水野眞治

ABSTRACT

SOLUTION ALGORITHMS OF A SYSTEM OF EQUATIONS AND MINIMIZATION OF A FUNCTION BY A BRANCH AND BOUND METHOD

Shinji MIZUNO Tokyo Institute of Technology

This paper proposes new algorithms for solving a system of equations and minimizing a function in one or two variables. The algorithms use the Branch and Bound method. We show the algorithm for solving a system of equations in two variables. Let I be the rectangular set $\{x=(x_1,x_2): a_1 \le x_1 \le b_1, a_2 \le x_2 \le b_2\}$ and F be a mapping from I into the m-dimensional Euclidean space. The j-th component of F is denoted by f_j . We assume that the gradient vector Df_j of f_j is Lipschitz continuous on I, i.e., we have

 $\| Df_j(X) - Df_j(Y) \| \leq L_j \| X - Y \| \text{ for each } X, Y \in I, j = 1, 2, ..., m,$ where $\| \cdot \|$ denotes the ℓ_2 -norm.

At first we divide the set I into two triangles. In branching operation, each triangle is divided into 4 small triangles. Then the function $f_j(x)$ is bounded on each triangle σ , i.e., we calculate v_j and u_j such that

 $v_i \leq f_i(x) \leq u_i$ for each $x \in \sigma$, $j=1,2,\ldots,m$.

We easily see that there are no solutions of the equation F(x)=0 on σ if $v_{,>0}$ or $u_{,<0}$ for some j. Hence we can obtain an approximate set U of the solution set S = {x:F(x)=0} by the next algorithm.

- Step 1: let J be a set of two triangles into which the initial rectangular set is divided and $U=\phi$.
- Step 2: if $J=\phi$ then end.
- Step 3: pick out a triangle σ from J.
- Step 4: calculate the lower bound v_j and the upper bound u_j of $f_j(x)$ on σ for each j.

Step 5: if $v_1 > 0$ or $u_1 < 0$ for some j then go to Step 2.

Step 6: if the size of σ is small enough then add the representative point of σ to U and go to Step 2.

Step 7: add 4 small triangles into which σ is divided to J and go to Step 2. In the same way, we also propose an algorithm for minimizing a function.