MINIMAX STRATEGIES FOR AVERAGE COST STOCHASTIC GAMES WITH AN APPLICATION TO INVENTORY MODELS

Masami Kurano
Chiba University

(Received July 1, 1986; Revised December 1, 1986)

Abstract

We consider a zero-sum average cost stochastic game with the unbounded lower semi-continuous cost function, and by using the contraction property $([6,7])$ for the average case we give sufficient conditions for which there exists a minimax stationary strategy. Also, we formulate a minimax inventory model as a stochastic game and show that for any $\epsilon>0$ there exists an ϵ-minimax random (s, S) ordering policy, which is a modification of (s, S) ordering policy, under some weak conditions.

1. Introduction and Notation

A zero-sum stochastic game has been investigated by many authors and the existence of equilibrium strategies has been discussed. For example, see $[9,11]$ for the discounted case and $[2,13]$ for the average case.

In this paper we consider an average cost stochastic game with the unbounded lower semi-continuous cost function, and by using the contraction property ([6,7]) for the average case we give sufficient conditions for which there exists a minimax stationary strategy. Also, we apply these results to the inventory model with an unknown demand distribution and show that for any $\varepsilon>0$ there exists an $\varepsilon-m i n i m a x$ random (s, s) ordering policy, which is a modification of (s, s) ordering policy, under some weak conditions.

By a Borel set we mean a Borel subset of some complete separable metric space. For a Borel set X, \mathcal{B}_{X} denotes the Borel subsets of X. If X is a nonempty Borel set, $\mathrm{B}^{+}(X)\left[\mathrm{B}_{S}^{+}(X)\right]$ denotes the set of all non-negative real valued Borel measurable [lower semi-continuous] functions on X. The product of the sets D_{1}, D_{2}, \ldots will be denoted by $D_{1} D_{2} \ldots$.

A zero-sum stochastic game is specified by five objects: $S,\{A(x), x \in S\}$,
B, C, Q, where S is any Borel set and denotes the state space, for each $x \in S$, $A(x)$ is a non-empty Borel subset of a Borel set A such that $\{(x, a): x \in S$, $a \varepsilon A(x)\}$ is closed, and denotes the set of actions available to player 1 at state x, B is a non-empty Borel set and denotes the set of actions available to player $2, C \varepsilon B^{+}(S A B)$ is a one-step cost function for player 1 and $Q=$ $O(\cdot \mid x, a, b)$ is the law of motion, which is taken to be a stochastic kernel on ${ }^{\mathcal{B}}{ }_{S} S A B ;$ i.e., for each $(x, a, b) \in S A B, Q(\cdot \mid x, a, b)$ is a probability measure on \mathcal{B}_{S}; and, for each $D \varepsilon \mathcal{B}_{S}, Q(D \mid \cdot) \varepsilon B^{+}(S A B)$.

A strategy of player 1 will be a sequence $\pi=\left(\pi_{0}, \pi_{1}, \ldots\right)$ such that, for each $t \geqq 0, \pi_{t}$ is a stochastic kernel on $\mathcal{B}_{A} S(A B S)^{t}$ with $\pi_{t}\left(A\left(x_{t}\right) \mid x_{0}, a_{0}, b_{0}, \ldots\right.$, $\left.a_{t-1}, b_{t-1}, x_{t}\right)=1$ for all $\left(x_{0}, a_{0}, b_{0}, \ldots, a_{t-1}, b_{t-1}, x_{t}\right) \varepsilon S(A B S)^{t}$. Let Π denote the set of all strategies for player 1 . A strategy $\pi=\left(\pi_{0}, \pi_{1}, \ldots\right.$) is called [analytically measurable] stationary strategy if there is a [analytically measurable] measurable function $f: S \rightarrow A$ with $f(x) \in A(x)$ for all $x \in S$ such that $\pi_{t}\left(\left.f\left(x_{t}\right)\right|_{\left.x_{0}, a_{0}, b_{0}, \ldots, a_{t-1}, b_{t-1}, x_{t}\right)=1 \text { for all }\left(x_{0}, a_{0}, b_{0}, \ldots, a_{t-1}, b_{t-1}, x_{t}\right) .}\right.$ $\varepsilon S(A B S)^{t}$ and $t \geqq 0$. Such a strategy will be denoted by f^{∞}.

A strategy of player 2 is a sequence $\sigma=\left(\sigma_{0}, \sigma_{1}, \ldots\right)$ such that, for each $t \geqq 0, \sigma_{t}$ is a stochastic kernel on $\mathcal{B}_{B} S A(B S A)^{t}$. We note that the $t-t h$ action of player 2 is taken after knowing the action taken by player 1 at the t-th time. Let Σ denote the set of all strategies for player 2. Stationary strategies of player 2 are defined analogously.

The sample space is the product space $\Omega=S(A B S)^{\infty}$. Let X_{t}, Δ_{t} and Γ_{t} be random quantities defined by $X_{t}(\omega)=x_{t}, \Delta_{t}(\omega)=a_{t}$ and $\Gamma_{t}(\omega)=b_{t}$ for $\omega=$ $\left(x_{0}, a_{0}, b_{0}, x_{1}, a_{1}, b_{1}, \ldots\right) \in \Omega$.

Let $H_{t}=\left(X_{0}, \Delta_{0}, \Gamma_{0}, \ldots, \Delta_{t-1}, \Gamma_{t-1}, X_{t}\right)$. It is assumed that, for each $\pi=\left(\pi_{0}, \pi_{1}, \ldots\right) \varepsilon \Pi$ and $\sigma=\left(\sigma_{0}, \sigma_{1}, \ldots\right) \varepsilon \Sigma, P\left(\Delta_{t} \varepsilon D_{1} \mid H_{t}\right)=\pi_{t}\left(D_{1} \mid H_{t}\right)$, $P\left(\Gamma_{t} \varepsilon D_{2} \mid H_{t}, \Delta_{t}\right)=\sigma_{t}\left(D_{2} \mid H_{t}, \Delta_{t}\right)$ and $P\left(X_{t+1} \varepsilon D_{3} \mid H_{t-1}, \Delta_{t-1}, \Gamma_{t-1}, X_{t}=x, \Delta_{t}=a, \Gamma_{t}=b\right)$ $=Q\left(D_{3} \mid x, a, b\right)$ for every $D_{1} \in \mathcal{B}_{A}, D_{2} \in \mathcal{B}_{B}$ and $D_{3} \in \mathcal{B}_{S}{ }^{\circ}$

Then, for each $\pi \varepsilon \Pi, \sigma \varepsilon \Sigma$ and starting point $x \varepsilon S$, we can define the probability measure $p_{\pi, \sigma}^{X}$ on Ω in an obvious way.
We shall consider the following average cost criterion:
For any strategies $\pi \varepsilon \Pi, \sigma \varepsilon \Sigma$ and $x \in S$ let

$$
\begin{equation*}
\psi(x, \pi, \sigma)=1 \lim \sup _{T \rightarrow \infty} E_{\pi, \sigma}^{x}\left[\Sigma_{t=0}^{T-1} c\left(x_{t}, \Delta_{t}, \Gamma{ }_{t}\right)\right] / T, \tag{1.1}
\end{equation*}
$$

where $E_{\pi, 0}^{x}$ is the expectation operator with respect to $P_{\pi, \sigma}^{x}$. Let $\psi(x, \pi)=\sup _{\sigma \varepsilon \Sigma} \psi(x, \pi, \sigma)$. Then for any $\varepsilon \geqq 0$, we say that $\pi * \varepsilon \Pi$ is $\varepsilon-$ minimax if $\psi\left(x, \pi^{*}\right) \leqq \psi(x, \pi)+\varepsilon$ for all $x \varepsilon S$ and $\pi \varepsilon$ I. A 0 -minimax strategy is simple called minimax.

In Section 2, we give sufficient conditions for which a minimax stationary strategy exists. In Section 3, a minimax inventory problem is formulated as a stochastic game and it is shown that for any $\varepsilon>0$, there exists an ε-minimax random (s, s) ordering policy under weak conditions.

2. Existence of Minimax Strategy

In this section we shall give sufficient conditions for the existence of a minimax stationary policy.

In order to insure the ergodicity of the process, we introduce the following contraction property ([6,7]).

Condition A. There exist a measure γ on S such that $0<\gamma(S)<1$ and $Q(D \mid x, a, b) \geqq \gamma(D)$ for all $D \in \mathcal{B}_{S}, x \in S, a \in A(x)$ and $b \varepsilon B$.
Under Condition A, we define the map U on $B^{+}(S)$ by

$$
\begin{equation*}
U u(x)=\inf _{a \in A(x)} \sup _{b \in B} U(x, a, b, u) \tag{2.1}
\end{equation*}
$$

if this expression exists, where

$$
\begin{gather*}
U(x, a, b, u)=c(x, a, b)+\int u(y) Q(d y \mid x, a, b)-\int u(y) \gamma(d y) \tag{2.2}\\
\text { for each } u \in \mathrm{~B}^{+}(S), x \in S, a \in A(x) \text { and } b \in B
\end{gather*}
$$

Condition B. The following $B 1-B 2$ holds:
B1. $c \in B_{S}^{+}(S A B)$ and $Q(\cdot \mid x, a, b)$ is weakly continuous in $(x, a, b) \varepsilon S A B$, that is, whenever $x_{n} \rightarrow x, a_{n}+a$ and $b_{n} \rightarrow b, Q\left(\cdot \mid x_{n}, a_{n}, b_{n}\right)$ converges weakly to $Q(\cdot \mid x, a, b)$.
B2. When $x_{n} \in S \rightarrow x \in S$ as $n \rightarrow \infty$, for any sequence $\left\{a_{n}\right\}$ with $a_{n} \varepsilon A\left(x_{n}\right)$ for all $n \geqq 1$, there exist a subsequence $\left\{a_{n_{j}}\right\}$ of $\left\{a_{n}\right\}$ and $a \varepsilon A(x)$ such that $a_{n j} \rightarrow$ a as $j \rightarrow \infty$.

We need the following condition to treat with the unbounded cost.
Condition C. There exists a $\bar{v} \varepsilon B_{S}^{+}(S)$ such that the following $C 1-C 3$ hold:
C1. $c(x, a, b) \leqq \bar{v}(x)$ for $a 11 x \in S, a \in A(x)$ and $b \in B$.
C2. $U \bar{v} \leqq \bar{v}$.
C3. $\int \bar{v}(y) Q(d y \mid x, a, b)$ is uniformly integrable for $(x, a, b) \in S A B$.
In the next section we shall show that the usual inventory model satisfies Condition B and C.
For any non-empty Borel set X, we denote by $\overline{\mathrm{B}}_{S}^{+}(x)$ the set of all non-negative real-valued, bounded lower semi-continuous functions on X.

Lemma 2.1. Suppose that Conditions B and C hold. Then for any $u \in B_{S}^{+}(S)$ with $0 \leqq u \leqq \bar{v}$ it holds that (i) $\int u(y) Q(d y \mid x, a, b) \varepsilon B_{s}^{+}(S A B)$ and (ii) $\sup _{b \in B} U(x, a, b, u) \in B_{S}^{+}(S A)$.

Proof: From C3, for any $\varepsilon>0$ there exists a constant M for which $\int_{D} \bar{v}(y) D(d y \mid x, a, b) \leqq \varepsilon / 2$ for all $x \in S, a \varepsilon A(x)$ and $b \varepsilon B$, where $D=\{y \in S \mid \bar{v}(y)$ $\geqq M\}$. Let $u \in B_{S}^{+}(S)$ with $0 \leqq u \leqq \bar{v}$. And, for the above M, let $u_{M}(y)=u(y)$ if $u(y)<M,=M$ if $u(y) \geqq M$. Then since $u_{M} \varepsilon B_{S}^{+}(s)$, it holds from Lemma 4.1 of Maitra [8] that

$$
\begin{equation*}
\int u_{M}(y) Q(d y \mid x, a, b) \varepsilon \overline{\mathrm{B}}_{S}^{+}(S A B) \tag{2.3}
\end{equation*}
$$

Also, we obtain

$$
\begin{align*}
& \left|\int u(y) Q(d y \mid x, a, b)-\int u_{M}(y) Q(d y \mid x, a, b)\right| \tag{2.4}\\
& \leqq \int_{D} \bar{v}(y) Q(d y \mid x, a, b) \leqq \varepsilon / 2 \\
& \text { for all }(x, a, b) \varepsilon S A B
\end{align*}
$$

Therefore, by (2.3) and (2.4) it holds that when $\left(x_{n}, a_{n}, b_{n}\right) \rightarrow(x, a, b)$,

$$
\begin{aligned}
& \operatorname{lim~inf}_{n \rightarrow \infty} \operatorname{su}(y) Q\left(d y \mid x_{n}, a_{n}, b_{n},\right) \\
& \geqq \lim \inf _{n \rightarrow \infty} \int \mathrm{u}_{M}(y) Q\left(d y \mid x_{n}, a_{n}, b_{n}\right)-\varepsilon / 2 \\
& \geqq \int u_{M}(y) Q(d y \mid x, a, b)-\varepsilon / 2 \\
& \geqq \operatorname{\int u}(y) Q(d y \mid x, a, b)-\varepsilon .
\end{aligned}
$$

As $\varepsilon \rightarrow 0, \lim \inf _{n \rightarrow \infty} \int u(y) Q\left(\left.d y\right|_{x_{n}}, a_{n}, b_{n}\right) \geqq \int u(y) Q(d y \mid x, a, b)$, which means (i). Clearly (ii) follows.
Q.E.D.

Lemma 2.2. Suppose that Conditions A, B and C hold. Then, for any $u \in \mathrm{~B}_{S}^{+}(S)$ with $0 \leqq u \leq \bar{v}$, Uuє $\mathrm{B}_{S}^{+}(S)$.

Proof: For any fixed $u \in B_{S}^{+}(S)$ with $0 \leqq u \leqq \bar{v}$, let $U(x, a, u)=\sup _{b \in B}$ $U(x, a, b, u)$. Then since $U(x, a, u) \varepsilon \mathrm{B}_{S}^{+}(S A)$, by the definition of $U u$, for any state sequence $\left\{x_{n}\right\}$ with $x_{n} \varepsilon S \rightarrow x \varepsilon S$ as $n \rightarrow \infty$ and $\varepsilon>0$ there exists an action sequence $\left\{a_{n}\right\}$ such that

$$
U u\left(x_{n}\right) \geqq U\left(x_{n}, a_{n}, u\right)-\varepsilon \text { for all } n \geqq 1
$$

Using the condition B2, there are a subsequence $\left\{a_{n_{j}}\right\}$ of $\left\{a_{n}\right\}$ and $a \in A(x)$ for which $a_{n_{j}} \rightarrow a$ as $j \rightarrow \infty$ and
$\lim _{\inf }^{n \rightarrow \infty} U U\left(x_{n}\right) \geq 1 \operatorname{im} \inf _{n \rightarrow \infty} U\left(x_{n}, a_{n}, u\right)-\varepsilon$
$=\lim _{j \rightarrow \infty} U\left(x_{n_{j}}, a_{n_{j}}, u\right)-\varepsilon \geqq U(x, a, u)-\varepsilon$
$\geqq U u(x)-\varepsilon$.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

As $\varepsilon \rightarrow 0$ in the above, Uu $\varepsilon \mathrm{B}_{S}^{+}(S)$ follows.
We denote by $B(S \rightarrow A)$ the set of all Borel measurable functions $f: S \rightarrow A$ with $f(x) \varepsilon A(x)$ for all $x \in S$ and by $B_{a}(X \rightarrow B)$ the set of all lower semi-analytic functions $h: X \rightarrow B$, where X is any Borel set.

Lemma 2.3. Suppose that Conditions A, B and C hold. Then, for any u, $w \in \mathrm{~B}_{S}^{+}(S)$ with $0 \leqq u, w \leqq \bar{v}$ and $\varepsilon>0$ there exist $f \in \mathrm{~B}(S \rightarrow A)$ and $h \in \mathrm{~B}_{a}(S \rightarrow B)$ such that
(2.5)

$$
\begin{aligned}
& U u(x)-U_{w}(x) \leqq f(u(y)-w(y)) \bar{Q}(d y \mid x, f(x), h(x))+\varepsilon \\
& \text { for all } x \in S
\end{aligned}
$$

where

$$
\begin{equation*}
\bar{Q}(d y \mid x, a, b)=Q(d y \mid x, a, b)-\gamma(d y) \tag{2.6}
\end{equation*}
$$

Proof: By Lemma $2.1 U(x, a, w) \varepsilon B_{S}^{+}(S A)$, so that it holds from the selection theorem $([1,12])$ that for any $\varepsilon>0$ there exist $f \varepsilon B(S \rightarrow A)$ and $h \varepsilon B_{a}(S \rightarrow B)$ such that $U(x, f(x), w)=U w(x)$ and $U(x, f(x), h(x), u) \geqq U(x, f(x), u)-\varepsilon$ for all $x \in S$.

Thus, by the definition of U, we have

$$
\begin{aligned}
U u(x)-U w(x) & \leqq U(x, f(x), u)-U(x, f(x), w) \\
& \leqq U(x, f(x), h(x), u)-U(x, f(x), h(x), w)+\varepsilon,
\end{aligned}
$$

which implies (2.5).
Q.E.D.

Theorem 2.1. Suppose that Conditions A, B and C hold. Then there exist a constant ψ^{*} and a $v \in \mathrm{~B}_{S}^{+}(S)$ with $0 \leqq v \leqq \bar{v}$ such that

$$
\begin{align*}
& v(x)=\inf _{a \in A(x)} \sup _{b \in B}\left\{c(x, a, b)-\psi *+\int v(y) Q(d y \mid x, a, b)\right\} \tag{2.7}\\
& \text { for all } x \in S,
\end{align*}
$$

and if

$$
\begin{equation*}
\lim _{T \rightarrow \infty} E_{\pi, \sigma}^{x}\left[v\left(X_{T}\right)\right] / T=0 \text { for all } x \in S, \pi \varepsilon \Pi \text { and } \sigma \varepsilon \Sigma, \tag{2.8}
\end{equation*}
$$

it holds that
(2.9) $\psi^{*} \leqq \psi(x, \pi)$ for all $x \in S$ and $\pi \varepsilon \Pi$.

Proof: Let us define the sequence $\left\{\bar{v}_{n}\right\}$ and $\left\{{\underset{V}{V}}_{n}\right\}$ respectively by $\bar{v}_{0}=\bar{v}$, $\underline{v}_{0}=0, \bar{v}_{n+1}=U \bar{v}_{n}$ and $\underline{v}_{n+1}=U V_{n}$ for all $n \geq 1$.
Then, from Lemma 2.2 and the monotonicity of U we have $\bar{v}_{0} \geqq \bar{v}_{n} \geqq \bar{v}_{n+1} \geqq V_{-n+1}$ $\geqq \underline{V}_{n} \geqq 0$ and $\underline{V}_{n} \in \mathrm{~B}_{S}^{+}(S)(n \geq 1)$.
Now, we show by induction that there exists a constant M such that

$$
\begin{align*}
& \bar{v}_{n}(x)-\underline{v}_{n}(x) \leqq M \beta^{n-1} \text { for all } n \geqq 1 \tag{2.10}\\
& \text { where } \beta=1-\gamma(s) \text { and } 0<\beta<1 .
\end{align*}
$$

In fact, from $C 3$ there exists some M such that $\int \bar{v}(y) Q(d y \mid x, a, b) \leqq M$ for all $x \in S, a \in A(x)$ and $b \in B$. For any $\varepsilon>0$ from Lemma 2.3 there exist $f \varepsilon B(S \rightarrow A)$ and $h \in B_{a}(S \rightarrow B)$ for which

$$
\begin{aligned}
\bar{v}_{1}(x) & -\underline{v}_{1}(x) \leqq \int\left(\bar{v}_{0}(y)-\underline{v}_{0}(y)\right) \bar{Q}(d y \mid x, f(x), h(x))+\varepsilon \\
& \leqq \int \bar{v}_{0}(y) Q(d y \mid x, f(x), h(x))+\varepsilon \leqq M+\varepsilon,
\end{aligned}
$$

so that as $\varepsilon \rightarrow 0$ we observe that (2.10) holds for $n=1$. Suppose that (2.10) holds for n. Similarly, for any $\varepsilon>0$ there exist $f_{n} \varepsilon B(S \rightarrow A)$ and $h_{n} \in B_{a}(S \rightarrow B)$ such that

$$
\begin{aligned}
\bar{v}_{n+1}(x)-\underline{v}_{n+1}(x) & \leqq \int\left(\bar{v}_{n}(y)-\underline{v}_{n}(y)\right) \bar{Q}\left(d y \mid x, f_{n}(x), h_{n}(x)\right)+\varepsilon \\
& \leqq M \beta^{n-1} \bar{Q}\left(S \mid x, f_{n}(x), h_{n}(x)\right)+\varepsilon \\
& =M \beta^{n}+\varepsilon,
\end{aligned}
$$

which shows that (2.10) holds for $n+1$. Thus, if we let $v=\lim _{n \rightarrow \infty} \vec{v}_{n}$, then $v=1 \mathrm{im}_{n \rightarrow \infty} \underline{v}_{n}$ and $v \in \mathrm{~B}_{s}^{+}(S)$. Also, since $\vec{v}_{n}=U \vec{v}_{n-1} \geqq U v$ and $\underline{v}_{n}=U_{V_{n-1}} \leq U v$, we get $v \geqq U v$ and $v \leqq U v$, which implies
(2.11) $\quad v=U v$.

If we let $\psi^{*}=\delta_{V}(y) \gamma(d y)$ in (2.11), (2.11) means (2.7). For ψ^{*} and $v \in B_{S}^{+}(S)$ as in (2.7), we define

$$
\begin{aligned}
\phi(x, a, b)= & c(x, a, b)-\psi^{*}-v(x)+\int_{v}(y) Q(d y \mid x, a, b) \\
& \text { for each } x \in S, a \in A(x) \text { and } b \varepsilon B .
\end{aligned}
$$

Then, it holds from (2.7) that $\sup _{b \in B} \phi(x, a, b) \geqq 0$ for all $x \in S$ and $a \in A(x)$, so that using the selection theorem ($[1,12]$) for any $\varepsilon>0$ there exists $h \in B_{a}(S A \rightarrow B)$ such that $\phi(x, a, h(x, a)) \geqq-\varepsilon$ for $a l l x \in S$ and $a \in A(x)$. So, for this stationary policy h^{∞}, we have

$$
\begin{gathered}
E_{T, h}^{x} \infty\left[\phi\left(X_{t}, \Delta_{t}, \Gamma_{t}\right)\right] \geqq-\varepsilon \\
\text { for all } \pi \varepsilon \Pi,
\end{gathered}
$$

which derives

$$
\begin{aligned}
& E_{\pi, h}^{x} \infty\left[\Sigma_{t=0}^{T-1} c\left(X_{t}, \Delta_{t}, \Gamma_{t}\right)\right] / T \\
& \quad \geqq \psi^{*}+\left(v(x)-E_{\pi, h}^{x}\left[v\left(X_{T}\right)\right]\right) / T-\varepsilon .
\end{aligned}
$$

Therefore, as $T \rightarrow \infty$ and $\varepsilon \rightarrow 0$ in the above, we get $\psi(x, \pi) \geqq \psi^{*}$. Q.E.D.
The next theorem shows the existence of a minimax stationary strategy in a stochastic game model.

Theorem 2.2. Suppose that Conditions A, B and C hold. Then it holds that
(i) there exists $f \in B(S \rightarrow A)$ such that
(2.12) $\sup _{b \in B} \phi(x, f(x), b)=0$ for all $x \in S$
and
(ii) if (2.8) holds, the stationary strategy f^{∞} is minimax.

Proof: From the selection theorem ([1,11]), (i) follows.
For (ii), from (2.12) it holds that $\phi(x, f(x), b) \leqq 0$ for all $b \varepsilon B$, so that by the similar discussion as that of Theorem 2.1 we obtain $\psi\left(x, f^{\infty}\right) \leqq \psi^{*}$, which implies from (ii) of Theorem 2.1 that f^{∞} is minimax. Q.E.D.

3. A Minimax Inventory Mode 1

In this section we consider the single-item stochastic inventory model whose demand distributions for each period are assumed to be unknown but are restricted to a class of distributions on $R^{+}=(0, \infty)$.

And by transforming this model equivalently to a stochastic game between a decision maker and Nature we shall give a characterization of a minimax ordering policy which minimizes the maximum average expected cost over the infinite planning horizon. Here, the demands in successive periods are assumed to form a sequence of independent random variables whose distributions can change from period to period in a restricted class of distributions and any unfilled demand in a period is backlogged. We note that a reader may refer to Jagannathan [5] for the discounted minimax case.

Let $\mathrm{P}\left(R^{+}\right)$be the set of all probability measure or, equivalently, distributions on R^{+}. Then it is known that $\mathrm{P}\left(R^{+}\right)$is a complete separable metric space with respect to the weak topology (for example, see [1]). Let f be a Borel subset of $P\left(R^{+}\right)$. Define $S=(-\infty, M]$ and $A=[0, M]$, where M is a capacity of inventory. For each $x \in S, A(x)=[O V x, M] \subset A$ is the set of actions available to a decision maker (player 1) at state x and denotes the set of inventory after ordering, where $x V y=\max \{x, y\}$. And $B=F$ is the set of actions available to player 2.

Then, the stochastic kernel Q is as follows:

$$
Q(D \mid x, a, F)=P(a-\tilde{x} \varepsilon D) \text { for each } x \varepsilon S, a \varepsilon A(x) \text { and } F \varepsilon \mathcal{F} \text {, }
$$

where \tilde{x} is a random variable with the distribution F. For one-step cost, let, for each $x \in S, a \in A(x)$ and $F \in \mathscr{F}$,

$$
\begin{equation*}
c(x, a, F)=K \cdot I(0, \infty)(a-x)+c \cdot(a-x)+L(a, F), \tag{3.1}
\end{equation*}
$$

where $L(a, F)$ is the expected holding and shortage cost at the inventory a after ordering when the demand distribution is F and $K>0$ is a set-up cost and I_{D} is the indicator function of D.

We introduce the following conditions to apply the results of Section 2.
Condition D. The following D1-D2 hold.
D1. There exist $k>0$ and $\delta>0$ such that

$$
\int_{0}^{\infty} y^{1+\delta} d F(y) \leqq \kappa \quad \text { for all } F \varepsilon \neq
$$

D2. $L(a, F)$ is convex in $a \varepsilon A$ for each $F \in \mathscr{F}$ and bounded with $0 \leqq L(a, F) \leqq L$
for some L and all $a \in A$ and $F \in \mathcal{F}$.
Condition E. There is a measure γ on S such that $0<\gamma(S)<1$ and $Q(D \mid x, a, F) \geqq \gamma(D)$ for all $D \in \mathcal{B}, x \in S, a \in A(x)$ and $F \in \mathcal{F}$.

Example.

We denote by $N_{+}\left(\mu, \sigma^{2}\right)$ the normal distribution which is truncated at 0 on the left. For any given $d_{i}(i=1,2,3,4)$ with $0<d_{1}<d_{2}$ and $0<d_{3}<d_{4}$ let

$$
\mathscr{F}=\left\{N_{+}\left(\mu, \sigma^{2}\right) \mid d_{1} \leqq \mu \leqq d_{2}, d_{3} \leqq \sigma^{2} \leqq d_{4}\right\}
$$

In this case, D1 holds for $\delta=2$ and D2 holde for any linear holding and penalty cost functions. Let $f_{+}\left(x ; \mu, \sigma^{2}\right)$ be the density of $N_{+}\left(\mu, \sigma^{2}\right)$.
We observe that

$$
Q\left(D \mid x, a, N_{+}\left(\mu, \sigma^{2}\right)=\int_{a-y \varepsilon D} f_{+}\left(y ; \mu, \sigma^{2}\right) d y \text { for any } D \varepsilon \mathcal{B}_{S} \text { and a } \varepsilon A(x) .\right.
$$

We define a function $f(y)$ by $f(y)=\min d_{1} \leqq \mu \leqq d_{2}, d_{3} \leqq \sigma^{2} \leqq d_{4}, a \varepsilon A f_{+}\left(a-y ; \mu, \sigma^{2}\right)$ if $y \leqq 0,=0$ if $0<y \leqq M$.
Then, it is easily verified that $0<\gamma(S)<1$ and

$$
\begin{aligned}
& Q\left(D \mid x, a, N_{+}\left(\mu, \sigma^{2}\right)\right) \geqq \gamma(D) \text { for any } D \in \mathcal{B}_{S}, x \in S, a \in A(x) \text { and } N_{+}\left(\mu, \sigma^{2}\right) \varepsilon \mathcal{F}, \\
& \text { where } \gamma(D)=\int_{D} f(y) d y .
\end{aligned}
$$

That is, Condition E holds for this \mathcal{F}.
Lemma 3.1. Suppose that Conditions D and E hold. Then, Conditions A, B and C in Section 2 are satisfied in a stochastic game defined above.

Proof: For any integer m and real number β^{\prime} such that
$0<\beta^{\prime} \leqq \gamma(S)-C \cdot K \cdot\{K+L+C \cdot(M+m)\}^{-1}$, let define a function \bar{v} on S by

$$
\begin{aligned}
\bar{v}(x) & =(K+L+C \cdot(M+m)) / \beta^{\prime} & & \text { if } x \varepsilon(-m, M], \\
& =(K+L+C \cdot(M+j+1)) / \beta^{\prime} & & \text { if } x \varepsilon(-j-1,-j] \text { for } j \geqq m .
\end{aligned}
$$

Then, it holds that $U(x, a, F, v) \leqq \bar{V}(x)$ for all $x \in S, a \in A(x)$ and $F \varepsilon g$, where $U(x, a, F, v)$ is defined in (2.2).
In fact, for example, when $x \varepsilon(-m, M]$, we have

$$
\begin{aligned}
U(x, a, F, \bar{v}) & =c(x, a, F)+\int \bar{v}(y) Q(d y \mid x, a, F) \\
& \leqq K+L+c \cdot(M+m)+\{(1-\gamma(S))(K+L+c \cdot(M+m))+C K\} / \beta^{\prime \prime} \\
& \leqq \bar{v}(x)
\end{aligned}
$$

where \bar{Q} is defined in (2.6). Thus we get $U \bar{V} \leqq \bar{V}$. Also, it is easily verified that other conditions in Conditions A, B and C hold.
Q.E.D.

Before stating the theorem, we give the following lemma.
Lemma 3.2. Suppose that $g(x, \lambda)$ is K-convex in $x \in R^{+}$for each $\lambda \varepsilon \Gamma$. Then, $\sup _{\lambda \varepsilon \Gamma} g(x, \lambda)$ is K-convex in $x \in R^{+}$.

Proof: Let $g(x)=\sup _{\lambda \varepsilon \Gamma} g(x, \lambda)$.
For any $\varepsilon>0$ and $x \in S, g(x) \leqq g(x, \lambda)+\varepsilon$ for some $\lambda \varepsilon \Gamma$. Thus,

$$
\begin{aligned}
& K+g(x+d)-g(x)-d\{(g(x)-g(x-e)) / e\} \\
&=K+g(x+d)+d g(x-e) / e-(1+d / e) g(x) \\
& \geqq K+g(x+d, \lambda)+d g(x-e, \lambda) / e-(1+d / e) g(x, \lambda)-(1+d / e) \varepsilon \\
& \geqq-(1+d / e) \varepsilon \text { from the hypothesis of } K \text {-convexity. }
\end{aligned}
$$

As $\varepsilon \rightarrow 0$ in the above, we have

$$
\begin{gathered}
K+g(x+d)-g(x)-d\{(g(x)-g(x-e)) / e\} \geqq 0 \\
\text { for all } x \in S, d>0 \text { and } e>0,
\end{gathered}
$$

which implies K-convexity of g.
Q.E.D.

Theorem 3.1. Under Conditions D and E, a minimax (s, s) ordering policy exists.

Proof: By Theorem 2.1, there exist a constant ψ^{*} and $v \in B_{S}^{+}(S)$ such that

$$
\begin{gathered}
v(x)=\inf _{a \varepsilon x} \sup _{F \varepsilon \neq}\{K \cdot I(0, \infty)(x-a)+c \cdot(a-x) \\
\left.\quad+L(a, F)-\psi^{*}+\int v(a-y) d F(y)\right\} .
\end{gathered}
$$

Now, we show that v is K-convex. For the operator U defined in (2.1), let $u_{0}=0$ and $u_{n}=U u_{n-1}$ for $n \geqq 1$. First, we show by induction that u_{n} is
K-convex for all $n \geq 0$. If we define $G(x, a, F, u)=c \cdot a+L(a, F)+\int u(a-y) Q(d y \mid$ $x, a, F)$ for each $x \in S, a \in A(x), F \in \mathscr{F}$ and $u \in B_{S}^{+}(S)$, we can write

$$
U(x, a, F, i d)=-c \cdot x+\min \left\{G(x, x, F, u), K+G(x, a, F, u) I{ }_{(x, M]}(a)\right\}-\int u(y) \gamma(d y) .
$$

From the results of Iglehart [3,4], $G\left(x, a, F, u_{n}\right)$ is K-convex in $a \varepsilon A$ if u_{n} is K-convex.

Since $\sup _{F \in \&} G\left(x, a, F, u_{n}\right)$ is K-convex in a εA for Lemma 3.2 , by using the results of $\operatorname{Iglehart}$ again it holds that $u_{n+1}=U u_{n}$ is K-convex. Therefore, since $v=\lim _{n \rightarrow \infty} u_{n}$ by the similar discussion as Theorem 2.1 , v is $K-$ convex. By Theorem 2.2, the minimax stationary strategy f^{∞} exists. Since $\sup _{F \in \mathcal{F}} G(x, a, F, v)$ is K-convex in $a \varepsilon A$, we can prove, by the same way as used in Iglehart $[3,4]$, that f^{∞} is an (s, s) ordering policy.
Q.E.D.

We say that $\pi=\left(\pi_{0}, \pi_{1}, \ldots\right) \varepsilon \Pi$ is a random (s, s) ordering policy if there exist $\varepsilon_{1}\left(0<\varepsilon_{1}<1\right)$ and a map $f: S \rightarrow A$ satisfying that $f(x)=S_{1}$, if $x \leqq s_{1}$, $=x$ if $x>S_{1}$ for some $s_{1}<S_{1}$ such that π_{t} selects the action $\Delta_{t}=f\left(X_{t}\right)$ with probability $1-\varepsilon_{1}$ and the action $X_{t} \vee S_{1}$ with probability ε_{1}.

Then we can state the main theorem.
Theorem 3.2. Suppose that Condition D holds and $L(a, F)$ is linear in $F \in \mathrm{P}\left(R^{+}\right)$for each a εA.

Then for any $\varepsilon>0$ there exists a random (s, S) ordering policy which is ε-minimax.

In order to prove Theorem 3.2, we shall introduce a subsidiary stochastic game for which Condition E holds.

Let $\Phi \in P\left(R^{+}\right)$be such that Φ has density $\phi(x)$ with $\phi(x)=(2 M)^{-1}$ if $M \leqq x \leqq 3 M$ and $=0$ otherwise. For this Φ and $\varepsilon_{1}\left(0<\varepsilon_{1}<1\right)$, put $\mathcal{F}_{\varepsilon_{1}}=$ $\left\{\varepsilon_{1} \Phi+\left(1-\varepsilon_{1}\right) F: F \in \mathcal{F}\right\}$.

Now we consider a subsidiary inventory model $G\left(\mathscr{F}_{\varepsilon_{1}}\right)$ in which the set of actions available to player 2 is $\mathscr{F}_{\varepsilon_{1}}$ but the state space and the set of actions available to a decision maker (player 1) at state x are respectively $S=(-\infty, M]$ and $A(x)=[0 \vee x, M]$.

Notice that the sample space of $G\left(\mathcal{F}_{\varepsilon_{1}}\right)$ is $\Omega^{\prime}=S\left(A \mathcal{F}_{\varepsilon_{1}} S\right)^{\infty}$. In $G\left(\mathcal{F}_{\varepsilon_{1}}\right)$, we denote respectively by $x_{t}^{\prime}, \Delta_{t}^{\prime}$ and Γ_{t}^{\prime} the state and the actions at the $t-t h$ time taken by players 1 and $2(t \geqq 0)$. Also, in $G\left(\mathcal{F}_{\varepsilon_{1}}\right)$ let Π^{\prime} and Σ^{\prime} be respectively the classes of strategies for players 1 and 2 and $\psi^{\prime}\left(x, \pi^{\prime}, \sigma^{\prime}\right)$ the average cost defined by (1.1) for any $x \in S, \pi^{\prime} \in \Pi^{\prime}$ and $\sigma^{\prime} \varepsilon \Sigma^{\prime}$. In the proof of Theorem 3.2 given later it is shown that Condition E holds for $G\left(\mathscr{F}_{\varepsilon_{1}}\right)$, so that applying Theorem 3.1 under Condition D there exists a minimax (s, s) ordering policy for $G\left(\mathcal{F}_{\varepsilon}\right)$.

To investigate the relation between $\Pi(\Sigma)$ and $\Pi^{\prime}\left(\Sigma^{\prime}\right)$, we introduce the following transformation.

Let $\left\{Y_{t}\right\}$ be a sequence of independent random variables such that for each $t \geqq 0 Y_{t}$ is uniformly distributed on $(0,1)$.

For any $t \geqq 0$ and the random quantity $H_{t}^{\prime}=\left(X_{0}^{\prime}, \Delta_{0}^{\prime}, \Gamma_{0}^{\prime}, \ldots, \Delta_{t-1}^{\prime}, \Gamma_{t-1}^{\prime}, x_{t}^{\prime}\right)$ $E S\left(A \sigma_{\varepsilon_{1}} S\right)^{t}$, we define a random quantity $\tilde{H}_{t}=\left(\tilde{X}_{0}, \tilde{\Delta}_{0}, \tilde{\Gamma}_{0}, \ldots, \tilde{\Delta}_{t-1}, \tilde{\Gamma} t-1, \tilde{X}_{t}\right)$ $\varepsilon S(A \mathcal{F} S)^{t}$ by

$$
\begin{aligned}
& \tilde{x}_{0}=x_{0}^{\prime}, \tilde{\Gamma}_{j}=\left(\Gamma_{j}^{\prime}-\varepsilon_{1} \Phi\right) /\left(1-\varepsilon_{j}\right), \tilde{\Delta}_{j}=\Delta_{j}^{\prime} \\
& \text { and } \tilde{X}_{j+1}=\tilde{\Delta}_{j}-\tilde{\Gamma}_{j}^{-1}\left(Y_{j}\right) \text { for each } j \geqq 0,
\end{aligned}
$$

where for any $F \in P\left(R^{+}\right) F^{-1}$ is a left continuous inverse and $F^{-1}(t)=$ inf $\{x: F(x) \geqq t\}$.
We note that $\tilde{\Gamma}_{j} \in \mathscr{F}$ because $\Gamma_{j}^{\prime} \in \not \mathcal{F}_{\varepsilon_{1}}$.
Using the above transformation, from $\pi=\left(\pi_{0}, \pi_{1}, \ldots\right) \varepsilon \Pi$ and $\sigma=\left(\sigma_{0}, \sigma_{1}\right.$, $\ldots) \varepsilon \Sigma$ we construct $\pi^{\prime}=\left(\pi_{0}^{\prime}, \pi_{1}^{\prime}, \ldots\right) \varepsilon \pi^{\prime}$ and $\sigma^{\prime}=\left(\sigma_{0}^{\prime}, \sigma_{1}^{\prime}, \ldots\right) \varepsilon \Sigma^{\prime}$ by

$$
\begin{aligned}
& \pi_{t}^{\prime}\left(\cdot \mid H_{t}^{\prime}\right)=\pi_{t}\left(\cdot \mid \tilde{H}_{t}\right) \text { and } \\
& \sigma_{t}^{\prime}\left(D \mid H_{t}^{\prime}, \Delta_{t}^{\prime}\right)=\operatorname{Prob}\left(\varepsilon_{1} \Phi+\left(1-\varepsilon_{1}\right) \tilde{F}^{\tilde{\prime}} D\right) \text { for any Borel subset } D \text { of } \\
& \quad \mathcal{F}_{\varepsilon} \text { and } t \geqq 0, \\
& \text { where } \tilde{F}_{1} \text { is distributed with } \sigma_{t}\left(\cdot \mid \tilde{H}_{t}, \tilde{\Delta}_{t}\right) .
\end{aligned}
$$

To make the above definition possible, we only need to show that $\pi_{t}\left(A\left(X_{t}^{\prime}\right) \tilde{H}_{t}^{\prime}\right)=1$ for all $t \geqq 0$. In fact, since $X_{t}^{\prime}=\Delta_{t-1}^{\prime}-W_{t-1}^{\prime}$ and $\tilde{X}_{t}=$ $\Delta_{t-1}^{\prime}-W_{t-1}$ and W_{t-1}^{\prime} and ${ }_{t-1}$ are respectively distributed with $\Gamma_{t-1}^{\prime}=E_{1} \Phi+$ $\left(1-\varepsilon_{1}\right) \tilde{\Gamma}_{t-1}$ and $\tilde{\Gamma}_{t-1}$, it holds from the property of Φ that $\operatorname{Prob}\left(X_{t}^{\prime} \leqq \operatorname{Max}\left\{\tilde{X}_{t}, 0\right\}\right)$ $=1$. Thus $\operatorname{Prob}\left(A\left(X_{t}^{\prime}\right) \supset A\left(\tilde{X}_{t}\right)\right)=1$ so that by $\pi_{t}\left(A\left(\tilde{X}_{t}\right) \mid \tilde{H}_{t}\right)=1$ we get $\pi_{t}\left(A\left(X_{t}^{\prime}\right)\right.$ $\left.\mid \tilde{H}_{t}\right)=1$ for all $t \geqq 0$.

For convenience, we say $\pi^{\prime} \varepsilon \pi^{\prime}\left(\sigma^{\prime} \varepsilon \Sigma^{\prime}\right)$ a strategy constructed from $\pi \in \Pi$ ($\sigma \in \Sigma$) using the random transformation (ρ).

Conversely, we try to construct $\pi \varepsilon \Pi$ and $\sigma \varepsilon \Sigma$ from $\pi^{\prime} \in \Pi^{\prime}$ and $\sigma^{\prime} \varepsilon \Sigma^{\prime}$.
Let $\left\{\eta_{t}\right\}$ and $\left\{z_{t}\right\}$ be sequences of independent random variables with $\operatorname{Prob}\left(\eta_{t}=1\right)=1-\operatorname{Prob}\left(\eta_{t}=0\right)=\varepsilon_{1}$ and z_{t} is distributed with Φ for all $t \geqq 0$.

For any $t \geqq 0$ and the random quantity $H_{t}=\left(X_{0}, \Delta_{0}, \Gamma_{0}, \ldots, \Delta_{t-1}, \Gamma_{t-1}, x_{t}\right)$ $\varepsilon S(A \mathcal{F} S)$, we define a random quantity $\tilde{H}_{t}^{\prime}=\left(\tilde{X}_{0}^{\prime}, \tilde{\Delta}_{0}^{\prime}, \tilde{\Gamma}_{0}^{\prime}, \ldots, \tilde{\Delta}_{t-1}^{\prime}, \tilde{\Gamma}_{t-1}^{\prime}, x_{t}^{\prime}\right) \varepsilon$ $S\left(A \mathscr{F}_{\varepsilon_{1}} S\right)^{t}$ by

$$
\tilde{x}_{0}^{\prime}=x_{0}, \tilde{\Delta}_{j}^{\prime}=\Delta_{j}, \quad \tilde{\Gamma}_{j}^{\prime}=\varepsilon_{1} \Phi+\left(1-\varepsilon_{1}\right) \Gamma_{j} \text { and }
$$

$$
\begin{aligned}
& \tilde{x}_{j+1}^{\prime}=\tilde{\Delta}_{j}-z_{j} \text { if } \eta_{j}=1,=x_{j+1} \text { if } n_{j}=0 \\
& \text { for each } j \geqq 0 .
\end{aligned}
$$

And for any (s, s) ordering strategy $\pi^{\prime}=\left(\pi_{0}^{\prime}, \pi_{1}^{\prime}, \ldots\right) \varepsilon \Pi^{\prime}$ and any strategy $\sigma^{\prime}=\left(\sigma_{0}^{\prime}, \sigma_{1}^{\prime}, \ldots\right) \varepsilon \Sigma^{\prime}$, we construct $\pi=\left(\pi_{0}, \pi_{1}, \ldots\right) \varepsilon \Pi$ and $\sigma=\left(\sigma_{0}, \sigma_{1}, \ldots\right)$ $\varepsilon \Sigma$ by

$$
\begin{aligned}
\pi_{t}\left(\cdot \mid H_{t}\right) & =\pi_{t}^{\prime}\left(\cdot \mid \tilde{H}_{t}^{\prime}\right) \text { and } \\
\sigma_{t}\left(D \mid H_{t}\right) & =\sigma_{t}^{\prime}\left(D^{\prime} \mid \tilde{H}_{t}^{\prime}, \tilde{\Delta}_{t}^{\prime}\right) \text { for each } t \quad 0 \text { and any Borel subset } D \text { of } g, \\
\text { where } D^{\prime} & =\left\{\varepsilon_{1} \Phi+\left(1-\varepsilon_{1}\right) F: F \varepsilon D\right\} .
\end{aligned}
$$

We say $\pi \varepsilon \Pi$ ($\sigma \varepsilon \Sigma$) a strategy constructed from $\pi^{\prime} \varepsilon \Pi^{\prime}$ ($\sigma^{\prime} \varepsilon \Sigma^{\prime}$) using the random transformation (ν).
In this case, since π^{\prime} is an (s, S) ordering policy, π becomes a random (s, S) ordering policy.

Lemma 3.3. Suppose that Conditions in Theorem 3.2 hold. Then for any $\varepsilon>0$ there exists $\varepsilon_{1}>0$ satisfying the following: For any $\pi \varepsilon \Pi$, there is $\pi^{\prime} \varepsilon \Pi^{\prime}$ such that for any $\sigma \varepsilon \Sigma$ there exists $\sigma^{\prime} \varepsilon \Sigma^{\prime}$ for which

$$
\begin{equation*}
\left|\psi(x, \pi, \sigma)-\psi^{\prime}\left(x, \pi^{\prime}, \sigma^{\prime}\right)\right|<\varepsilon / 2 \tag{3.2}
\end{equation*}
$$

and conversely for any $\sigma^{\prime} \varepsilon \Sigma^{\prime}$ there exists $\sigma \varepsilon \Sigma$ satisfying (3.2).
Proof: For any given $\pi \varepsilon \Pi$ and $\varepsilon_{1}>0$ let $\pi^{\prime} \varepsilon I^{\prime}$ be a strategy constructed from π using the random transformation (ρ). Then when ε_{1} is sufficiently small, we will show that this $\pi^{\prime} \varepsilon \Pi^{\prime}$ is the desired strategy.

For any $\sigma \varepsilon \Sigma$, let $\sigma^{\prime} \in \Sigma^{\prime}$ be a strategy constructed from $\sigma \varepsilon \Sigma$ using the random transformation (ρ). Then, by the method of construction we observe that $P_{\pi^{\prime}, \sigma}^{x},\left(\tilde{H}_{t} \varepsilon D\right)=P_{\pi, \sigma}^{x}\left(H_{t} \varepsilon D\right)$ for all $t \geqq 0$ and any Borel subset D of $S(A \text { of } S)^{t}$, so that

$$
\begin{equation*}
E_{\pi, \sigma}^{x}\left[c\left(x_{t}, \Delta_{t}, \Gamma_{t}\right)\right]=E_{\pi, \sigma}^{x},\left[c\left(\tilde{x}_{t}, \tilde{\Delta}_{t}, \tilde{\Gamma}_{t}\right)\right] \tag{3.3}
\end{equation*}
$$

From the property of Φ we can assume that $L(a, \Phi) \leqq L^{\prime}$ for all $a \varepsilon A$ and some L^{\prime}. Thus we get, by the linearity of L,

$$
\begin{equation*}
\left|L(a, F)-L\left(a, \varepsilon_{1} \Phi+\left(1-\varepsilon_{1}\right) F\right)\right| \leqq \varepsilon_{1}\left(L+L^{\prime}\right) . \tag{3.4}
\end{equation*}
$$

Also, by the definition we have

$$
\begin{equation*}
E_{\pi^{\prime}, \sigma^{\prime}}^{x}\left[K I(0, \infty)\left(\Delta_{t}^{\prime}-\tilde{X}_{t}\right)-K I(0, \infty)\left(\Delta_{t}^{\prime}-x_{t}^{\prime}\right)\right] \leqq 2 \varepsilon_{1} K \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|E_{\pi^{\prime}, \sigma^{\prime}}^{x}\left[c \cdot\left(\tilde{x}_{t}-x_{t}^{\prime}\right)\right]\right| \leqq \varepsilon_{1}(3 M+\kappa) . \tag{3.6}
\end{equation*}
$$

Thus, we have

$$
\begin{aligned}
& \mid E_{\pi}^{x}, \sigma^{\prime}\left[c\left(\tilde{x}_{t}, \tilde{\Delta}_{t}, \tilde{\Gamma}_{t}\right)-c\left(x_{t}^{\prime}, \Delta_{t}^{\prime}, \Gamma{ }_{t}^{\prime}\right) \mid\right. \\
& =\left|E_{\pi^{\prime}, \sigma^{\prime}}^{x}\left[c\left(\tilde{x}_{t}, \Delta_{t}^{\prime}, \tilde{\Gamma}_{t}\right)-c\left(x_{t}^{\prime}, \Delta_{t}^{\prime}, \Gamma_{t}^{\prime}\right)\right]\right| \text {, from the definition of } \tilde{\Delta}_{t} \text {, } \\
& \leq\left|E_{\pi^{\prime}, \sigma^{\prime}}^{x}\left[L\left(\Delta_{t}^{\prime}, \tilde{Y}_{t}^{\prime}\right)-L\left(\Delta_{t}^{\prime}, \Gamma_{t}^{\prime}\right)\right]\right|+\left|E_{\pi^{\prime}, \sigma^{\prime}}^{x}\left[c \cdot\left(\tilde{x}_{t}-x_{t}^{\prime}\right)\right]\right| \\
& +\left|E_{\pi^{\prime}, 0^{\prime}}\left[K I(0, \infty)\left(\Delta_{t}^{\prime}-\tilde{x}_{t}\right)-K I(0, \infty)\left(\Delta_{t}^{\prime}-x_{t}^{\prime}\right)\right]\right| \text {, from (3.1), } \\
& \leqq \varepsilon_{1}\left(L+L^{\prime}\right)+2 \varepsilon_{1} K+\varepsilon_{1}(3 M+K) \text {, from (3.4)-(3.6). }
\end{aligned}
$$

Therefore, for any $\varepsilon>0$ there exists $\varepsilon_{1}>0$ such that

$$
\begin{equation*}
\mid E_{\pi^{\prime}, \sigma}^{x},\left[c\left(\tilde{x}_{t}, \tilde{\Delta}_{t}, \Gamma_{t}\right)\right]-E_{\pi^{\prime}, \sigma}^{x}\left[c\left(x_{t}^{\prime}, \Delta_{t}^{\prime}, \Gamma_{t}^{\prime}\right)\right] \leqq \varepsilon / 2 . \tag{3.7}
\end{equation*}
$$

By (3.3) and (3.7), we get $\left|\psi(s, \pi, \sigma)-\psi^{\prime}\left(x, \pi^{\prime}, \sigma^{\prime}\right)\right| \leqq \varepsilon / 2$.
Conversely, for any $\sigma^{\prime} \varepsilon \Sigma^{\prime}$, let $\sigma \varepsilon \Sigma$ be a strategy constructed from σ^{\prime} $\varepsilon \Sigma^{\prime}$ using the random transformation (v). Then, similarly as the above discussion we can prove that for any $\varepsilon>0$ there is $\varepsilon_{1}>0$ such that $\mid \psi(x, \pi, \sigma)-$ $\psi^{\prime}\left(x, \pi^{\prime}, \sigma^{\prime}\right) \mid \leqq \varepsilon / 2$, which completes the proof.
Q.E.D.

Lemma 3.4. Suppose that Conditions in theorem 3.2 hold. Then for any $\varepsilon>0$ there exist $\varepsilon_{1}>0$ satisfying the following:

For any (s, S) ordering policy $\pi^{\prime} \varepsilon \Pi^{\prime}$, there exists a random (s, S) ordering policy $\pi \varepsilon \Pi$ such that for any $\sigma \varepsilon \Sigma$ there is $\sigma^{\prime} \varepsilon \Sigma^{\prime}$ for which (3.2) holds and conversely for any $\sigma^{\prime} \varepsilon \Sigma^{\prime}$ there existe $\sigma \varepsilon \Sigma$ satisfying (3.2).

Proof: For any (s, s) ordering policy $\pi!\varepsilon \Pi^{\prime}$, we construct a random (s, s) ordering policy π from $\pi '$ using the random transformation (v). Then, similarly as the proof of Lemma 3.3 we can prove that this π has the desired property.
Q.E.D.

PROOF OF THEOREM 3.2. We try to approximate the inventory game model by a subsidiary inventory model $G\left(\mathscr{F} \varepsilon_{1}\right)$. For any $\varepsilon>0$, let ε_{1} be such that Lemma 3.3 and 3.14 hold. In $G\left(\mathscr{F} \varepsilon_{1}\right)$, if we define $\gamma(\cdot)$ by $\gamma(D)=\varepsilon_{1} \mu(D) \cap$ $[-2 M,-M]) / 2 M$ for $D \in \mathcal{B} S_{S}$, we observe that for $x \in S, a \in A(x)$ and $F^{\prime} \in \mathscr{F} \varepsilon_{1}$,

$$
\begin{aligned}
\bar{Q}\left(D \mid x, a, F^{\prime}\right) & =Q\left(D \mid x, a, F^{\prime}\right)-\gamma(D) \\
& \geqq \varepsilon_{1} J_{D}\left(\phi(a-y)-(2 M)^{-1} I_{[-2 M,-M]}(y)\right) d \mu \\
& =\varepsilon_{1} / 2>0,
\end{aligned}
$$

where μ is the Lebesque measure.
This means that Condition E holds for $G\left(\mathcal{F}_{\varepsilon_{1}}\right)$.
Therefore, by Theorem 3.1 there exists a minimax (s, S) ordering policy $f^{\infty} \varepsilon \Pi^{\prime}$ for which

$$
\begin{equation*}
\inf _{\pi^{\prime}} \varepsilon \Pi^{\prime} \sup _{\sigma^{\prime}} \varepsilon \Sigma^{\prime} \psi^{\prime}\left(x, \pi^{\prime}, \sigma^{\prime}\right)=\sup _{\sigma^{\prime}} \varepsilon \Sigma^{\prime} \psi^{\prime}\left(x, f^{\infty}, \sigma^{\prime}\right) . \tag{3.8}
\end{equation*}
$$

Applying Lemma 3.4, there exists a random (s, S) ordering policy $\pi^{*} \varepsilon \Pi$ for which the properties in Lemma 3.4 hold.
For this π^{*}, we have

$$
\begin{array}{r}
\sup _{\sigma \in \Sigma \psi\left(x, \pi^{*}, \sigma\right) \leqq} \sup _{\sigma^{\prime} \varepsilon \Sigma^{\prime} \psi^{\prime}\left(x, f^{\infty}, \sigma^{\prime}\right)+\varepsilon / 2,} \quad \text { from Lemma } 3.4, \\
= \\
\inf _{\pi^{\prime}} \varepsilon \Pi^{\prime} \sup _{\sigma^{\prime}} \varepsilon \Sigma^{\prime} \psi^{\prime}\left(x, \pi^{\prime}, \sigma^{\prime}\right)+\varepsilon / 2, \text { from (3.8); } \\
\leqq \inf _{\pi \varepsilon \Pi} \sup _{\sigma \varepsilon \Sigma} \psi(x, T, \sigma)+\varepsilon,
\end{array}
$$

from Lemma 3.3,
which implies that the random (s, s) ordering policy π^{*} is ε-minimax. Q.E.D.
Remark: Let $\mathcal{F}\left(\mu, \sigma^{2}\right)$ be the class of distribution functions F on R^{+}such that $\int x d F(x)=\mu$ and $\int x^{2} d F(x)=\mu^{2}+\sigma^{2}$ where μ and σ^{2} are finite constants. We suppose that the holding and penalty cost functions are both linear. Then, since $f\left(\mu, \sigma^{2}\right)$ is a Borel set and Condition D is satisfied, it holds from Theorem 3.2 that for any $\varepsilon>0$ an ε-minimax random (s, S) ordering policy exists for $\mathcal{F}=\mathscr{F}\left(\mu, \sigma^{2}\right)$.

We note that Nakagami [10] has studied the inventory problem with the unbounded lower semi-continuous cost function and by using weighted supremum norms and the Banach contraction principle derived the optimal inventory equation for the discounted case.

Acknowledgement

The author wishes to express his thanks to referees for their very helpful comments which led to an improvement of the presentation of the material.

References

[1] Bertsekas, D.P. and Shreve, S.D.: Stochastic Optimal Control - The Discrete Time Case, Academic Press, 1978.
[2] Hoffman, A.J. and Karp, R.M.: On non-terminating stochastic games, Management Sci., 12 (1966), 359-370.
[3] Iglehart, D.L.: Dynamic Programming and Stationary Analysis of Inventory Problem, Chap. 1 in H. Scarf, D. Gilford, and M. Shelly (eds.), Multistage Model and Techniques, Stanford University Press, Stanford, 1963.
[4] Iglehart, D.L: Optimality of (s, s) Inventory Policy in the Infinite Horizon Dynamic Inventory Problem, Management Sci., 9 (1963), 159-267.
[5] Jagannathan, R.: Minimax Ordering for the Infinite stage Dynamic Inventory Problem, Management Sci., 24 (1978), 1138-1149.
[6] Kurano, M.: Semi-Markov decision processes and their applications in replacement model, J. Oper. Res. Soc. Japan, 28 (1985), 18-29.
[7] Kurano, M.: Markov decision processes with a Borel measurable cost function - the average case, Math. Oper. Res., 11 (1986), 309-320.
[8] Maitra, A.: Discounted dynamic programming on compact metric space, Sankhya Ser. A, 30 (1968), 211-216.
[9] Maitra, A. and Parthasarathy, T.: On stochastic games, J. Opt. Theory and Appl., 5 (1970), 289-300.
[10] Nakagami, J.: A contraction principle for the optimal inventory equation, Technical Reports of Mathematical Sciences no.1, Chiba University, Chiba, 260 Japan 1985.
[11] Nowak, A.S.: Existence of equilibrium stationary strategies in discounted noncooperative stochastic games with uncountable state space, J. Opt. Theory and Appl., 45 (1985), 591-602.
[12] Shreve, S.E. and Bertsekas, D.P.: Alternative theoretical frameworks for finite horizon discrete time stochastic optimal control, SIAM J. Contr. Optimiz., 16 (1978), 953-978.
[13] Tanaka, K., Iwase, S. and Wakuta, K.: On Markov games with the expected average reward criterion, Sci. Rep. Niigata Univ., Ser. A. No. 13, (1976), 31-41.
Masami KURANO: Department of
Mathematics, Faculty of Education,
Chiba University, Yayoi-cho, Chiba,
260, Japan.

