
Journal of the Operations Research 
Society of Japan 

Vol. 29, No. 4, December 1986 

A POLYNOMIAL ALGORITHM FOR 
THE MAXIMUM BALANCED FLOW PROBLEM WITH 

A CONSTANT BALANCING RATE FUNCTION 

Akira Nakayama 
Otaru University of Commerce 

(Received August 8, 1986; Revised October 30,1986) 

Abstract M. Minoux considered the maximum balanced flow problem, which is a maximum flow problem with 

an additional constraint described in terms of a balancing rate function. In this paper, we propose an algorithm for 

the maximum balanced flow problem which is practically fast and simple. When the balancing rate function is 

constant, the proposed algorithm requires O(mT(n,m» time, where T(n,m) is the time for the maximum flow 

computation for a network with n vertices and m arcs. 

1. Introduction 

The maximum balanced flow problem was introduced by M. Ninoux [6]. A 

flow in a source-to-sink network is called balanced if the flow value of 

each arc does not exceed a fixed proportion ( or balancing rate ) of the 

total flow value from source s to sink t. Then the problem is to find a bal­

anced flow such that the total flow value from s to t is maximized. The max­

imum balanced flow problem has an application in the telephone routing. Th­

is, in fact, motivated Minoux's research in [6]. Consider a telephone netwo­

rk with its source and sink corresponding to two cities A and B, respective­

ly. When a telephone line joining two adjacent spots breaks down, telephone 

routes through the broken line from A to B are blocked, but if the telephone 

routing considered as a flow from the source to the sink is balanced, then 

it is guaranteed that the number of the blocked routes is at most the fixed 

proportion of the total number of current routes from A to B. ( Statistics 

shows that few telephone lines break at the same time. ) If we have a maxi­

mum balanced flow in this network, a reliable telephone routing from A to B 
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will be obtalned. 

Several algorithms (1), [4), [6) and [7) are proposed for the maximum 

balanced flow problem. W.-T. Cui [1) showed a variant of the dual simplex 

method without cycling on the underlying graph of a network, but his algo­

rithm runs possibly in non-polynomial time. Let P
max 

be the maximum number 

of arc disjoint directed paths from source s to sink t in the underlying 

graph and S(n,m) the complexity of the shortest path problem for a network 

with n vertices and m arcs and with a nonnegative arc length function. Then 

Minoux's algorithm [6) requires O(p2 "S(n,m)) computation time, where in max 
his original formulation it is assumed that a given balancing rate function 

is constant. U. Zimmermann [7) has recently considered a generalization of 

the maximum balanced flow problem. 

On the other hand, T. Ichimori, H. Ishii and T. Nishida [4) considered 

the weighted minimax flow problem, and S. Fujishige, A. Nakayama and W.-T. 

Cui [3) have recently pointed out the E!quivalence of the maximum balanced 

flow problem and the weighted minimax flow problem. The algorithm by Ichi-
2 mori, Ishii and Nishida [4) has the complexity O(T(n,m) ) for general bala-

ncing rate functions, where T(n,m) is the time for the maximum flow compu­

tation for a network with n vertices and m arcs. This complexity is the 

same as Zimmermann's [7). 

In this paper, we consider a special case when the balancing rate 

function takes on a constant value r as Minoux assumes, and give an O(min 

(m, ~/l2J )T(n,m)) algorithm for the maximum balanced flow problem where 

JID is the maximum integer less than or equal to l/r. Our model is the 

specialization of those of [4) and [7). but our algorithm is faster than 

the algorithms in [4) and [7). 

2. Maximum Balanced Flow Problem 

Let G:;(V,A) be a directed graph where V is the vertex set and A is the 

arc set of G. For the set R of nonnegative reals, we assume that an upper-
+ 

capacity function c:A .... R+ and a lower-capacity function ~:A .... R+ are given. 

When a ( positive) balancing rate funetion a:A .... R+-{O} ( we must have a>O.) 

and a function B from A to the set R of reals are given, consider the two 

terminal network N=(G=(V,A),c,~,a,B,s,t) where s is the source and t is the 

sink of G. Then the maximum balanced flow problem (P) is formulated as 

follows: 
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(1) 

(2) 

(3) 

(P) 

Maximize f(a*) 

subject to 

A.Nakayama 

D f = 0 

~(a)~f(a)~;;(a) 

f(a)~a(a)f(a*)+B(a) 

Here a*=(t,s)!iA is the arc added to the underlying graph G and D is the 

vertex-arc incidence matrix of G. If the function f:Au{a*}+R+ satisfies (1) 

and (2), f is called a feasible flow ( or simply a flow) in network N. The 

flow f satisfying (3) is called balanced. Let ~ be the value of maximum 

f(a*) , then f* is called the maximum balanced flow value or simply the opti­

mal value. Minoux [6) considered the case when for any arc aEA, B(a)=O, 

~(a)=O, a(a)=r (O<r~l) and c(a) is a positive integer in network N. 

In this paper, we assume that for each arc aEA a(a)=r (O<r~l) as in 

[6), but that c(a), ~(a) are nonnegative rea1s and B(a) is real. Associated 

with the problem (P), consider the following problem (P*) for network nl*= 

(G=(V,A),c,~,s,t): 

Maximize g(a*) 
(P*) subject to (1) and (2), where f should be replaced by g. 

And also consider the following problem (Py ) with a parameter y for network 

Ny=(G=(V,A),c,~,r,B,y,s,t): 

Maximize f(a*) 

(P y ) subject to constraints (1), (2) and 

(4) f(a) ~ry+B(a) ( aEA ) 

Then for a sufficiently large y, Problem (P y ) coincides with Problem (P*). 

Let ~*(y) ( resp. g* ) be the value of maximum f(a*) in network Ny ( resp. 

g{a*) in network N* ). For Problems (P) and (P y ) we have: 

Proposition 1. ~= max{ y : ~*{y)=y }. 0 

Concerning the property of the function ~*(y) of y, we have: 

Proposition 2. f**{y) is a monotone non-decreasing, continuous, piece­

wise linear and concave function. 0 

Any vertex partition (S,S) with SES, tES, SuS=V and SnS=~ is called a 

cut. The capacity of a cut (S,S) is defined as 

c{S,S)= L{e(a):aEA+{S)} - L{Q{a):aEA-(S)}. 

where A+{S)={a=(i,j)EA:iES, jES} and A-(S)={a={i,j)EA:jES, iES}. 

A minimum cut is defined to be .a cut having the minimum capacity. Then the 
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following theorem 3 is well known as max-f1ow min-cut theorem. 

Theorem 3 [2]. For any network the: maximum flow value from the souree 

B to the sink t is equal to the capacity of a minimum cut. 0 

For network N " the capacity of each arc aEA is determined as min 
- y-

(a(a),ry'+S(a» and let (S,S)Y' be a minimum cut in Nyl • From Theorem 3, ~~e 

have: 

(5) f** (y ') :=r j X' (y ') jy I +l:{S(a) :aEX ' (y ') }+l:{a(a) :aEK" (y ') }-l:{~(a) :a~A- (S)}. 

where X' (y')={aEA+(S):a(a»rY'+S(a)} and X"(y')=A+(S)-X'(y'). 

Let U(S,y')=rjX'(y')j in (5). Then, we see that U(S,y') is the multiple of 

the balancing rate r and that jX'(y')jsjAj. U(S,y') is called the slope of 

the minimum cut (S,S) I. 

Y 
The function f**(y) is not differentiable in y, but for any y>O, we 

have the left differential coefficient cr- (y) defined as 

(6) 1
" f**(y+f:.y)-f*'~(Y) 
l.m 

f:.y+o-

Similarly, we define the right differential coefficient a+(y), and call 
- + 

a (y), a (y) the slopes of the function f**(y) at y. Then there is the foll-

owing relation between a-(y) and the collection of the minimum cuts (S,S) 
11 

in network Ny • See [6]. ) 

Proposition 4. a-(y) = max{U(S,y): (S,S)y is a minimum cut in Ny }. 0 

Without loss of generality. we assume a(a»S(a) for each arc aEA. Then 

we define ~ and b by 

~=max (max{(~(a)-S(a» /r:aEA}, 0) • i;=max{(a (a) -S(a» /r :aEA}. 

Note that the value (~(a)-S(a»/r ( (a(a)-S(a»/r ) is derived from the equ­

ality case in the inequality ~(a)sry+S(a) ( a(a)~ry+S(a) ). respectively. 

3. Algorithm for the Maximum Balanced Flow Problem 

We can draw the graph of the two functions z=f**(y) and z=y in a (Y.3)­

plane. We shall solve the maximum balaneed flow problem based on Proposition 

1. Let Q(y)=(y.f**(y» be the point on 1:he graph of the function z=f**(y) at 

y. Then an outline of our algorithm is described as follows, though the det­

ailed description will be given in subsequent sections: for a sufficiently 
o . 0 0 0 large y • calculate the maximum flow va.Lue f**(y ) and the slope U(S ,y ) 
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° ° ° ° for some S cV. If y =f**(y ), then we have the optimal value f*=y and stop. 

Otherwise, find the line L with slope U(SO,yO) containing the point Q(yO). 

Then we obtain the intersection point (yl,yl) of the two lines Land z:=y. 

Compute f**(yl) , and if yl=f**(yl) , then we have the optimal value f*=yl. 

Otherwise, we repeat the above procedure until we have yl=f**(yl). 

A point Q(y") is called the ~ point of the function z=f**(y) if 

f**(y) is not differentiable at y=y". A ( line) segment Ls(h',h") on the 

graph z=f**(y) is z=dy+b (h'sysh"), where the two points Q(h') and Q(h") are 

the adjacent corners. The following proposition can be obtained from Theorem 

3 and Proposition 4. It will be used to estimate the complexity of the pro­

posed algorithms. Given the two slopes U(S,y) and cr-(y) for any y>O, we have: 

Proposition 5. Let Ls(h,h') and Ls(h',h") be the segments on the graph 

z=f** (y) such that z=dy+b (hsysh') and z=d' y+b' (h' sysh") . 

(i) If h<y<h', then we have U(S,y)=cr-(y). 

(ii) At the corner point Q(h') we have d'sU(S,h')sd. 0 

We show algorithms for finding the intersection point (y*,y*) of maxim­

um y* for three cases in the following sections 3.1~3.3, respectively. The 

complexity of our algorithms will be considered in Section 3.3. 

3.1. The Case When £(a)=O for any aEA and e=O 
In the present case, the zero flow ( f=O ) is feasible in network N 

y 
for any y~O. Hence from Proposition 2 there exists an optimal value y* and 

we have the graphs z=[**(y) and z=y as in Fig.I. 

Now, we state the way of finding the optimal value y*~O and show that 
i i i. h the slope U(S ,y ) for some S cV at ~-t repetition is a monotone increasing 

function with respect to i. 
Z=1-1 

---------~ 

- z=f**(y) 

i '\Q(yl) 

/' 
fH(O 

--f,~--------L-------~---------------________ > y 
o I .v2 I y 

Fig.l 
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optimal value yet. 

then we stop since 

we have 
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1 1 f**(y )~y for some 

( We may put yl=g* 

yl and that we have not obtained the 
1 1 at the initial step. ) If Y =f**(y ), 

1 Y is the optimal value. Otherwise, from Proposition 5 

(7) 

(8) 

1 1 - 1. 1 l>U(S ,y )=0 (y ) 1f Q(y ) is not a corner point, 

-111 +1.1 1>0 (y )~U(S ,y )~o (y ) 1f Q(y ) is a corner point. 

405 

First, we consider the case when Q(yl) is not a corner point. The line 

L(l) with slope U(Sl,l) containing th,~ point Q(yl) is given by 

(9) 
1 1 1 1 1 L(y ): z-f**(y )=U(S ,y )(y-y ) 

Note that the line L(yl) is the tangent line of z=j**(y). Then we can find 

the intersection point R2 of the two lines L(yl) and z=y : 

(10) R2=(y2,y2), 

where y2=(f**(yl)_0-(yl)yl)/(1_0-(yl». After calculating f**(y2) and 

U(S2 ,y2), if y2=f**(y2) , then we have the optimal value y2. Otherwise (Le. 
2 2 Y >f**(y », we have 

(11) l>U(i,i)=:o-(i»o-(l) if is not a corner point, 

(12) is a corner point. 

1 1 2 2 Hence from (7), (11) and (12), we have ~(S ,y )<U(S ,y ). 
1 Next, we consider the case when Q(y ) is a corner point. Note that 

-1 _11 +1 1 
o (y )~U(S-,y )~o (y ) from (8). Let L'(y ) be the line defined by 

(13) L' (l): z-f**(yl)=U(Sl ,yl) (y-/) 

and R,2=(y,2,y,2) be the intersection point of the two lines L'(yl) and z=y 
2 1111 11 11 +1 where y' =(f**(y )-U(S ,y )y )/(l-U(S ,y ». For U(S ,y )=0 (y ) we have 

2211 11 +1 2 2 U(S' ,y' »U(S ,y ). So assume that U(S ,y »0 (y ). If y' >f**(y' ), then 
22-1 2 2211 from U(S' ,y' »0 (y) for some S' cV, we have U(S' ,y' »U(S ,y ). Other-

wise, we have the optimal value y,2 

Each poi.nt Q(yi) obtained by the i-th repetition is always under the 

line z=y and the slope U(Si,yi)<l is a monotone increasing function of i. 

The above argument validates the following algorithm. 

Algorithm 3.1: 

Step 1: Calculate the maximum flow value g* for network N* and put y=g*. 

Step 2: (2.1): Find the maximum flow value j**(y) and the slope U(S,y) in 

network Ny ' 

(2.2): If y=f**(y), then we stop since y*=y is the optimal value. 

Otherwise, put y+(f**(y)-U(S,y)y)/(l-U(S,y» and go to Step 2. 
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3.2. The Case When s(a)=O for any aEA and b>O 
For any y~£, the zero flow is feasible in network Ny ' Comparing ;r**(£) 

with £, there are two possible cases. 

Case 1: f**(£);:>£; It is easy to see that we have the optimal value 

y*>O and that we can apply Algorithm 3.1. 

Case 2: f**(£)<£; Algorithm 3.1 works for the case when we have at 

least one intersection point of the two graphs z=f**(y) and z=y as in Fig.2. 

Taking the case shown in Fig.3 into account, Algorithm 3.1 may be modified 

slightly. The following algorithm can be used in this section. 

z z z=y z=y 

g* g* .------_._-----
z=f*'~(y) z=f**(y) 

o b 
> y o y 

Fig.2 Fig.3 

Algorithm 3.2: 
Step 1: Find the maximum flow value g* in network N*. If O~g*<£, then stop 

and Problem (P) is infeasible. Otherwise, let y=g*. 

Step 2: Calculate the maximum flow value f**(y) and the slope U(S,y) in 

network N . If y<£ or f**(y)=O or U(S,y);:>l, then the algorithm termi­y 
nates and Problem (P) is infeasible. 

Step 3: If y=f**(y) , then we have the optimal value y*=y>O and stop. Other­

wise, put y+(f**(y)-U(S,y)y)/(l-U(S,y)) and go to Step 2. 

3.3. General Case 
The following proposition is easy to see: 

Proposition 6. For the parametric problem (P ) we have (a) and (b): y 
(a) If (p ) has a flow for y=y, then for any y;:>y (P ) has a flow. y y 
(b) If (P ) has no flows for y=y, then for any y~y (P ) has no flows. 0 

y y 

Note that from Proposition 6, Problem (P) is infeasible if Problem (P*) is 

infeasible. In the following discussion, we assume that the problem (1'*) has 

the maximum flow value g*>O. 
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Now, we proceed our algorithm in the following way. If f**(y)'?y for 

y=D, then we have the optimal value y*=g*. Otherwise, find the intersection 

point of two lines z=y and z=g*. If for y=g*, y<£ or y>b or there are no 

feasible flows in network N , then the problem (p) is infeasible. Otherwise, 
y 

apply either Algorithm 3.1 or 3.2. Nou~ that when for some y" there is a 

feasible flow in network N " and we also have b5.y"5.b, either Algorithm 3.1 
y -

or 3.2 can be used. Hence the general .algorithm for the maximum balanced 

flow problem is as follows. 

Algorithm 3.3. 
Step 1: If Problem (P*) is infeasible, then the algorithm terminates since 

Problem (P) is infeasible. 

Step 2: Find the maximum flow value g* in network N*. If g*'?b, then we have 

the optimal value y*=g*>O and stop. 

Step 3: If g*'?£, then let y=g*. Otherwise, stop and the problem (P) is 

infeasible. 

Step 4: (4.1): If Problem (P ) is infeasible, then the algorithm terminates 
y 

and the problem (p) is infeasible. Otherwise, compute the 

maximum flow value I**(y) and the slope U(S,y) in network N • 
Y 

(4.2): If y<£ or U(S,y)?:l, then stop since the problem (P) is 

infeasible. 

Step 5: If y=I**(y) , then we have the optimal value y*=y and stop. 

Otherwise, put y+(f**(y)-U(S,y)y)/(l-U(S,y» and go to Step 4. 

In regard to the complexity of Algorithm 3.3 which generalizes Algori­

thms 3.1 and 3.2, we have: 

Proposition 7. The over all computational complexity of Algorithm 3.3 

is mine lA I, J.IS )T( I VI, lA I). 

where T(IVI, IAI) is the complexity of the maximum flow problem for a network 

with IVI vertices and IAI arcs. 

Proof: Let U(Si,yi) be the slope obtained from a minimum cut at the 
i i i-th repetition in Algorithm 3.3. Then we may assume that U(S ,y )=n.r for 

1.-
some positive integer n .• If the algorithm takes J repetitions, then we have 

1 1 2 21.- ~J J O<U(S ,y )<U(S ,y )< ••• <U(S- ,y )<1 i.e. O<nl <n2< ..• <n
J

<1/r. 

From Proposition 5 and the fact that ni 5.IA I, it follows that at most 

min (lA I, tJ-!:rJ )T( I VI, lA I) computation time is required. 0 

Example. Consider the network N=(G=(V,A),~,c,r,S,s,t) with an additio­

nal arc a*=(t,s) in Fig.4. The underlying graph G has the vertex set V={s, 

1,2,3,4,t} and the arc set A={a.:15.i5.8}. The ordered pair attached to each 
1.-
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arc aEA means (a(a),S(a». We assume that a balancing rate r is equal to 1/5 

and that ~(a)=O for any aEA. Then we have b=o and D=375. First, find the 

maximum flow value g* in network N*, and we have g*=lOO. Second, calculate 

the maximum flow value rk*(lOO) and the slope U(S,lOO) of the network in 

Fig.5 where the value attached to each arc a is equal to min(a(a),1/5 e lOO+ 

Sea»~. Fig.6 shows the maximum flow of the parametric problem (P ) for y=lOO. 
y 

Since U({s,1,2},100)=3/5, we renew y as y=(87-3/5'100)/(1-3/5)=135/2, and 

continue Algorithm 3.3. Finally we have the maximum balanced flow with opti­

mal value [*=135/2 as shown in Fig.7. ( The flow value [(a) of each are a is 

given in Figs. 6 and 7. 

N: 1 

s 

2 

N: 

42 
a l 

s 

a2 
45 

a* 

(20,10) 
a 

3 (40, 

3 

(60,20) 
a

7 

t 

(c(a), S(a» 
o loO 

arc a 

s 

min(c(a).1/5·lOO+8(a» 
o '>0 

arc a 

Fig.4 Fig.5 

. minimum cut N: 1 20 3 
.il:-------"JO 

s 

a6 
25 a6 

87 a* 7. 
[(a) [(a) 

() ~o 0 arc a arc Cl 
Fig.6 Fig.7 
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