from 

Theorem 3.2 that for any £ > 0 an E-minimax random (s,S) ordering policy 

exists for d : d (~,0 2 ). 

We note that Nakagami [10] has studied the inventory problem with the un

bounded lower semi-continuous cost function and by using weighted supremum 

norms and the Banach contraction principle derived the optimal inventory 

equation for the discounted case. 
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