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Abstract We propose a path following algorithm for the stationary point problem: given a polytope n ~ Rn 

and an affine function f: Rn -+ Rn find a point x E n such that x·f(x) ~ x·f(x) for any point x E n. The linear 

system to be handled in the algorithm has only n+l equations while the linear complementarity problem to which 

the problem is reduced has n+m equations, where m is the number of constraints defining n. The algorithm is a 

variable dimension fIXed point algorithm having as many rays as the vertices of n. It first leaves the starting point 

wEn toward a vertex of n chosen by solving the linear programming problem: minimizef(w)·x subjects to x En, 

and then moves on convex hulls of wand higher dimensional faces of n. Generally speaking, it terminates as soon 

as it hits the boundary of n or it fmds a zero of f. 

1. Introduction 

n i 
Let n = { X : X ER, a • x ;;; b. for i EM} be a nonempty compact 

~ 

polyhedral set ( a polytope ) in Rn. E'or a given affine function f (x) ,= 

Dx + c from Rn into Rn we consider the problem of finding a point ~ 

E n such that 

(1.1 ) ~.f(x) ~ x'f(x) for any x E n, 

where X· f means inner product of x and f. The point x E n satisfying 

(1.1) is called a stationray point and t:he problem is called a stationary 

point problem. This problem arises from various fields such as quadratic 

programming, matrix game and economic equilibrium problem ( see, for example 

Garcia and Zangwill [5]). It is known that the problem is cast into the 

linear complementarity problem, for which we have already several algorithms, 

e.g., Lemke [9], Reiser [11], Van der HE~yden [6], Talman and Van der Heyden 

[12]. Eaves [3,4] adapted Lemke's algorithm for the stationary point problem 

and Pang [10] adapted the parametric principal pivoting algorithm. In van 
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182 Y. Yamamoto 

der Laan and Talman [8J a variable dimension algorithm was adapted for the 

linear complementarity problem with upper and lower bounds, which can be 

considered to be a stationray point problem with n = { X : X E Rn, a ~ x 

~ b }. Eaves' algorithm indeed deals .with a general convex polyhedral set 

n but it must handle a system of n+m linear equations, where m = IMI. 
On the other hand, the linear system in van der Laan and Talman's algorithm 

has only n equations. But it makes use of the trivial face structure of 

n. Recently Talman and Yamamoto [13] developed an algorithm for stationary 

point problems with a nonlinear function f. Assuming that n is a simple 

polytope and its face structure is known in advance, they made a triangu

lation of n and proposed a simplicial algorithm based on the piecewise 

linear approximation of f. 

In this paper we propose an algorithm for stationary point problems 

which does not assume the knowledge of the face structure of n and handles 

a system of n+1 linear equations. When the starting point w is in the 

relative interior of n, the algorithm can be viewed as a variable dimension 

algorithm with as many rays as vertices of n. At the start it solves the 

linear programming problem 

minimize f(w)'x subject to x En 

to obtain an optimum vertex v and leaves point w toward v with hope 

that the function value does not change quickly and so vertex v remains 

an optimum solution of 

minimize f(v)'x subject to x En. 
If it is the case, vertex v is a stationary pOint. If not/ the algorithm 

changes the direction according to the function value at some point between 

wand v. It terminates as soon as either it hits the boundary of n or 

finds a zero of f, a trivial stationray point, in n. 
The organization of this paper is as follows. In Section 2 we review 

subdivided manifolds, a basic theorem for fixed point algorithms and the 

primal-dual pair of subdivided manifolds. Based on these preliminaries we 

prove in Section 3 that there is a finite path of solutions of a certain 

system of equations connectiong the starting point and a stationary point. 

In Section 4 we describe the algorithm and show that it traces the path and 

then terminates after a finite number of iterations with a stationray point. 

Some remarks are found in Section 5. 
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2. Basic Theorem for Fixed Point Algorithms and Primal-Dual 

Pair of Subdivided Manifolds 

183 

We give a brief review of a basic: theorem for fixed point algorithms and 

the primal-dual pair of subdivided manifolds introduced by Kojima and Yama

moto [7J as a unifying framework for Cl class of fixed point algorithms. 

We call a convex polyhedral set Cl cell or an ~-cell to clarify it di

mension. When a cell B is a face of a cell C, we write B < C. Especial

ly when B is a facet of C, we writE! B <l C. 

Let M be a finite or countable collection of ~-cells. We write ~ 

{ B : B < C for some C EM} and I M I = U { C : C EM}. We call M 

a subdivided R--manifold if and only if 

(2.1) 

(2.2) 

for any B, C E M, B n C = ~ or B n C < Band C, 

for each (~-l)-cell B of ~ at most two ~-cells of M have B 

as a facet, 

(2.3) M is locally finite each point x E IMI has a neighborhood 

which intersects only a finite number of cells of M. 

We write aM = { B : BEll, B <l C for exactly one ~-cell C of M} and 

call it the boundary of M. 

A continuous function h IMI + Rk is said to be a piecewise linear 

( pi for short ) function on M if the restriction of h to each cell of 

M is an affine function. For a subdivided (n+l)-manifold M and a pi 

function h: IMI + Rn we say that le E Rn is a regular value of h if 

BEll and h- 1 (r) n B ,,!6 imply tha1: dim h (B) = n. The following theorem 

is a basic theorem for fixed point alqorithms ( see Eaves [2J ). 

Theorem 2. 1 . Let M be a subdivided (n+ 1) -manifold, h I M I + Rn be 

a pi function. Suppose rE Rn is a regular value of h. Then h-
1

(r) is 

a disjoint union of paths and loops, It/here a path is a subdivided 1-mani

fold homeomorphic to one of the intervals (0,1), (O,lJ and [O,lJ and a 

loop is a subdivided 1-manifold homeomorphic to the 1-dimensional sphere. 

Furthermore they satisfy the followim:r conditions. 

(2.4) h-
1

(r) n C is either empty or a 1-cell for each C E M. 

(2.5) A loop of h-
1

(r) does not intersect laMI. 

(2.6) If a path S of h-
1

(r) is compact, as consists of two dis-

tinct points in I aM I . 

Let P and V be subdivided manifolds. If P and V satisfy the 

following conditions with s@llle positi'iTe integer ~ and an operator d: 

15 U 1J + 15 u 1J U {!6}, we say that (P,:D;d) is a primal-dual pair of sub

divided manifolds ( PDM for short ) with degree ~. 
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(2.7) 

(2.8) 

= t. 
(2.9) 

Zd d 
2 < zl· 

Y. Yamamoto 

For each X E P xd E ~ U {~} and for each Y E ~ yd E P U {~}. 
If Z E P U ~ and zd i ~, then (Zd)d = Z and dim Z + dim zd 

If Z Z E -P ( <'1') Z < Z zd ~ ..I 
l' 2 or v , 1 2' 1 r ~ and 

d 
z2 i ~, then 

We call the operator d the dual operator and zd the dual of Z. 

For a PDM (P,V;d) with degree t let 

<P,V;d> = { X x xd : X E p, xd t ~ }, 

or equivalently 

<P,V;d> = { yd x y : Y E~, yd t ~ }. 

Then we have the following theorem. See Kojima and Yamamoto [7] for the 

proof. 

Theorem 2.2. Let (P,V;d) be a PDM with degree t. Then L <P,V;d> 

is a subdivided t-manifold and 

aL = { x x Y: X x Y is 

and either xd = ~ 
an (t-l)-cell of 

d 
or y = ~ }. 

3. Basic Model of the Algorithm 

I, X E P, y E~, 

Let F be the family of all faces of n. For each face F E F let 

I(F) = { i : i EM, i 
a ·x = b

i 
for any point x E F }, 

* the index set of active constraints at face F, and F be the cone 

generated by for i E I(F), Le., 

F* = { Y i 
y = 1.: Il.a 

iEI (F) ]. 
Il

i 
~ 0 for any i E I(F) }, 

* where we assume that F* = {a} when I(F) Cone F is called the 

dual cone of face F. Note that * dim F = n - dim F and is the or-

thogonal complement of the tangential space of n. Then the stationary 

point problem is a problem of finding a point x E n and a face F E F 
such that 

(3.1) x E F * and -f(x) E F . 

We show three different stationary points in Fig. 1, where 

dimensional face consisting of point 
3 

x is also a stationary point because 

1 
x and F3 

3 
f(x ) = o. 

is 

is a zero 

itself. Point 
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Fig. 1. 

Stationary Point Problems 

3 
-f(x )=0 

Stationary point.s, faces and dual cones 

The key point for developing a path following algorithm for the stationary 

point problem is to construct a subdivided manifold L such that aL has 

a trivial starting point and F x F* for all faces F of n. 

185 

Let wEn be an initial guess of a stationary point. We do not require 

point w to lie in the relative interior of n. For each F E F with 

w ~ F let wF be the join of point wand face F, i.e., 

wF = { X : X = aw + ( i-a) z for some z E F and 0 ~ a ~ 1 }. 

Note that dim wF = dim F + 1. Let 

(3.2) p = { wF: w ~ F E F, dim F = dim n - 1 }. 

Examples of P are shown in Fig. 2 for some different starting points. 

Then P is a subdivided manifold of the same dimension as nand 

(3.3.a) p = { wF : w ~ F E F } U { F : w ~ F E F } u {{w}}, 

Fig. 2. Primal subdivided manifold P 
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(3.3.b) I pi = n. 

Let V be the collection of dual cones of all vertices of n ( see Fig.3 ), 

i.e. , 

(3.4) V { F* : F E F, dim F = 0 }. 

Then V is a subdivided n-manifold and 

(3.5) 1) = {F* F E F }, 

IVI = Rn. 

Fig. 3. Dual subdivided manifold V 

Now let the dual operator d be 

(WF)d * F if w lC F E F 
Fd r/> if w lC F E F 

(3.6) {w}d r/> 

(F*)d wF if w lC F E F 

r/> if w E F E F. 

We readily see that (p, V;d) is a PDM with degree n+l 

following lemma from Theorem 2.2. 

Lemma 3.1. Let (P,V;d) be a PDM with degree n+l 

(3.4) and (3.6) and let L = <P,V;d>. Then 

(3.7) L is a subdivided (n+l) -manifold. 

aL = {{w} * lC F E F, } u { (3.8) x F : w dim F = 0 F 

and we obtain the 

defined by (3.2) , 

* 
w lC F E F } x F 

U { wE x F* : w E F E F, w ~ E ~ F, dim F > 0 }. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Stationary Point Problems 

(3.9) I a L I ( { w} x U { F * w!C F E F, dim F o }) 

* U (U{ F x F F E F }). 

proof. (3.7) is a direct consequence of Theorem 2.2. We prove (3.8). 

Suppose X x Y E aL. Then dim X + dim Y = n and either xd or yd is 

empty. If xd !6 ( resp. yd !6), then the unique cell of L having 

187 

X x Y is yd x y resp. X x X
d

). Suppose first xd !6. Then X = {w} 

or F such that w!l F E F. When X ,= {w}, we have dim Y = nand { w} <l 

This implies that * * y = F and dim F = n - dim F 

dim Y = n - dim F, F <l yd. 

= o. When 

Therefore y 

X = F 

* F with w!l F E F, we have 

Next suppose yd = !6, i.e., * F for some w E F E F. Then dim X = n 

* * - dim F = dim F and F Therefore we obtain that 

E E F such that dim E = dim F - 1, If{ ~ E and 

* reversing property of F and F, we see E <l F. 

* * F <l E • 

X = wE for some 

By the inclusion 

Since all the cells above clearly belong to aL, we have proved (3.8). 

By noting that U{ wE : w !C E <l F } = F we obtain (3.9) from (3.8). II 

Now let a pi function h : ILl + Rn be defined by 

h(x,y) = y + f(x) for (x,y) E ILl 

and consider the system of equations 

(3.10) h (x,y) = 0, (x,y) E ILl. 
Note that the system has n equations and 2n variables, which are, how

ever, restricted to (n+1) -dimensional subdivided manifold L. By applying 

Theorem 2.1 to (3.10) we have the following theorem. 

Theorem 3. 2 . Suppose that wEn is not a stationary point and 0 E, Rn 

is a regular value of h: ILl 
(3.11) (XO,yo) = (w,-f(w)) 

(3.12) there is a path S 

+ Rn. 'rhen 

lies in h-
1 

(0) 

of h-
1

(0) from 

n I aLl, and 

(xO,yo) to a point (x,y) 

E lall such that x is a stationary point and y = -f(x). Furthermore 

S consists of a finite number of line segments. 

proof. Since w is not a stationary point, -f(w) * does not lie in F 

for any face F E F having w. Therefore by (3.5) * -f(w) E F for some 

F E F such that w!l F and dim F = O. This and (3.9) prove (3.11). 

If 0 E Rn is a regular value of h : ILl + Rn, we can apply Theorem 

2.1 to h. By (2.5) the connected component S of h-
1

(O) having (xo, 

yo) is a path. Suppose S intersects a cell C wF x F* E L. Since 

wF is compact and S n C r:;, wF x { -f (x) : x E wF }, S n C is a compact 
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line segment. By the definition of L, it consists of finite cells. There~ 

fore S consists of finite line segments and hence S is compact. Then 

by (2.6) S has another end-point, say (x,y), in laLI. Suppose first 

(x,y) E {w} x U{ F* 
-1 

Eh (0), y = -f(x) 

w ~ F E F, dim F O}. Then x = w. Since (x,y) 

-f(w) yo Hence we have (x,y) = (XO,yo), which 

* contradicts (2.6). Therefore by (3.9) we have (x,y) = (x,-f(x)) E F x F 

for some F E F. By (3.1) we have that x is a stationary point. II 

Theorem 3.2 shows that we will find a stationary point x by tracing 

the finite path S from the trivial starting point (xO,yo) (w,-f(w)). 

In the next section we show that given an end-point of a line segment of S 

the optimum solution of a linear programming problem gives the other end

point, which serves as an initial end-point of the next line segment. 

4. The Algorithm 

Now suppose that h-
1

(0) intersects a cell C = wF x F*E L. Let U(F) 

be the set of all vertices of face F. Then wF is the convex hull of w 

and U(F). Therefore h-
1

(O) n C I ~ if and only if the following system 

(4.1) has a solution (A,~). 

E ~.a 
i 

+ E A Du + ADw -c 
iEI (F) l. uEU(F) 

u w 

E A + A = 1 
(4.1) uEU(F) 

u w 

A ~ 0 for all u E U(F), A ~ 0 
u w 

~i ~ 0 for all i E I(F). 

Clearly (x,y) E h- 1 (O) n C is given by 

(4.2) x = EAU + A w, 
uEU(F) u w 

i 
Y = E ).I a • 

iEI(F) i 

Note that the set of solutions of (4.1) is generally unbounded. For 

example, if a
i 

-a
j 

for some i, j E I(F), it is clearly unbounded. 

However, as shown in the proof of Theorem 3.2, the set h- 1 (O) n C is a 

line segment and we have the following lemma. 

Lemma 4.1. Suppose 0 E Rn is a regular value of 

h- 1 (0) n C ~ ~ f 11 E L h T ~ or ce C • T en for any vector 

linear programming problem of minimizing or maximizing 

(4.3) p·x +-q.y subject to (4.1) and (4.2) 

h : I L [ -+ Rn and 
2n 

(p,q) E R the 

has an optimum solution. Let 1 1 1 1 222 2 
( A , ~ , x , y) and ( A , ~ , x , y) be a 
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minimizer and a maximizer of the linear 
1 

programming problem. If p.x + 

189 

1 2 2 1 1 
q.y f p·x + g.y , then (x,y) and 

2 2 
(x ,y) are two distinct end-points 

of line segement h- 1 (O) n C. 

Note that we do not have to know all the vertices of U(F) in advance 

when we solve the linear programming problem (4.3). The set U(F) is the 
i 

set of vertices of the face F = {x x E n, a'x = b
i 

for i E I(F) } 

and hence necessary vertices of U (F) Cim be generated at need. See, for 

example, Chapter 23 on the deconposition principle in Dantzig [1]. There

fore we have only to know the index set I(F) and to make an appropriate 

objective function to guarantee the condition in Lemma 4.1. The next lemma 

gives us how to find I(F) for face F. Here we abbreviate I({u}) by 

I(u) when u is a point. 

Lemma 4.2. Let 
1 k 

u , •.. , u be pOints on face F such that the affine 

hull aff({ u
j 

j=l, ••. ,k}) of the points contains F. Then 
k , 

I (F) = n I (uJ ) • 
j=l 

k ' 
be an arbitrary index of n j=l I (uJ ) • 

1 k 
proof. Let i 

x of F is an affine combination of u , ..• ,u , 
, ,k, k 

a 1 ·x = a 1
• ( r a,uJ ) 

j=l J 

This means that i E I(F). 

r a,b. = b
i

. 
j=l J 1 

We have seen that 

the reverse relation is trivial, we have proved the lemma. 

For a subset J of M we write 

F(J) = { x : for i E J L 

Since any point. 

Since 

Note that several different subsets of M may define the same face F and 

further they may be different from I(F). Index set I(F) is the maximum 

subset of M defining face F. In fact I(F(J», the index set of active 

constraints of a face defined by J ~M, may not coincide with J. 

The following lemma gives us the termination condition of the algorit:hm. 

Lemma 4.3. Let (A,\.I) be a solution of (4.1 ) and let 

1+ { f : i E I (F) and \.I
i 

> 0 L 

If either 

(4.4) A 0 or I C I (w), 
w +-

then x = r A U + A w is a stationa.ry point. 
uEU(F) u w 
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proof. Since 1+:;: I (F) , 

F :';;:F{I+). 

F ;;;;F(I+) in general. If Aw '" 0, point 

If 1+= I(w), then wE F(I+) and hence we x '" EuEU(F) ~uu E 

have x E F(I ). 
* + 

E F(I). II 

i 
Therefore in either case x E F(I+) and -f(x) E'EI ~.a 

.1. + 1. 

Now we give the algorithm. Here A(I,U) denotes the set of (A,~) 

satisfying (4.1) with I(F) and U(F) replaced by I and U, respectively. 

We also abbreviate U(F(I» by UtI) and the linear subspace spanned by a 

set A of vectors by spc(A). 

{1} 
{2} 

{S} 

{6} 

{n 

{8} 

{9} 
{l0} 

{li} 

{12} 

{ 13} 
{14} 
{is} 

{16} 

program stationary; 
begin 
read (w); 
v:=argmin{f(w)·x : x E ~}; 
if v=w then 

writeln('starting point w is a stationary point. ') 
else 

begin 
I:=I(v); U:={v}; f:=O; 
(A,~) :=argmin{-A : (A,~) E A{I,U)}; 

v 
I+:={i : i 

while A ';'0 
beginW 

E I, ~i > O}; u+:={u : U E U,A
U 

> O}; 

and 1+ 'k I (w) do 

if lu+l=f+l then 

begin k i 
choose k E 1\1 such that a is linearly independent of a 
(i E 1+) ; + 

find v E U{I+) such that ak·v < b
k

; 

1:=1 n I(v); U:=U(I); f:=f+1; 
find p E aff(U+ U {v} U {w}) such that p. (u-w)=0 for u E U+ and 
p. (v-w) < 0; 
(A,~,X) :=argmin{p.x : x=E EUA U+A w, (A,~) E A(I,U)}; 

u u w 

I+:={i : i E I, ~. > O}; U :"'{u : u E U, A > O}; 
1. + u 

end 
else 

begin 

1':= il uEU/ (u); 

choose k E 1'\ I; 
1:=1'; U:=U(I);.f:=f-l; k i 
find q E spc({al. : i E I+} U {a }) such that q·a =0 for i E 1+ 

k 
and q·a < 0; i 
(A,~,y) :=argmin{q·y : y=EiEI]Jia , (A,]J) E A(I,U)}; 

I+:={i : i E I, ~. > O}; U :"'{u : u E u, A > O} 
1. + u 

end 
end 
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{17} X:=LuEUAUU+AWW; 

'writeln('A stationary point is found.' ,x) 
end 

end. 

We give several lemmas to show that the algorithm traces tha path 

191 

For the time being we assume that the system (4.1) is nondegenerate. Not:e 

that the nondegeneracy assumption implies the regular value assumption of 

o E Rn for h : ILl + Rn but the converse is not true. If there is an i 

E I such that a
i 

i.s a nonnegative combination of some other aj,s with 

j E I, the system (4.1) may be degenerate although 0 E Rn is a regular 

value of h. This is due to the fact that the regular value assumption is 

based on the face structure of F(I)* and does not care whether a higher 

* i dimensional face of F(I) has a vector a in its interior. 

Through the following lemmas we assume that 

A > 0 
W 

and employ the notations 

x ,= L A u + A w 
uEU(J) u w 

L ll,a i (4.5) Y 
iEJ ~ 

U { u u E U(J), A > 0 } 
+ u 

J+ { i i E J, lli > 0 }. 

Let (~,ll) be a point of A(J,U(J». Suppose Lemma 4.4. 

(a) (x,y) defined by (4.5) is an end-'point of line segment S n (wF (J) 
* * * x F (J» and lies in facet wF (J) x F (I) of both cells wF (J) x F (J) 

and wF(I) x F(I)*, 

(b) F(J) ~ aff(U+), 

(c) p E Rn satisfies the condition in Step 10 for some vertex v E U (I) 

\ U(J). 

Let (A' Ill' ,x' ,y') be a minimizer of p'x under (A,ll) E A(I,U(I» and 

(4.5). Then (x',y') is the opposite end-point of line segment S n (wF(I) 

x F(I)*l. 

proof. Since x E wF(J) ...:; aff(U+ U {w}) , p'x p.w by the choice of 

p. Sinc.e UtI) has a vertex v satisfying p.v < p.w, wF(I) is not 

contained in the plane { x : p·x = p"w } but lies in the half space 

{ x : p.x ~ p.w }. Therefore (A,ll,x,y) is a maximizer of p'X under 
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(A,~) E A(I,U(I» and (4.5). Since the system (4.1) is nondegenerate and 

v E U(I), it is clear that p.x' < p·w. Therefore by Lemma 4.1 we have the 

desired result. // 

By almost the same argument we have the following lemma. 

Lemma 4.5. Let (A,~) be a point of A(J,U(J». Suppose 

(a) (x,y) 

* x F (J) ) 

defined by (4.5) is an end-point of line segment S n (WF(J) 

and lies in facet wF(I) x F(J)* of both cells wF(J) x F(J)* 

* and wF(I) x F(I) , 

(b) * i F (J) <;:;. spc ( { a : i E J }), 
+ 

(c) q E Rn satisfies the condition in Step 15 for some k E I \ J. 

Let (A',~',X',y') be a minimizer of q'y under (A,~) E A(I,U(I» 

and (4.5). Then (x',y') is the opposite end-point of line segement 

* S n (wF (I) x F (I) ). 

The following lemma gives us the facet which has a given end-point of 

line segment * S n (wF (J) x F (J) ). 

Lemma 4.6. Let (A,~) be a basic solution of A(J,U(J» such that 

(x,y) defined by (4.5) is an end-point of line segment S n, (wF (J) >: F (J) *) . 

If Iu I = dim F(J) + 1, then point (x,y) lies in wF(J) x F(I)* for 
+ 

some F(I)* <l F(J)*. I:E Iu I < dim F(J) + 1, then (x,y) lies in wF(I) 
+ 

x F(J)* for some F(I) <l F(J). 

proof. Since (x,y) 

the boundary of wF(J) 

for some F(I)* <l F(J)* 

Note that wand U+ 

basic variables for 

is an end-point of S n (wF(J) x F(J)*), it lies 

x F(J)*. Therefore it is either in wF(J) x F(I)* 

or in wF(I) x F(J)* for some F (I) <l F(J). 

are affinely independent because A and A w u 
are 

Therefore if lu+1 = dim F(J) + 1, point x 

on 

= ~ EU A u + A w is in the relative interior of wF(J). This implies that 
u + u w 

is nondegenerate. Note that ai,s i E J+ ) 

because 11. is a basic variable for i E J 
~ + 

* is in the relative interior of F(J) Thus 

Lemma 4.7. Let (A,~) be a basic solution of A(J,U(J» such that 

(x,y) 

Suppose 

defined by (4.5) is an end-point of line segment * S n (wF(J) x F(J) ). 
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(a) J = I (F (J) ) , 

i.e., set J is the maximum index set defining F(J), and 

(b) lu+1 = dim F(J) + 1. 

Then 

(4.6) there exists a k E J \ J+ such that 

are linearly independent, 
k 

there is a vertex v E U(J+) such that a·v < b
k

, and 

and 
k 

a 

(4.7) 

(4.8) let I J n I(v), then 1= I(F(I)), F(J) <l F(I) and dim F(I) 

= dim F (J) + 1. 

193 

proof. In general r JI ~ n -

and nondegeneracy, we have IJ I 
k+ 

dim F (~r) • By the assumptions AW > 0, (b) 

(n+l) - (I U 1 +1) < n - dim F (J). Ther'=
+ 

fore J \ J+ ~~. Suppose 

for any k E ;r \ J+. Then 

a is linearly dependent on 

n - dim F (J) dim F(J)* rank { a i 

rank { a
i 

: i E J 
+ 

This is a contradiction and we have (4.6). 

: i E J } 

< n - dim F('J). 

To see (4.7) note first that U(J+) ~ ~ because is noqemtpy 

and bounded. Suppose that 
k 

a ·u = b
k 

for any Since 
k 

( i E J +) and a 

(I J 1+1) < n - 1 J I. 
are linearly independent by (4.6), dim F(J+) ~ n -

This is a contradi.ction and we have (4.7). 
+ k + 

Since a·u = b
k 

for any u E U+' U+ and vertex v in (4.7) are 

affinely independent. We first show tha.t F(J+) S;;; aff(U+ U (v}). Since 

v E U(J+) S;;; F(J+) an~ U+ s; U(J) !;: F(J) :;;;: F(J+), we have U+ U {v} S; F(J+). 

Furthermore, since a
1

,s (i E J ) 
+ 

= n - IJ+I = lu+l. Therefore we have 

are linearly independent, dim F(J+) 

F'(J ) S;;;; aff(U U (v}). And by Lemma 
+ + 

4.2 I(F(J+)) = ( n
uEU 

I(u)) n I(v). 
+ 

By (a), (b) and Lemma 4.2 we also 

have J = n EU I (u). Therefore again by Lemma 4.2 I (F (J )) = J n 
u _ + + 

= I(F(I)). Since J s; J and dim F(J ) = Iu 1 = dim F(J) + 1, we 
+ + + 

I(v) 

have 

F(I) . II 

Lemma 4.8. Let (A,~) be a basic solution of A(J,U(J)) such that 

* (x,y) defined by (4.5) is an end-point of line segment S n (wF(J) x F(J) ). 

Suppose 

(a) J = 
and 

(b) lu+1 

Let I' 

(4.9) 

(4.10) 

I (F (J)) 

< dim F(J) 

n EO I (u), 
u_ + 

I' \ J ~ ~, 

+ 1. 

then 

and 
k 

a are linearly independent for any k E I' 
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I' = I(F(I')), F(I') ~ F(J) and dim F(I') = dim F(J) - 1. 

proof. By the assumptions \ > 0, 
w 

(b) and that (x,y) is an end-point 

of the line segment, we see that u+ is contained in some facet, say F' , 
of F(J). Therefore ~ ~ I(F') , J ~.~ I (u) " J, which implies (4.9). 

+ k i 
To show (4.10) suppose the contrary, Le., a L

iEJ 
C'lia for some C'li 

i t 
( i E J ). Since for any vertex u of U+ a'u b. for 
k + l. 

a 'U = b
k

, b
k 

= L
iEJ 

C'ljb
i

. Therefore for any vertex u of 

i E J+ and 

U (J), which is 

a subset of U(J+), ~k.u = b
k

• This and (a) imply that k E J, which is a 

contradiction. Hence we have (4.10). 

Since ai,s (i E J+ ) 

U {k}) = n - (IJ+I+l) = lu) 

k 
and a are linearly independent, dim F(J+ 

- 1. Note that U+ ~ F(J U {k}) ~ F(J+ U {k}), 

then we have F (J U {k}) --= aff U + -- + Therefore by Lemma 4.2 F(J+ U {k}) 

= F ( i~1 uEU I (u) ) 
+ 

F(I') and I(F(I')) = I'. 

In general dim F (J) = n - dim F (Jt :;; n - IJ I. Suppose that dim F(J) , + 

:;; n - IJ+I - 1, then by (b) dim F(J) :;; Iu+, - 1 < dim F(J), a contradiction. 

Therefore we have dim F(J) n - IJ+I = lu+l. since we have seen that 

dim F(I') = dim F(J+ U {k}) lu+1 - 1, we obtain F(I') ~ F(J). II 

The following two lemmas guarantee Steps 10 and 15. 

Lemma 4.9. Let 
1 £, 

{u , ••• , u }. If 

independent, the vector P E Rn in Step 10 

U+' v and ware affinely 
t -1 

is obtained by p = P{P P) e, 
t £'+1 

(0, ••. ,0,-1) ER. 
1 £, 

where P = [u -w, ••. ,u -w,v-wJ and e = 

k 
Lemma 4.10. Let I = {il,···,i£,L If ai,s ( i E I and a are 

+ + 
linearly independent, the vector q E Rn in Step 15 is obtained by 

t -1 [ il i£, k] t Hi 
q = Q{Q Q) e, where Q = a , ..• ,a ,a and e = (0, ••. ,0,-1) E R 

Combining above lemmas we obtain the following theorem. 

Theorem 4.11. The algorithm finds a stationary point after finitely 

many iterations. 

proof. If v = w in Step 2, starting point w is a stationary point. 

I = I(F(I)) and 

* in wF (I) x F (I) 

f 

(w,-f(w)) lies in S n laLI by (3.11). Note that 

dim F (I) 

w{ v) x {v}* 

in Step 3 and the algorithm traces path 

by minimizing -\ 
v 

in Step 4. Then the 

theorem follows Lemma 4.2 to 4.10 by induction. II 

S 
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5. Remarks 

We give several remarks in order. 

(i) If we solve the dual problem 

minimize L 
iEM 

b, ll, 
~ ~ 

subject to (A,ll) EA(M,(l$), 

of the linear programming problem to be solved in Step 1, we obtain the 

initial basic solution of system (4.1). 

(ii) The column vector a
k 

independent of ai,s ( i E I+) is easily 

found in Step 7 if we keep the inverse of the basic matrix of (4.1). 

(Hi) Through the algorithm we solve a series of linear programming 

problems, each of which differs slightly from the former. It should be 

noted that we always have a feasible basic solution at hand for the new 

linear programming problem. 
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(iv) The column generation technique is used in Steps 11 and 16. Therefore 

we have a feasible basic solution of the system 

i 
a 'x + s, b, for i EM "- I 

i 
~ ~ 

a 'x b, for i E I 
~ 

s, ~ 0 for i EM "- r. 
~ 

When we come to Step 8, we have only to increase the slack variable 

find a vertex v. 

(v) We have assumed that system (4.1) is nondegenerate. Though it is 

degenerate, we can obtain the same result theoretically by perturbing the 

-c E Rn 2 n tEn right side constant by (E,E , ... -E ) R for a sufficiently 

small E, and practically by augmenting system (4.1) to 

AX = H ·:n 1 -c I 
n 

to 

E (IIi+lul+1)X(n+1) h 
and considering lexico-positive solution X R , were I 

is the n x n identity matrix and A E R(n+1) X(IIi+lul+1) is the coeffi-
n 

cient matrix representing (4.1). Note that the first column of X is the 

solution of (4.1) with the right side -c and 
2 n t 

X(1,E,E , ... ,E ) is the 
2 n t 

solution of (4.1) with -c + (E,E , ••• ,E ) • 

(vi) Let (A,ll) E A(I,U(I», z = LUEU(I)Auu. If ~ i 1/ then z/(l- Aw) 
is in F(I) or equivalently 

i 
a ·z - (1-A

w
)b

i 
::; 0 for i E M "- I 

o for i E I. 

Therefore when Ail, (4.1) is equivalent to 
w 
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1: ].l.a 
i + Cz + ACw -c 

iE! l. 
w 

0 ~ A ~ 1 
w 

].l.<:: 0 for i E I 
l. 

(5.1) 
i 

+ b. A b. for i E M \ I a ·z + s. 
l. W l. l. 

i 
+ b.A b. for i E I a ·z 

l. W l. 

s. <:: 0 for i E M \I. 
l. 

We could use system (5.1) to trace path S, which would release us from 

column generation. Note however that (5.1) has m-1 more equations than 

(4.1) . 

(vii) Let us consider the numerical example in Eaves [4J. The matrix and 

vectors defining the problem are 

D [1 -2] 
1 -1 

The stationary point is 

dual cone 

o -1 
1 0 

t 
~ = (4,4) , which is a vertex of ~ having the 

It is easy to see that -f(x) lies in this dual cone for any point of ~ 

( check the function value at each vertex, for instance). This means that 

the function value at any point of ~ suggests us that ~ is a plausible 

candidate for a stationary point. In fact, whichever point of ~ we may 

choose as the starting point, the algorithm yields x by only one pivot 

operation after it solves the linear programming problem in Step 1. This 

example suggests us that the algorithm is promising when we have a good 

guess of a stationary point. When a series of gradually changing stationary 

point problems is being solved, the algorithm will be efficient because the 

stationary point of the former problem usually serves as a good starting 

point of the successive problem. 

(viii) Though we have made no assumption on the function f(x) = Dx + c, 

we have assumed the compactness of ~,which guarantees both the existence 

of a stationary point and the finiteness of the algorithm. It will need 

further work to extend the algorithm for problems with unbounded polyhedral 

sets ~. 
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