ABSTRACT

SOLUTION ALGORITHMS OF A SYSTEM OF EQUATIONS AND MINIMIZATION OF A FUNCTION BY A BRANCH AND BOUND METHOD

Shinji MIZUNO

Tokyo Institute of Technology

This paper proposes new algorithms for solving a system of equations and minimizing a function in one or two variables．The algorithms use the Branch and Bound method．We show the algorithm for solving a system of equations in two variables．Let I be the rectangular set $\left\{x=\left(x_{1}, x_{2}\right): a_{1} \leq x_{1} \leqq b_{1}, a_{2} \leqq x_{2} \leq b_{2}\right\}$ and F be a mapping from I into the m－dimensional Euclidean space．The $j-t h$ component of F is denoted by f_{j} ．We assume that the gradient vector $D f_{j}$ of f_{j} is Lipschitz continuous on I ，i．e．，we have

```
    \(\left\|D f_{j}(X)-D f_{j}(Y)\right\| \leqq L_{j}\|X-Y\|\) for each \(X, Y \varepsilon I, j=1,2, \ldots, m\),
``` where \(\|\cdot\|\) denotes the \(\ell_{2}\)－norm．

At first we divide the set I into two triangles．In branching operation， each triangle is divided into 4 small triangles．Then the function \(f_{j}(x)\) is bounded on each triangle \(\sigma\) ，i．e．，we calculate \(v_{j}\) and \(u_{j}\) such that
\[
v_{j} \leqq f_{j}(X) \leqq u_{j} \quad \text { for each } \quad X \in \sigma, \quad j=1,2, \ldots, m
\]

We easily see that there are no solutions of the equation \(F(x)=0\) on \(\sigma\) if \(v_{j}>0\) or \(u_{j}<0\) for some \(j\) ．Hence we can obtain an approximate set \(U\) of the solution set \(S=\{x: F(X)=0\}\) by the next algorithm．

Step 1：let J be a set of two triangles into which the initial rectangular set is divided and \(U=\phi\) ．

Step 2：if \(J=\phi\) then end．
Step 3：pick out a triangle \(\sigma\) from J．
Step 4：calculate the lower bound \(v_{j}\) and the upper bound \(u_{j}\) of \(f_{j}(x)\) on \(\sigma\) for each \(j\) ．

Step 5：if \(v_{j}>0\) or \(u_{j}<0\) for some \(j\) then go to Step 2.
Step 6：if the size of \(\sigma\) is small enough then add the representative point of \(\sigma\) to \(U\) and go to Step 2 ．
Step 7：add 4 small triangles into which \(\sigma\) is divided to \(J\) and go to Step 2. In the same way，we also propose an algorithm for minimizing a function．```

