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Abstract First passage times for PH/PH/l/K and PH/PH/l queues have been studied. The Laplace transform 

for the busy period probability density function (p.d.f.), inter-overflow time p.d.f. and transition probability for 

system states between two arbitrary time points are represented by some recurrence formulas. Dimensions of the 

inverse matrices included in each recurrence formula do not exceed the number either of arrival phases or of service 

phases. Hence, if either the number of arrival phases or nlJmber of service phases is small, the Laplace transforms 

of the above-mentioned p.d.f.s and transition probability can easily be computed. The moment characteristics of 

busy period and inter-overflow time are presented using some numerical examples. 

1. Introduction 

A PH/PH/l/K queue with finite capacity K and a PH/PH/l queue with infinite 

capacity where the interarrival and service time distributions are both of 

phase type are very important as approximations for GI/G/l/K and GI/G/l queut:s. 

This paper examines the first passage times of PH/PH/l/K and PH/PH/l queues. 

A Laplace transform is provided for the first passage time probability density 

function (p. d. f.) from cus tomers n to n+ I (or n-l) in the system. Inter­

overflow times and busy period are repre:;ented by such first passage times. 

The Laplace transform for the stansition probability of system states between 

two arbitrary time points is also represented using the Laplace transform of 

these first passage time p.d.f.s. The first passage time p.d.f. for the 

PH/PH/l queue is given as a special case of the PH/PH/IlK queue. All formulae 

are represented as simple recurrences. In particular, the fact that the 

dimensions of the inverse matrices included in each recurrence do not exceed 

either the number of arrival phases or service phases is worthy of attention. 
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2 F. Machihora 

Results for inter-overflow times are very important for telephone network 

dimensioning, because telephone networks employ alternate routing. These 

results make it possible to extend discussions previously presented for the 

M/PH/1/K [4] and PH/M/1/K [1,5] queues. The effect of interarrival time and 

service time variations for inter-overflow time variations will be discussed 

using numerical examples. 

Results for busy periods are important in analyzing the priority queueing 

models [2]. For example, models in which the arrival process of non-priority 

customers is a pois'son process can easily be analyzed. The results presented 

here are an extension of the results about the M/G/1/K queue [8,9]. The 

effect of inter arrival time and service time variations on the busy period is 

discussed here using numerical examples. 

The results of transition probability are important in analyzing models 

with two independent inputs. For example, a PH(X)+PH/PH/1/K queue with mixed 

PH-renewal group arrivals and PH-renewal with simple arrivals can be analyzed 

by applying our results to the theory of piecewise Markov Processes [3]. 

2. Model and Notations 

Consider a finite queueing system, PH/PH/1/K, and an infinite queueing 

system, PH/PH/1, in which the interarrival time p.d.f., f(t), and the service 

time p.d.f., get), are p.d.f.s of phase types. Let A = [1,2, ... ,m
1

] and 

B = [1,2, ... ,m2] denote the phase state spaces of f(t) and get), respectively. 

Consider the Cartesian product set A x B = [(1,1),(1,2), ... ,(1,m
2
),(2,1), ... , 

(2,m2), ... ,(m
1
,1), .•. ,(m

1
,m2)] and assign a number, (i-1)m2+j, for each (i,j), 

i.e., A x B = [1,2, ... ,m
1
m2]. 

Under the above notations, let z(t), wet) and X(t) denote respectively 

the arrival and service phase state, the service phase state and the arrival 

phase state at time t. Consider the bivariate stochastic process, 

(2. 1 ) [yet), z(t); t ~ 0], 

where yet) denotes the number of customers in the system at time t and z(t) 

denotes the phase state at time t. When yet) > 0, Z(t) takes a value in the 

arrival and service phase state space A x B. When yet) = 0, z(t) takes a 

value in arrival phase state space A. 

Let t£(£ = 1,2, ••. ) denote the arrival epoch. The phase state at the 

arrival epoch is free from the arrival phase states and W(t~) = j can be 

written for Z(t£-dt) = (i-1)m2 + j. The process 
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(2.2) 

is Markovian, where Y(t~) denotes the number of customers in the system im­

mediately before customer arrival epoch t~, and w(t~) denotes the service 

phase state for the same epoch. When Y(t~) > 0, w(t~) takes a value in 

service phase state space B. When Y(t~) = 0, t~ is the renewal point and 

w(t~) is free from the phase states. 

3 

Let s~(~ = 1,2, .•• ) denote the service completion epoch. The phase state 

at the service completion epoch is free from the service phase states and 

x(s~) = i can be written for Z(s~-dt) = (i-1)m2 + j. The process 

(2.3) 

is Markovian, where Y(s~) denotes the number of customers in the system im­

mediately before service completion epoch s~, and x(s~) denotes the arrival 

phase state for the same epoch. When Y(s~) > 0, x(s~) takes a value in 

arrival phase state space A. 

3. First Passage Time P.D.F.s and Their Application 

First passage times, such as the int,er-overflow time, busy period and so 

on, are discussed in this section. The Laplace transforms of these life-time 

p.d.f.s are represented by recurrence formulas. 

3.1 First Passage Time P.D.F.s for PH/PH/1/K Queue 
Let us consider the first passage time from the arbitrary time point '0' 

Let x: denote the first passage time from y(,O) = n to y(,O + t) = n+1 (w when 

n = K), where w denotes the occurrence of an overflow. That is, 

and 

+ 
x 

n 
inf[Y(,o + t) = n+1 / Y(,O) = n], n = 0, 1, ... , K-1, 

t 

This first passage is realized by th,~ customer arrival, and the phase 

states at this first passage time point are free from the arrival phase 

states. The d.f. of this first passage time is defined as 

+ + gi. (t; O)dt: = p[t < Xo < t+dt I Z(,O) = i] , 

(3.1) i = 1, 2, ... , m
1

• 
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4 F. Machihara 

n = 1, 2, ... , K, i = 1, 2, •.. , rn1rn2, j = 1, 2, "', rn2 . 

Let xn denote the first passage time from y(,O) 

without overflow occurrence. That is, 

n to Y(,O + t) = n-1 

x 
n 

inf[Y(,O + t) n-1, and no overflow occurs in ('0' 'O+t) 
t 

/ Y(,O) = n] . 

Then, the d.f. of this first passage time can be defined as 

(3.2) 
n = 1, 2, .•. , K, i 1, 2, ... , rn

1 
. 

+ 
Let x~ denote the first passage time from Y(,O) n-1. 

That is, 

± 
x 

n 
inf[Y('O+t) = n-1 / Y(,O) = n] . 

t 

Then, the d.f. of this first passage time can be defined as 

+ 

(3.3) 
gij(t; n)dt: 

n = 1, 2, ... , K, i = 1, 2, ... , rn1rn2, j = 1, 2, ... , rn1 

The main object of this section is to represent (3.1) through (3.3) 
. " .,. +( ) -( ) ±( ) +() +() us~ng trans~t~on probab~llt~es f .. tj n , f .. tj n , f .. tj n , h .0 , h .. n 

~] ~] ~] .]~] 

and h~ .(n) defined by (3.4) through (3.9). The Laplace transforms of 
+ ~] + 

f . . (tj n), f~ .(tj n) and r. .(tj K) will be concretely given by (3.32) through 
~] ~] ~] 

(3.34). h+j, h: .(n) and h~ .(n) will be given by (3.35) through (3.37). 
.~] ~] 

For the first passage time from Y(,O) = n to Y('O+t) = n+1 (or w) without 

service completitions in ['0' 'O+t], that is for 

let 

0.4) 

inf[Y('O+t) = n+1 (or w), Y(s) = n for all SE['O' 'O+t) 
t 

/ Y(,O) n], 

f:. (tj O)dt: = p[t < y; < t+dt / z(,O) i], 

i = 1, 2, ... , m
1

, 

n = 1, 2, ... , K, i = 1, 2, ... , rn1m2, j = 1, 2, "', m2. 
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For the first passage time from Y(,O) = n to Y(,O + t) 

arrivals in ['0' 'O+t]. that is for 

n-l without customer 

let 

(3.5) 

Yn i~f[Y('O+t) = n-l. yes) = n for all s£['O. 'O+t) and no 

customer arrives in ['0' TO+t) / Y(,O) = n] • 

n = 1. 2 •...• K. i = 1. 2 •.•.• m
1
m2• j = 1. 2 •.•.• m1 

Further. for the first passage time from Y(,O) = K to Y(,O + t) = K-l. 

that is for 

let 

(3.6) 

are 

(3.7) 

and 

(3.8) 

inf[Y('O+t) = K-l. yes) = K for all s£['O. 'O+t) / Y(,O) = K] • 
t 

i) , 

1. 2 •.•.• m
1 

• 

The state transition probabilities between pre- and post-arrival epochs 

0] • 

+ 
h .. (n): = p[y(t.+dt) = n+l (whIm n < K). w (when n = K) • 
~] '" 

Z(tR.,+dt) = j / Y(tR.,-dt) = n. w(tR.,) = i) • n = 1.2 ..... K. 

i = 1. 2 •.••• m2 • j = 1. 2 ••••• m
1
m

2 
• 

The state transition probabilities betwel~n pre- and post-service completion 

epochs are 

h:
j
(I): = p[Y(sR.,+dt) = O. X(sl+dt) = j 

/ Y(sR.,-dt) = 1. x(sl) = il • i.j = 1. 2 •...• m
1

• 

and 

h:j(n): = P[y(sl+dt) = n-l. Z(sR.,+dt) = j 

(3.9) / Y (s R., -dt) = n. X (s R.,) = i 1 , n = 2. 3, ... , K, 
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6 F.Machihma 

Since f: .(t; n) (n = " 2, ... , 
+~] -

h . . (n) (n = " 2, .•. , K) and h . . (n) 

K), f~ .(t; n) (n = ',2, ... , K), 
~] 

(n = 2, 3, ... , K) do not depend on n, 
~] ~] 

then f: .(t), f~ .(t), h:. and h~ . are respectively written instead of these. 
~] ~] ~] ~] 

Now, let us define the following matrices for each definition from (3.') 

through (3.9). 

(3.'0) 

(3.'1) 

(3. '2) 

(3. '3) 

(3. '4) 

(3. '5) 

(3. '6) 

o. '7) 

(g: (t; 0)); 
~. . , 2 (m, x , matrix), , , ... , m, 

G;(t): = (g;j(t; n))i = " 2, ..• , m,m
2

, j 

(m,m2 x m2 matrix), n = " 2, ... , K. 

G-(t): (g~/t; n))i = , , 2, j n ... , m,m2, 

(m,m2 x m, matrix) . 

G±(t): + 
= (gi/ t ; n)) i , , 2, n = ... , m,m2, j 

(m,m2 
x m, matrix) . 

" 2, ••• , m
2 

1 , 2, ... , m, 

, , 2, ... , m, 

u: (t; 0); 
~. . , 2 (m, x , matrix), , , ... , m, 

F+(t): = (f: .(t)). 
~] ~ = " 2, ... , m,m2 , j 

(m,m2 x m2 matrix). 

F (t): = (f~j(t»i = " 2, ... , m,m
2

, j 

(m,m2 x m, matrix). 

+ + 
r(t): = (r .(t; K». , 2 ]. 

~] ~ = , , •.• , m,m
2

, 

(h+.(O». 
.] ] 

H+: = (h:.). 
~] ~ = " 2, ... , m2 , j 

(m2 x m,m2 matrix). 

" 2, ••• , m2 

',2, ... ,1n, 

" 2, ... , m, 
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(h:§I»i = I, 2, ... , m" j 

(m
l 

x m
l 

matrix). 

H : = (h~J'); = 1, 2 J' •• , ••• , m
l

, 

-

I, 2, ... , m
l 

7 

The foregoing makes it clear that ](1 is equivalent to an m
l 

x m
l 

identity 

matrix. Let us next consider G+(t). Suppose that t upward transitions from 
n 

y(tm) = n-l to y(tm+dt) = n (m = 1, 2, "', t) occur in ['0' 'O+t], and divide 

['0' to+t] into its subintervals [TU' t'I]' (t l , t 2], ... , (tt-I' tt] and 

(tt' to+t]. The transition probabilities of the stochastic process [yet), 

z(t); t G 0] between tm+dt and tm+l ('0 and t l ) are given by F-(t)H~ * 
G~(t)H~ for n = 1 and F-(t)H- * G~_I(t)](+ for n = 2,3, ... , K. Since the 

+ transition probabilities between tt+dt and to+t are given by F (t), the 

following recurrence formula (3.19) can be derived from a similar discussion 

by Machihara [5,6] or Keilson et al. ['11]. 

G~ (t) 

(3.19) + G
l 
(t) 

where 

and 

I
oo +t* + xo (t) * F (t) t=O 

~oo +t* + 
Lt=O x n _ l (t) * F (t), n = 2, 3, •.. , K 

- + 
Let us consider G (t) and G-(t). Suppose that t downward transitions 

n n 
from y(5m) = n+l to y(5m+dt) = n occur in ['0' 'O+t] and divide this into its 

subintervals ['0,51], (5 1,52], ... , (St-l' 5] and (St' 'O+t]. By consider­

ing the transition probabilities of the stochastic process [yet), z(t); t G 0] 

between 5m+dt and sm+1 ('0 and 51)' it follows that 

(3.20) 

n = K-l, K-2, .•• , 1 , 
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8 F. Machihara 

where 

and 

(3.21) 

n = K-1, K-2, ... , 1 , 

where 
+ + + + -

X- l(t) = F (t)H * G- l(t)H 
n+ n+ 

Let us consider the Laplace transform matrices of (3.19) through (3.21), 

where x(s) denotes the Laplace transform of matrix x(t). Then, equations 

(3.19) , (3.20) and (3.21) give 

-+ -+ 
GO(s) FO(S) , 

-+ 
I;=o 

-+ R,-+ 

(3.22) 
G

1 
(5) (xO(S» F (5) 

-+ 
G (5) 

n I~=o 
-+ R, 

(xn-
1 

(5» 
-+ 
F (5) 

n = 2, 3, ... , K 

-+ -+ 
Here, xi(s) is the Laplace transform of Xi(t) defined in (3.19). 

(3.23) 

;;;(5) 

a-Cs) 
n 

n=K-1,K-2, ... , 1. 

Here, x~(s) ~s the Laplace transform of x~(t) defined in (3.20). 
~ ~ 

-+ 
G;(s) 

(3.24) \'''' -+ R, 
LR,=O (X~+l (5» F (5) , 

n = K-1, K-2, "', 1 

-+ ... + 
Here Xi(s) ~s the Laplace transform of Xi(t) defined in (3.21). 

Matrices G+(s) (n 
n 

recurrence formula 

0, 1, ... , K) of (3.22) are represented by the 
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-+ 
GO (s) 

-+ 
FO (s) , 

-+ G
1 

(s) (I - X~(s»-1 F+(S), 

(3. Z5) 
and 

-+ -1 -+ (I - Xn- 1 (s» F (s) . 

Let eC(n) denote the n-column vector with all its components equal to 
-- C C - C C -+ C 

one. Since F (O)e (m 1) < e (m,mZ)' He (m
1
mZ) = e (m 1), GO(O) = e (m 1) and 

+ C () • -+ () . HOe m
1
mZ = 1, the Lnverse of I - Xo s eXLsts if the real part of s is non-

negative. Similarly, the inverse of I - .iC+ 1 (s) exists. n- . 
The dimension of each inverse matrix of (3.Z5) is equal to m

1
mZ' Com-

putation of the inverse matrix is usually cumbersome when the dimension is 

large. In order to reduce this dimension, let us consider other expressions 

9 

-+ -1 -+ -- - -+ + 
for (I - Xn- 1 (s» of (3.Z5). From the definitions of XO(s) =F (S)H

1 
GO(S)HO 

-+ -- - -+ + 
and Xn- 1 (s) = F (s)H * Gn_1(S)H (n ~ Z), we have 

(3. Z6a) 

-+ -, 
(I - Xn-

1 
(s» I + F-(S)\~ o(y+ 1 (S»]H-G+ I(S)H+ 

LJ= n- n-

- -+ -1 --+ + 
I + F (s)(I - Yn-l(s» H Gn(S)H 

or 

(3.Z6b) 

-+ -1 (I- X
n

_
1 

(s» I + F-(S)H-a+ l(s)\~ o(z+ 1 (S»]H+ 
n- LJ = n-

-- --+ -+ -1 + = I + F (s) H G n (s) (I - z n-l (s) ) H 

n = 1, Z, ... , K, 

where 

-+ --+ +--Yn- 1 (s) = H Gn- 1 (s)H F (s) (m1 x m, matrix), 

and 

-+ +-- --+ 
zn-l (s) = H F (s)H Gn_1 (s) (mZ x mZ matrix). 

Equation (3.Z6a) should be used of nIl < mZ' and (3.Z6b) should be used 

if m1 > mZ' The dimensions of the inverse matrices can be reduced from m11nZ 
to min(m1, 1nZ)' and hence the computation may be greatly simplified. 
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10 F. Machihora 

Equation (3.23) gives 

G; (5) 

(3.27) and 

G-(s) 
n 

(I - X~- 1 (5»-1 F~-(S), 1 2 1 n+ n = K- , K- , ••• , • 

The inverse of I - X- 1(5) can be transformed as 
n+ 

(3.28a) 
~- -1 

(I-Xn+1(s» 
~+ +~- ~- -1 -

I + F (5) H G n+ 1 (5) (I - Y n+ 1 (s) ) H 

or 

(3.28b) 
~- -1 

(I - X n+ 1 (5) ) 

where 

y- 1 (5) 
n+ 

-~+ +~-

H F (s)H G n+l (5) (m1 x m1 matrix) 

and 

Equation (3.24) gives 

G:(S) 
~+ ~- ~+ +~+ -1 +~-
F;(S) = F (5) + F (5) (I - H F (5» H F (5) , 

(3.29) and 
~+ 

G-(s) 
n 

(I - x± I(G»-1 ;-(5), n = K-l, K-2, ••• , 1 • 
n+ 

The inverse 
~ -1 

(I - Xn+
1

(s» can be transformed as 

(3.30a) 

or 

(3.30b) 

where 

and 

~+ -1 
(I - X~+1 (5» 

~+ +~+ ~+ -1 -
I + F (s)H G~+I(s)(I - Y~+1 (5» H 

~+ -1 
(I - X~+1 (5» 

~+ ~:t -1 + + -
I + F (5) (I - Z 1 (5» H G- 1 (S)H 

n+ n+ 

~+ 

Y- 1 (5) 
n+ 

-~+ +~+ 
H F (s)H G~+I(s) (m

1 
x m1 matrix) 

~+ ~- ~+ 

The representation of G (5), G (5) and G-(s) have been obtained using 
n n n 

;~(s), ;+(5), ;-(5), H~, H+, H~(identity matrix) and H-. 
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Suppose that phase-type p.d.f.s f(t) and get) have Neuts, representations 

[7], (a, T) and (B, S), such that 

f(t) = aexp(Tt)T
O 

(3.31) and 

get) = Bexp(St)so . 

It follows from the definition of phase states that 

(3.32) 
-+ 
FO(S) (sI(m

1
) - T) 

-1 
TO ' 

(3.33) 
-+ 
F (s) (sI(m

1
m

2
) - T ® I(m2 ) - I(m

1
) ®s) 

-1 
(TO ® I (m2» 

(3.34) ;-(s) (sI(m
1
m

2
) - T ® I(m ) -

-1 
(r(m

1
) ® SO) 2 I(m

1
) ® S) 

(3.35) + 
a ® B HO 

(3.36) + I(m
2

) H a® 

and 

-
(3.37) H = I(m 1) ® B 

Here, I(n) denotes an n x n identity matrix and ® denotes Kronecker's matrix 

product [7, p. 53]. See Appendix A for t::le derivation of (3.32)- (3. 37). 

3.1.1. Inter-overflow Time Structure 
Let t~w)(t = 0, 1, 2, '" ) denote overflow occurrence time epochs. 

The p.d.f. of the inter-overflow times has the following matrix structure. 

(3.38) Q(t) = (g, ,et»~ '-1 2 '1 2 
~J ~-" ••• , m2 , J=, " • " m2 , 

where 

It is easily seen from this definition that Q(t) can be represented by 

(3.39) 

Hence, the Laplace transform O(s) of Q(t) is 

(3.40) - +-+ + -+ -1-+ 
Q(s) = HGK(S) = H (I - XX_l(S» F (s) (m2 x m2 matrix). 

The mean, mw' and variance, vw' of the inter-overflow time are respec­

tively given by 
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12 F. MachiJumz 

and 

where vector q is the invariant probability vector satisfying the linear 

equation 

q , c 
q e (m

2
) = 1 • 

The first and second moments of (3.25) can be obtained as follows: 

-+ -+ -1 -+ -+ -1-+ dGn(s)/ds = (d(I - Xn_
1

(s» /ds) F (s) + (I - x
n

_
1

(s» dF (s)/ds 

and 

-+ -1 -+ 
+ 2(d(I - x n_

1
(s» /ds) F (s)/ds 

-+ -1 2-+ 2 
+ (I - Xn_

1
(s» d F (s)/ds , 

where 

-+ -1 d(I - x
n

_1(s» /ds -+ -1 -+ -+-1 
(I - Xn_ 1 (s» (dXn- 1 (s)/ds) (I - Xn- 1 (s» 

and 

2 -+ -1 2 
d (I - x

n
_

1
(s» /ds 

-+ -1 -+ -+-1 (d(I - x
n

_
1

(s» /ds) (dX
n

_
1
(s)/ds) (I - X

n
-

1 
(s» 

-+ -1 2-+ 2 -+ -1 
+ (I - Xn- 1 (s» (d Xn- 1 (s)/ds ) (I - Xn- 1 (s» 

-+ -1 -+ -+-1 
+ (I - Xn- 1 (s» (dXn- 1 (s)/ds) (d(I - Xn- 1 (s» /ds) 

From dQ(s)/ds 

computed. 

+ -+ 2- 2 
H dGK(s)/ds and d Q(s)/ds and v 

w 
can be 

(w) 
Consider the convariance of inter-overflow times, cov(t

k
+

1 
- t(w» (k < t). This covariance is given by 

t 

The covariance is not always equal to 0, thus the overflow process from the 

PH/PH/1/K cannot be always thought to be renewal. In particular, for the case 
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of erponential services, since Q(s) is scalar and 8(0) 

is equal to O. 

q 1, the covariance 

Now, let us consider the moment characteristics of inter-overflow time. 

The service time and interarrival time p .. d.f.s agreeing with mean m and vari­

ance v are given by 

and 

2 
k-phase Erlangian Ek for v/m < 1, 

Morse type hyperexponential H
2

[Cf. 10] for v/m2 > 1. 

The effects of service time variations on the overflow processes are 
-1 --1 

illustrated in Figs. 1 and 2. A ,va ' ~ Vs and p denote the mean inter-

arrival time, variance in interarrival time, mean service time, variance in 

service time, and offered load, A/~. Figure 1 depicts that blocking probabili­

ties increase monotonically as variations in the service times increase. When 

the offered load, p, is small, the effect of service time variations is very 

significant. Figure 2 depicts that interoverflow time variations increase 

monotonically as the service time variations increase. It should be noted 

that when the coefficient of variation of service time is fixed, the coeffi­

cient of variance of interoverflow time lS not monotomic as p increases. 

The effects of inter arrival time variations on overflow processes are 

illustrated in Figs. 3 and 4. Blocking probabilities are very sensitive to 

variations in inter arrival times; this is especially so, when p is smaller 

than one. The effect on the coefficient of interoverflow time is also worthy 

of notice. When the coefficient of variation for interarrival times is 

greater than three, the coefficient of variation for interoverflow times 

increases monotinically as p increases. 
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3.1.2. Busy Period Structure 
Since the busy period is defined as the first passage time length between 

the arrival of a customer to an empty queue and the first epoch thereafter 

that the queue becomes empty again, its p.d.f. has the vector structure 

(3.41) 
+ + 

B(t) =HOG!(t) • 

The Laplace transform, 8(S), of B(t) is given by the equality, 

(3.42 ) 

-+ -+ 2-+ 2 -+ -+ 
G1(s), dG1(s)/ds and d G,(s)/ds can be computed similarly as GK(s), dGK(s)/ds 

2-+ 2 
and d GK(s)/ds , respectively. 

It should be noted that idle time p.d.f. is given by 8(0)exp(Tt)TO' 

because B(O) is the stationary arrival phase state probability vector im­

mediately before the idle period starting point. Mean, mb' and variance, vb' 

for the busy period are respectively 

and 

The effects of service time variations for the busy period are illustrated 

in Figs. 5 and 6. Figure 5 depicts that the mean busy period decreases monoto­

nically as the service time variation increases. This is undoubtedly because 

the blocking probability increases and the number of customers completing 

services in one busy period decreases. However, this effect is not so notice­

able when p is small. When p is smaller than 0.2, the effect of service time 

variation is negligible. Figure 6 indicates that the busy period variation 

increases monotonically as the service time variation increases. 
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18 F, Machihara 

Let us consider a more detailed structure for the busy period. Let ~,T] 

denote the busy period and let O(T) denote the number of overflows during this 

period. Consider the following joint d.f. matrix 

(3.43) .a(t, j): 

where 

b.£(t, j)dt: = p[t < T < t+dt, O(T) j, X(T) = £ 

/ Y(O) = 1], j 0, 1, ... , £ = 1, 2, ... , m1 . 

Let z+ denote the first passage time from Y(·) 
n 

n to Y(·) n+1 without 

intermediate passage to Y(·) = O. That is, 

+ 
zn: = inf[Y('O+t) = n+1, yes) f 0 for all s E: ['0' 'O+t] /y(,O) = n] 

t 

n = 1, 2, ... , K-1 , 

and 

w, yes) f 0 for all s E: ['0' 'O+t]/Y(,O) = K]. 

Then, we define 

(3.44 ) 

n = 1,2, ... , K, i = 1, 2, ... , m1m2, j 1, 2, ..• , m
2 

If a matrix with the Laplace transforms of (3.44) as elements, that is, 

(3.45 ) Gn(s; Y> 0): = (g.;],(s;,n, Y> 0», , 
~ ~=1, 2, •.• , m

1
m

2
,] =1, 2, .• • m

2
• 

is defined, the following equations can be obtained in a way similar to 

(3.25). 

(3.46) 

where 

-+ 
G

1 
(s; Y > 0) 

-+ 
Gn(s; Y > 0) 

-+ 
X 1 (s; Y > 0) n-

F+(S) 

(I -
-+ 
X 1 (s; n-

-1-+ 
Y > 0» F (s), 

Inverse matrix (I - i+ l(s; Y > 0»-1 may be transformed like this: 
n-
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(I-X+ (5' Y> 0»-1 
n-l ' 

-+ -1 
(I - X (5; Y > 0» 

n-l 

-- -+ -1 
I + F (5) (I - Y 1(5; Y> 0» n-

--+ +-+ oH G
n

_
1

(s; Y> 0) H F (5) 

-+ -1 +-+ 
o(I - Zn_l (5; Y > 0» H F (5) , 

-+ 
Y 1 (5; Y > 0) n-

--+ +--
H G

n
_

1
(s; Y:> 0) H F (5) 

-+ +-- --+ 
Zn_l(s; Y> 0) = H F (5) H Gn- 1 (5; Y> 0) • 

The Laplace transform, B(S, j), of B(t, j) can be written from the 

definitions of (;;(5; Y> 0), G~(s), H;, H+ and H as 

- J') +-+ k-l +-+ +-+ j 
B (5 ; = HoG 1 (5; Y > 0) [11 i =2 (H G (5; Y > 0»] [(H G (5; Y > 0)] 

(3.47) 
+ K-2 -- ---

oH [lI i =O GK- i (s)H ] G1 (5), j 1, 2, ... , 
R. where the product operator, lI
i

=k' is defined as the identity 

operator for R. < k. 

It is clear that 

(3.48) 

Defining the generating function 

-* 1;'00 j - , 
B (5, z): = Lj=O Z B(s, J), 

from (3.47) and (3.48), it follows that 

-* +-- +-+ k-l +-+ 
B (5, z) = H

O
G

1
(S) + H

O
G

1
(S; Y > 0) [lI

i
=2 (H G (5; Y> 0»] 

(3.49) 
+-+ +-+ -1 + 

O[ZHGK(s; Y> O)][I - zHG (s; Y> 0)] H . K 

K-2 -- - --
° [11 i=O GK- i (s)H ]G 1 (5). 

19 
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3.2. First Passage Time P.D.E. for PH/PH/1 Queue 
Since the first passage time p.d.f.s from y(.) = n to y(.) = n+1 defined 

in (3.1) have no relationship to queueing capacity, the Laplace transforms of 

the p.d.f.s for the PH/PH/1 queue can also be given by (3.25). The first 

passage time p.d.f.s from y(o) = n+1 to y(o) = n, are satisfied by 

(3.50) G-(t) = G- l(t) for all n 
n n+ 1, 2, 

With writing of G-(s) instead of 8-(s) (n = 1, 2, .... ), it follows from 
n 

(3.20) that 

(3.51) 

That is, 

(3.52) 

C-(s) can be obtained by successive substitutions starting with the zero 

matrix (See Neuts [7. pp.95-101]). 

4. Transition Probability Between Two Arbitrary Points In Time 

This section provides a look at the Laplace transforms for transition 

probabilities of the stochastic process [Y(t), Z(t), t ~ 0] for the PH/PH/1/K 
~+ -- -+ -+ -+ -- + + -

and PH/PH/1 queues. G (s), G (s), G-(s), FO(S), F (s), F (s), HO' Hand H , n n n 
derived in Section 3, will be used. 

4.1. Transition Probability for PH/PH/1/K Queue Between Two Arbitrary 
Points In Time 

(4.1) 

The transition probabilities for the PH/PH/1/K queue are defined by 

p .. (t; k, R.): =p[Y(-rO+t) 
~J 

i, j = 0, 1, ... , K, k, 1 = 1, 2, "', m1m2 • 

First, let us consider the case where i = j. In order to analyze 

p . . (t; k, 1), let us introduce the transition probability 
]J 

(4.2) upward transitions from y(o) j-1 to y(.) j is exactly 

k] 
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and 

p[y(u) 
(4.3) 

z('o+t) = £ / y(,O) j. z(,O) = k] 

From this definition. it is clear that 

(4.4) Pj/t; k. ~) = I:=o Pjj 
(t; k. ~; n) 

Now. let p" "(t; n) and Q" "(t) denote the matrices which contain elements 
JJ JJ 

Pj/t; k. ~; n) and qj/t; k. ~) (k. ~ = 1.2 •...• m
1

m2 ). That is. 

(4.5) PJ"J"(t; n): = (PJ"J"(t; k. ~; n»k 1 2 n 1 2 = •••••• m1m2 • ~= •••••• m1m2 • 

Then. from Appendix A. it is clear that the Laplace transform. Q" "Cs). of 
JJ 

Qjj(t) can be represented by 

1. 2. . ..• K-l • 

-+ +-+ -1 + 
+ F (s) (I(m2) - H F (5» H (SI(m

1
m

2
) -

- T ® I (m
2

) - I (m 1) ® S) 
-1 

(i) n = 0 case 

Noting the epochs of the downward transitions from y(.) 

(j = 0.1 •...• K-I). it follows that 

(4.7) 

and 

(4.8) 

j 1. 2 •.•.• K-l • 

It is clear that 

(4.9) Q
KK 

(t) • 

j+l to y(.) j 
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(ii) n = 1, 2, .... case. 

It is clear that 

(4.10) o 

Noting the epochs of the upward transitions from Y(·) 

(j = 1, 2, ... , K). it follows from (4.7) that 

j-1 to Y(·) 

(4.11) 

+ - + + n* 

I 
(G1(t)H1 * FO(t)HO) * P11 (t; 0). j 

± - + + n* 
P . . (t; n) = (G .(t)H * G. 1 (t)H) * p].].(t; 0). ]] ] r 

j = 2. 3, ...• K. 

Equations (4.7) and (4.10) give the expression 

(4.12) 

and (4.11) 

(4.13) 

Taking the 

(4.14) 

(4.15 ) 

where 

gives 

I;=o 
+ -

(G
1

(t)H
1 

+ + i * * FO(t)HO) * P
11 

(t; 0), 

j = 1. 

Pj/t) 
+ 

I:=o + + i * (G-.(t)H- * G. 1 (t)H ) * Pj/t; 0). 
] r 

j = 2. 3, ... , K. 

Laplace transforms of (4.12) and (4.13) , 

P . . (s) 
JJ 

~+ ~-~+ + -1 ~ 
(I - Gj(S)H G

j
_

1 
(s)H) Pjj(s; 0). 

j 2,3, ... ,K, 

~+ -~+ + -1 
(I - G-'(s)H G. 1 (s)H ) ] r 

~+ -~+ +~± -1 -~+ + 
= I + G-'(s) (I - HG. 1(S)HG.(S» HG. 1(S)H 

] r] ]-

1. 

j 
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-+ --+ + -1 
(I - G-'(s)H G. 1 (s)H ) ] r 

-+ --+ +-+ --+ -1 + 
= I + G-'(s)H G. l(s) (I - H G-'(s)H G. l(s» H • 

]]- ]]-

Here, from (4.8) and (4.9), the p .. (s; 0) of (4.15) can be represented by 
]] 

(4.16) 

and 

where 

or 

-+ +-+ - -1-
(I - F (s)H Gj+1 (s)H) Qjj(s) 

j=1,2, •.• ,K-l, 

-+ +-+ - -1 
(I - F (s)H G-. 1 (s)H ) 

]+ 

-+ +-+ --+ +-+ -1 -
= I + F (s)HG-: 1(s) (I - H F (s)HG-: l(s» H , 

]+ ]+ 

-+ +-+ - -1 
(I - F (s)H G-: l(S)H ) 

]+ 

-+ +-+ --+ -1 +-+ -
= I + F (s) (I - H G-: 1 (s)H F (s» H G-. 1(S)H 

]+ ]+ 

Now~ .. (~) has been obtained for all j - 0, 1, ... , K. 
]] 

Next, for i '" j, consider the transition probability defined by 

(4.17) p .. (t): = (p .. (t; k, ~)k-1 '> n 1 2 
~] ~] - , " ... , m

1
m

2
, ~=, , ... , m

1
m

2 

Since P .. (t) is represented as the convolution of the first passage p.d.f. 
~] 

from y(.) = i to y(.) = j and P .. (t), the Laplace transform P .. (s) of P .. (t) 
]] ~]~] 

can be obtained by 

(4.18) 

[ i - j-1 - + ( -] -) < .; 
TI~=O (G~_~ s)H ) Pjj(s • ° < j ~ 

23 
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4.2. Transition Probability for PH/PH/1 Queue Between Two Arbitrary Points 
In Time 

- -+ 
By subsituting G-(s) obtained in (3.52), into G-:(s) in (4.14) through 

] 

(4.16), the tran·sition probabilities for the PH/PH/l queue can also be 

derived. 

5. Conclusion 

First passage times for the PH/PH/l/K queue have been studied. A Laplace 

transform for the inter-overflow time probability density function (p.d.f.) 

was obtained. The Laplace and z double transform of the joint distribution 

for the busy period and the number of overflows in this busy period was also 

obtained. In addition, the transition probability of system states between 

two arbitrary time points was obtained using the Laplace transform. All 

results could be represented by simple recurrences. Moreover, the Laplace 

transform of the busy period p.d.f. and transition probability of the system 

states for the PH/PH/l queue have been analyzed as a special case of the 

PH/PH/l/K queue. 

Appendix A Proof of (3.32)-{3.37) 

0.32) is clear. 

Consider Q .. (t) defined (4.6) for j ~ 1. If the arrival phase state 
JJ 

process with generator T defined in space A is considered a process in space 

A x B, the arrival phase state transitions form a Markov process with genera­

tor T ® I(m2 ). Similarly, the service phase state process can be censidered 

a Markov process with generator I(m
1

) ® s in space A x B. Since these two 

processes are independent of each other, Q .. (t) is governed by the Markov 
JJ 

process with generator T ® I(m
2

) + I(m 1) ® s. Thus, Qjj(s) = (sI(m
1
m

2
) -

-1 
T x I(m

2
) - I(m

1
) x s) is proved. 

Next, consider arrival rate vector TO' which is a mapping from space A 

to one state space {I}, as mapping X from space A x B to space B. Since a 

customer arrival never influences the service phase states, X is represented 

by TO ® I(m2 ). Thus, (3.33) is proved. (3.34) can be similarly obtained. 

When service begins simultaneously with customer arrival, the phase state 

at the time point immediately after the service begins is k = (i-l)m2 + j with 

probability aiS
j

. Thus, (3.35) is proved. When the service phase state shows 

no change due to the customer arrival, (3.36) can be easily derived. 
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Since the arrival phase state shows no change due to customer service 

completion, (3.37) can be derived. 
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