
Journal of the Operations Research 
Society of Japan 

Vol. 29, No. 4, December 1986 

EXTENSION OF NEWTON AND QUASI-NEWTON 

METHODS TO SYSTEMS OF PC! EQUATIONS 

Masakazu Kojima 
Tokyo Institute of Technology 

Susumu Shindo 
Sanno College 

(Received March 24,1986: Revised September 25, 1986) 

Abstract This paper extends Newton and quasi-Newton methods to systems of PC 1 equations and establishes 

the quadratic convergence property of the extended Newton method and the Q-superlinear convergence property 

of the extended quasi-Newton method. 

1. Introduction 

The Newton method is one of the most popular and practical 

methods for solving systems of nonlinear equations. Let f be a 

Cl (continuously differentiable) mapping from the n-dimensional 

Euclidean space ~ into itself. Let Df(x) denote the nX n 

Jacobian matrix, 

x E ~. 

Algori thm N. 

and 11 xII the Euclidean norm of a vector 

(The Newton method for a system of Cl equations f(x) = 0). 

Step O. Choose an initial point xO E ~ and p - O. 

Step 1. Solve the system of linear equations, which we will 

call the Newton equation, in the variable vector 

s E~: 
Df(xP)s = -f(xP). 

Step 2. Set r 1 _ xP + s, p - p + 1 and go to Step 1. 

Let z E ~ be a solution of f(x) = O. It is well-known 

that if the initial point xO is sufficiently close to the 

solution z and Condition 1 below is satisfied, then the 
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generated sequence {xP} converges z quadratically, i_eo, 

11 r 1 - z 11 ~ c 11 xP - z 11 2 for sufficiently large 

p, where c is a positive constant. (See, for example, Theorem 

10.2.2 of Ortega and Rheinboldt [16].) 

Condition 1. 

(a) Df(z) is nonsingular. 

(b) Df is Lipschitz continuous in an open convex 

neighborhood D of z, i. e., there is a Lipschi tz constant K 

such that 

11 Df(y) - Df(x) 11 ~ K 11 y - xII for every x, yE D. 

Here the matrix norm of the left side of the inequality above 

is the operator norm defined by 

11 A 11 = max { 11 Ax 11 

for every n X n matrix A. 

xE If1, 11 xII 1 } 
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Although the Newton method has the very nice local 

convergence property, it has one drawback. That is, we need to. 

evaluate the nX n Jacobian matrix Df(xP) and solve the Newton 

equation, the system of linear equations with the coefficient 

matrix Df(xP) at each iteration. Solving the Newton equation 

generally requires O(n3 ) arithmetic operations. To avoid this 

disadvantage, the quasi-Newton methods have been proposed and 

studied extensively. See, for example, the survey paper Denn.is 

and Mor~ [5]. In the present paper we shall be concerned with 

Broyden's quasi-Newton method [1] among the various quasi-Newton 

methods developed so far. Under 13ertain assumptions, the 

sequence {xP} generated by the quasi-Newton method converges 

z Q-superlinearly, i. e., there is a sequence {a } which 
p 

converges zero such that 

11 r 1 
- z 11 ~ a p 11 xP .- z 11 

for every sufficiently large p. See, x Dennis and More [5]. 

The Newton and the quasi-Newton methods are very useful and 

powerful tools for solving systems of nonlinear equations. 

However, their applications are restricted to the case where the 

mappings appeared in the systems are Cl. On the other hand, 

many problems arising from the field of operations research and 

mathematical programming can be formulated as a system of 

nonlinear equations with a PC 1 (piecewisely continuously 
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differentiable) mapping on Efl. The nonlinear complementarity 

problem (see Example 1 in Section 2) and the Karush-Kuhn-Tucker 

(abbreviated by KKT below) stationary condition (see, for 

example, Mangasarian [14]) for inequality constrained nonlinear 

programs are such examples. We can not apply the Newton or 

the quasi-Newton methods directly to such problems. Here a 

PC 1 mapping on Efl is a continuous mapping whose restriction 

to each piece of a subdivision of Efl is continuously 

differentiable. More precise definition and some examples will 

be given in Section 2. 

The purpose of t,his paper is to extend the Newton and the 

quasi-Newton methods to systems of PC 1 equations. There have 

been developed some extensions of the Newton and the 

quasi-Newton methods; Josephy [8,9] for strongly regular 

generalized equations (Robinson [19]), Pang and Chan [18] for 

variational inequalities including complementarity problems, 

etc .. In most of those extensions, an original system to be 

solved is approximated at an approximate solution by a locally 

linear but globally piecewise linear subproblem, and then the 

subproblem is solved to obtain a new approximate solution with 

a high accuracy. The sequence generated by repeating this 

process converges locally to a solution of the original system 

under certain assumpt,ions. When we use those extensions, 

however, we may find it difficult to solve the piecewise linear 

subproblem generated. Even if it can be transformed into a 

linear complementarity problem on which many studies have been 

done, no unified computational method that can solve all linear 

complementarity problems efficiently has been developed. 

Furthermore solving a piecewise linear system usually requires 

more cost than solving a system of linear equations. We note 

that Murty [15] has given an example of a linear complementarity 

problem which requires well-known Lemke's method (Lemke [12]) to 

consume an exponential order of arithmetic operations. 

There have been also developed several extensions of the 

quasi-Newton methods to approximate a KKT stationary solution 

(Han [7], Palomares and Mangasarian [17], etc.). In those papers 

the strict complementarity is assumed at the point to which the 

generated sequence converges. Under this assumption, the system 
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of PC l equations (see Kojima [lD]) induced from the KKT 

condition is locally Cl in a neighborhood of the solution 

corresponding to the KKT point_ Hence we can apply the Newton 

and the quasi -Newton methods locally in the neighborhood of t.he 

solution. From the theoretical point of view, the strict 

complementarity assumption is moderate. In fact, almost all 

optimization problems satisfy the assumption (Fujiwara [6]). 

More generally, the assumption that the mapping F is Cl in a 

neighborhood of a solution of a given system of PC l equations 

F(x) = D may be mathematically moderate and legitimate. From 

the computational or numerical point of view, however, this fact 

is not enough to justify their application to PC l systems 

because a solution to be computed is likely to be very close to 

a common boundary of some different pieces and the generated 

sequence happens to osci llate bet~ween them. 

We show in Section 3 that the Newton method with a slight 

extension works effectively on a system of PC l equations even 

if the solution we want to comput~e lies on a common boundary of 

different pieces. Section 4 is devoted to an extension of 

Broyden's quasi-Newton method to systems of PC l equations. Under 

a certain nonsingularity assumption we establish the quadratic 

convergence property on the extended Newton method (Theorem l) 

and the Q-superlinear convergence property on the extended 

quasi-Newton method (Theorem 3), respectively. In Section 5, 

we present some numerical examples on the extended methods. 

2. PC l Mappings 

In this section we introduce a class of PC l mappings which 

we deal with in the remainder of the paper, and show two 

examples of systems of PC l equations. For each subset U of 

~, we employ the symbols cl U and int U to denote the 

closure of U and the interior of U, respectively. 

Definition. Let F : ~ - ~ be a continuous mapping. F is 

a PC l mapping if there exists a Clountable family {U i : i EA} 

of closed subsets of ~ such that 

(a) cl (int Ui ) = Ui for every iE A, 
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(b) (int Ui) n (int Uj ) 

(c) U U. = If1, 
i E A 1 

M. Kojima & S. Shindo 

ifJ whenever i, j E A and i * j, 

(d) {U i : i EA} has a locally finite property, i. e., 

for any x E If1, there exists an open neighborhood V of 

x such that V n u. * 1 
} is finite, 

(e) for each iE 

each U. is a 
1 1 

C mapping £j 

the restriction F I Ui of the mapping to 

mapping. More precisely, there exists 

from an open neighborhood of U. into If1 
1 

such that F(x) £j (x) for any xE Ui . 

We call the family { U i : i EA} a subdivision of If1, and 

each Ui a piece. So we say that F is PC 1 on a subdivision 

{U i : i EA} of If1. For simplicity of discussions, we 

shall assume throughout the paper that 

the whole space If1 for each i EA. 

£. 
1 

is defined on 

Example 1. (A Nonlinear Complementarity Problem). Let x E If1 
and £ : If1-If1 be a Cl mapping. A nonlinear complementarity 

problem (NCP) is a problem of finding an x E If1 such that 

x ~ D, £ (x) ~ D and xT £ (x) = D. 

In order to convert NCP into a system of PC1 equations, 

we need the following symbols: 
+ { a max a, D} for each a ER, 

a min { a, D} for each a ER, 

+ + + for each E If1, x (xl'···' x n ) x 

- -
E If1. x (xl' ... , x n ) for each x 

We define the mapping F from If1 into itself by 

F(y) £(y+) + Y . 

Then F is a PC1 mapping on the orthant subdivision. It is 

easily verified that there is one-ta-one correspondence between 

a solution x of NCP and a solution y of the system of PC1 

equations F(y) D through the transformation + = y - x = y . 

Example 2. For each x ER, let 

£1 (x) 
2 

2x, x -

£2 (x) 
2 + 2x, x 

F(x) = max { £1 (x), £2 (x) } 
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Then the mapping F: R - R is PC 1 on the subdivision 

consisting of the two pieces 

U 1 = ( - 00 , 0 ] and U 2 [0,+00). 

357 

3. Extension of the Newton method to Systems of PC t Equations 

Let F IIl- III be a PC1 mapping on a subdivision 

{ Ui i EA} When we apply the Newton method to the 

system F(x) = 0, we evaluate the values of the mapping F and 

the Jacobian matrix at the p-th iteration ~. From the 

definition of PC 1 mappings, we see that the Jacobian matrix of 

F depends not only on the point ~~ but also on the piece 

U. on which the point ~ lies. Hence before constructing 
1 

the Newton equation, we need to ehoose a piece Ui on which 

~ lies. This observation leads to: 

Algori thm EN. 

(The extended Newton method for a system of PC 1 equations 

F(x) = 0). 

Step o. Choose an xO 
E III and set p .... O. 

Step L Choose a piece Ui that eontains ~. Solve the Newton 

equation in the variable vector s E Ill: 

DE . (~) s = - E . (~) . 
1 1 

Step 2. Set r 1 .... ~ + s, p .-. p+1, and go to Step 1. 

Obviously Algorithm EN coincides with Algorithm N if F is 

Cl on the whole space Ill. When ~p is contained in more than 

one piece, we may choose anyone of those pieces for 

I(z) { i E A zE U.} for each zE Ill, 
1 

B 'T (z) { xE III 11 x - z 11 ~ ; } 

U .. 
1 

Let 

for each posi ti ye number ;. 

To present the local convergence property we need the condition 

and the lemma below. 

Condition 2. 

(a) For any i E I(z), DE i (z) is nonsingular. 

(b) For any i E I (z), DE i is Lipsohi tz continuous in some open 

convex neighborhood Di of z, i.e., there is a Lipschitz 
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constant K. such that 
1 

11 Dfi(y) _. Dfi(x) 11 

for any x, y E D i . 

K. 11 y - xII 
1 

Lemma 1. Let z be a solution of the system of PC 1 

equations F(x) = O. Suppose that Condition 2 holds. Let 

K = max {K. : i E l(z) } 
1 

Then there exists a positive number r such that 

(A) B ... (z) C int U {u. n D . i E I (z) } 
, 1 1 

(8) z is a unique solution of F(x) = 0 in B.,. (z), 

(C) Df i (x) is nonsingular for any xE B .,. (z) and any i E l(z), 

(D) 11 Df. (y) - Df. (x) 11 
1 1 

~ Klly-xll 

for any x, yE B.,. (z) and any i E I(z), 

(E) 11 fi (y) - fi (x) - Dfi (z) (y-x) 11 

(F) 

~ Kmax{ lIy-zll, IIx-zll} lIy-xll 

for any x, yE B .,. (z) and any i E l(z), 

11 f.(y) - f.(x) - Df.(x) (y-x) 11 ~ (K/2) 11 y - xII 2 
1 1 1 

for any x, yE B .,. (z) and any i E l(z). 

Proof: The existence of a positive number r for which 

(A) through (D) hold can be easily verified. (E) follows from 

(D) and Corollary 3.2.5 of Ortega and Rheinboldt [16]. (F) 

follows from (D) and Theorem 3.2.12 of [16]. The details are 

omitted here. 

Remark. The assumption (a) of Condition 2 does not 

guarantee that F is locally one-to-one in a neighborhood 

of z. See Example 2 in Section 2. 

Theorem 1. Let z be a solution of the system of PC 1 

equations F(x) = o. Suppose that Condition 2 holds. Then there 

exists a positive number r such that if 11 xO 
- z 11 ~ r, 

then the sequence { xP} generated by Algorithm EN 

converges z quadratically. 

Proof: Let r be the positive number whose existence is 

ensured by Lemma 1. We see from (C) of Lemma 1 and the 

compactness of B.,. (z) that 
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L = sup { 11 Df-.
1 

(x) 11 
.1 

is positive and finite. Choosing 

necessary, we may assume (KL/2) 1 

if xPE B 'T (z) then 

r 1 
E B 'T (z) 

and 

: xE B 'T (z) and i E I(z) } 

1 sufficiently small if 

< 1. We shall show that 

11 r 1 - z 11 ~ (KL/2) 11 xP - z 11 2. 
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hold. Then the conclusion of the theorem follows immediately. 

Let U. 3 xP be the piece that has been chosen at Step 1. Since 
1 

xP 1 ies in B 'T (z), the Newton equation can be solved 

consistently and we have 

Hence 

~ 11 xP - z - Df-. 1 
(xP) f. (xP) 11 

.1 .1 

~ 11 Df-.
1 

(xP) 11 
.1 

11 f. (xP) 
.1 

11 Df-.
1 

(xP) 11 11 f. (xP) 
.1 .1 

~ (LK/2) 11 xP - z 11 2 

- Df. (xP) (XP 
.1 

- z) 11 

- f. (z) 
.1 

- Df. (xP) (XP 
.1 

- z) 11 

(since f. (z) = 0) 
.1 

(by (F) of Lemma 1) 

< 1 . (since (KL/2) 1 < 1 and xPE B r (z» (Q. E. D) 

4. Extended Quasi-Newton Method 

In this section, we first present Broyden's quasi-Newton 

method [1] for solving a system of Cl equations and its 

Q-superlinear convergence property. Then we extend the method 

and the property to the PC 1 case .. 

Algori thm QN. 

(The Broyden method for a system of Cl equations f(x) = 0). 

Step O. Choose an x O E If1 and an n X n nonsingular matrix AO. 

Set p +- O. 

Step 1. Solve the system of linear equations in the variable 

vector S E If1 : 
p 

ApSp = -f(xP). 
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Step 2. 

M. Kojima & S. Shindo 

+- ? + sp' 

f(?+l) - f(?), 

A + 1 +- A + (u - As) sT / 
p P P pp P 

Set p +- p+l and go to Step 1. 

The theorem below states that if an xo and an AO are 

good approximations of a solution z of f(x) = ° and the 

Jacobian matrix Df(XO) , respectively, then the sequence {?} 
generated by Algorithm QN converges z Q-superlinearly. 

Theorem 2. (Corollary 5 of Dennis [3], and Theorem 5.2 

of Dennis and Mor~ [5]) Let z be a solution of f(x) = 0. Assume 

that f : If1 - If1 sa1~isfies Condition 1. There exist posi ti ve 

numbers rand 0 such that if 11 xO - z 11 ~ rand 

11 A
O 

- Df (xo) 11 ~ 15, then the sequence {?} generated by 

Algorithm QN converges z Q-superlinearly. 

Now we are in a position to present an extension of 

Algorithm QN to the system of PC 1 equations. Let F :If1 - If1 

be a PC 1 mapping on a subdivision {U i ; i EA}. We will 

denote a sequence generated by the extended algorithm by 

{yq : q=O, 1,2. .. } . It generally traverses more than one 

piece. When it visits a piece U. at a point yq for the first 
1 

time, we need to give an initial approximation of the Jacobian 
q 

matrix Dfi(y ). For this purpose, we introduce an index 

subset J of A and Cl rule 

(i,y) E A X Ui - C(i,Y), 

where C(i, y) is an n X n matrix. We initialize J = rp. When 

a piece Ui is visited for the first time we update 

J +- J U {i} ; the set J consists of the indices of 

the pieces which have been visited. If yqE U. and i fJ. J 
1 

at the beginning of the q-th iteration, we see that the piece 

Ui has never visited before. In this case we assign the matrix 

C(i,yq) to an initial approximation of the Jacobian matrix 

Dfi(yq)· Letting xO = yq, A
o 

= C(i,yq) 

and f = f., we then call Algorithm QN as a subroutine 
1 

and apply its iteration to the system of Cl equations 

fi(X) = 0 as long as the generated point stays inside the 
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piece Ui . When the generated sequence leaves the piece Ui , 

Algorithm QN outputs a point xrg Ui and a matrix Ar 

361 

which can be regarded as an approximation of the Jacobian matrix 

Dt' . (xr ). We set 
1 

yq+p =? (p=1, 2, ... r), 

q = q + r, 

and store the matrix Ar into M(i) so that we can utilize this 

matrix when the sequence {yq} revisits the piece Ui . 

This process is summarized as follows: 

Algorithm EQN. 

(The extended Broyden method for a system of PC 1 equations 

F(y) = 0). 

Step O. 

Step 1. 

Step 2. 

Choose a Set J­ ~, and q - o. 
Find a piece Ui 

q such t.hat y E Ui . 

let B q - MU). Otherwise let B -q 

J - JU { i} and MU) - B. Set q 

Execute Algorithm QN and set 

yq+p - ?, 

Bq+p - Ap if ? E Ui 

If i E J 

C(i, yq), 

p - O. 

then 

until ?g U.. If the execution terminates at the r-1~h 
1 

i terat i on after generat i ng xr g U. then go to Step 3. 
1 

Step 3. Let MU) = Ar . Set q - q + r and go to Step L 

See Figure 1 for an execution of Algorithm EQN. 

We need a series of lemmas to establish the generalization 

of Theorem 2. 

Lemma 2. (Broyden [2]). Let I and B be the n X n 

identi ty matrix and any n X n matl-ix, respectively, and s E rf1 
such that 11 s 11 = 1. Then 

IIB(I-ssT)1I ~ IIBII. 

Let 11 A 11 F denote the Frobeni us norm of an n X n matrix A, 

i. e., 11 All; = tr (AT A), where trB is the summation of the 

diagonal elements of a matrix B. 
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U. U. U. . .. Uk U .... 
1 1 J 1 

(yO) (yl) (yz) (yq) q+1 r-l (yr) (yr+1 ) Y Y 

-MU) Bq+l 
t 

AO -+ Al -+ AZ 
-+ ... -+ A -+ Aq+l q 

t ~ ~ ~ Ao -+ AO -+ Al -+ 

t t ~ 

B
O Bl B

Z 
B Bq+l Br Br+1 q 

t t t 
CU, yo) C(j,yq+1) MU) 

Figure 1. An execution of Algorithm EQN 

{ yq) : the sequence generated by Algorithm EQN 

(yq): q E Q
i 

Lemma 3. 

Aq+1 is stored in MU) since? E U. 
q+r 

for p = 0, 1, ... , q and y fl U .. 
1 

M(i) is used as an initial matrix since yr 

enters U i again. 

(A) 11 AB 11 F ~ min { 11 A 11 11 B 11 F' 11 A 11 F 11 B 11 ) 

for any n X n matrices A and B, 

(8) 11 Ell F :::;; n 1/ 2 11 Ell for any n X n matrix E, 

(C) 11 E[ I - ssT / 11 s 11 z] 11 ; = 11 Ell; - 11 Es 11 2/ 11 s 11 2 

for any n X n matrix E and any nonzero vector s E Efl, 

(0) 11 E[ I - ssT / 11 s 11 Z] 11 F 

~ 11 Ell F - (2 11 Ell F) -1 ( 11 Es 11 / 11 s 11 ) 2 

for any n X n nonzero matr i x E and any nonzero vector s E Efl. 
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Proof: 

(A) Let b. be the j-th column vector of B (j 
J 

11 AB 11; tr (ET AT AB) 

n T T 
~ j=1 b j A A bj 

2 n T 
11 A 11 ~ j=1 b jb j 

11 All 2 11 B 11 ;. 
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1, 2, ... , n). Then 

Thus 11 AB 11 F ~ 11 A 11 11 B 11 F' By interchanging the roles of A 

and B, we also have 

11 AB 11 F ~ 

(B) It is easy to see that 

11 All F 11 B 11 . 

1/2 
11 I 11 F = n 

from (A) by setting A = I and B = E. 

Hence (B) follows 

For (C) and (D), see the proof of Theorem 5.2 of Dennis and 

More' [5]. (Q. E. D) 

Lemma 4. (Banach Lemma. Theorem 2.3.2 of Ortega and 

Rheinboldt [16]). Let A and C be n X.n matrices and assume 

that A-I exists and 11 A-I 11 ~ ,er. If 11 A - C 11 ~ fJ 

and a fJ < 1, then C-
1 exists and 11 c- 1 11 ~ a /0 - a fJ ). 

Theorem 3. Let z be a solution of F(y) = O. Suppose that 

Condition 2 holds. Then there exist positive numbers rand 0 
such that the sequence {yq} generated by Algorithm EQN 

converges z Q-superlinearly whenever 

(4. 1) 

and 

(4.2) 11 C(i, y) - Df. (y) 11 ~ 0 
1 

for any y E B (z) nU. and i E I( z) . 
'T 1 

Proof: Choose a positive number r satisfying (A)-(F) of 

Lemma 1. By (C) of Lemma 1 and the compactness of B 'T (z), 

we see that 
-1 

L = sup { 11 Df i (y) 11 

is positive and finite. Let 0 

y E B 'T (z) and i E I(z)} 

;~ 1/ (7L). Taking r 

sufficiently small if necessary, we may assume that 

r ~ (0 /5K), where K = max {K i ; i E I(z)} . Suppose that 

(4. 1) and (4.2) hold for these rand 0 . 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



364 

(i) 

(4.3) 

(4.4) 

and 

(4.5) 

M. Kojima &: S. Shindo 

We first prove by induction that 

11 yq - z" ~ (1/2) If yq-l - z " if q ~ I, 

11 yq - z" ~ ( 1/2) q 11 yO - z If , 

if U
k 

3 yq is the piece that has been chosen at Step I, 

hold for q = 0, 1, ... The inequality (4.4) implies that the 

sequence converges z. By the assumption, these 

inequalities hold for q = O. We assume that the inequalities 

hold for q = 0,1, .. . r, and deal with the case q = r+l. By the 

inequality 

11 yr - z If ~ (1/2) r 11 yO - z 11 ~ r, 

and (A) of Lemma 1, Ui 3 yr is chosen at Step 1 for some 

i E I(z). Since the inequalities 

11 Df-. l (yr) 11 ~ L (by the definition of L), 
1 

(2 - 2-r ) 0 L ~ 20 L < 1 (by the definition of 0), 

and the inequality (4.5) for q r hold, Lemma 4 ensures that 

Br is a nonsingular matrix whose inverse satisfies 

(4.6) 

Using this inequality we have 

~ 

~ 

~ 

~ 

11 yr+l - z 11 

" 
r B- 1 f . ( r) 11 y - z - r 1 y 

11 B- 1 11 " f'. (yr) f. (z) -
r 1 1 

(since r+l r 
Y 

B r - r(y 

Y 

- z) 11 

(since f. (z) = 0) 
1 

L/(1 - 20 L) 11 f. (yr) - f. (z) - B(r 
r Y - z) " (by (6» 

1 1 

L/(1 - 20 L) { 11 f. (yr) - f i (z) _ Df. (yr) (y - z) 11 
1 :l r 

+ " Df. (yr) - Br" " 
r 

- z" } 
:l 

Y 

L/(1 - 20 L) { (K/2) 11 yr - z 11 2 

+ (2 - 2-r ) 0 11 yr - z 11 } 

(by (F) of Lemma 1 and the induction hypothesis) 
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~ L/ (1 - 2 0 L) { (K 1 /2) + 2 O} 11 yr - z 11 

(s i nce 11 yr - z 11 ~ 1) 

~ 1../ (1 - 2 0 1..) { 0 /10 + 2 o} 11 yr - z 11 

(since r ~ 0 / (SK» 

~ (21/S0) 11 yr - z 11 (since 0 ~ 1/ (71..) ) 

< (1/2) 11 yr - z 11 . 
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Thus we have shown that the inequality (4.3) holds for q = r+1. 

It follows immediately from the induction hypothesis that (4_4) 

holds for q = r+l. 

Now we show that the inequality (4.5) holds for q = r+1. 

We have to consider the three cases: 

Case (a) r+1 E U .. Y 
1 

Case (b) r+1 
E U . =I=- U. and J f£ J. Y 

J 1 

Case (c) r+l E u. =I=- U. and J E J. Y 
J 1 

Suppose that Case (a) occurs. In this case we have 

T 2 
Br+l = Br + (u - B S ) S / 11 S 11 , r r r r r 

where sr = yr+l - yr and u
r 

Pi (yr+l) - f i (yr). 

Hence 

11 B r+ 1 - Df i (yr+ 
1

) 11 

11 Br - Dfi (yr+l) + (ur - Brs
r

) S/ 11 sr 11 2 11 

~ 11 {Br - Dfi (yr)} (1 - srs/II sr 11 2) 11 

+ 11 ur - Df i (yr) sr 11 / 11 sr 11 

+ 11 Dfi (yr+l) - Dfi (yr) 11 

~ 11 Br - Dfj(yr) 11 + (K/2) 11 yr+l _ yr 11 

+ K 11 yr+1 _ yr 11 

(by Lemma 2, (0) and (F) of Lemma 1) 

(2 - 2-r ) 0 + (3K/2) { 11 yr+l - z 11 + 11 yr - z 11 } 

(by the induction hypothesis) 

(2 _ 2- r ) 0 + (9K/4) 11 yr - z 11 (by (4.3) ) 

(2 _ 2- r ) 0 + (9K/4) (1/2) r r (by (4.4» 
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~ (2 - 2-r ) 0 + 2-(r+1) 0 

= (2 - 2-(r+1) 0 

(since K r ~ 0 /5) 

If Case (b) occurs then the sequence {yq} has visited 

the piece U. for the first time. In this case we assign the 

matrix C(j, ~r+1) to Br+1' Since yr+1 E B r (z), the 

desired result follows from the assumption of the theorem. 

Now suppose that Case (c) occurs. Then we assign the matrix 

which has been stored in M(j) at the q-th iterate (q < r) to -Br+1' Let Bq denote the matrix assigned. Since the matrix Bq 

has been generated by 

- T 2 
B q = B q-1 + ( U q-1 - B q-1 S q-1 ) S q-1 / 11 S q-1 11 

by the similar argument as in the case (a), we see 

(4.7) 

Hence we have 

r+1 
IIBr+1-DE.(y )11 ., 

11 B - DE .(yr+1) 11 
q J 

~ 11 B - DE .(yq) 11 + 
q J 

~ (2 - 2 -q) 0 + K 11 

(by (D) of Lemma 1 and (4.7» 

~ (2 - 2- q ) 0 + K { 11 yq - z 11 + 11 y-+1 - Z 11 } 

~ (2 - 2-q ) 0 + K {2- q r + 2-r-1 r } 

(since the inequal i ty (4.4) holds for q ~ r+1) 

(since r ~ 0 / (5K) and q < r) 
~ (2 - 2-(q+1» 0 

(since q < r) 
Thus we have shown that (4.5) holds for q = r+1. 

(i i) Let I)/( (z) be the set of the indices i E I(z) such 

that the sequence {yq} visits U. infinitely many times. 
)/( 1 

Let i E I (z) be fixed, and Q
i 

be the subsequence of 

the numbers q such that yq E U .. We p!'ove that 
1 
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(4.8) 1 im 11 yq+1 - Z 11 / 11 yq - Z 11 o. 
q_ 00 and qE Q

j 

Define 

if q-I E Q. and q F1. Q .. 
1 ~ 1 

Note that in the latter case B is the matrix which is stored 
q ~ 

in MU); hence it coincides with the matrix B where r is the r 
successor of q along the subsequence Qi" (See Figure 1.) 

Then we have for every q E Q j , 

(4.9) B (yq+1 - yq) = -f. (y'1) 
q 1 

~ ~ B S ) sT / 11 2 
(4. 10) Bq+1 = Bq + (u - Sq 11 q q '1 q 

For each q E Q j , let 

tlq 

r/J q 

Then there exists a positive number 8 such that 

tl ~ 8 q - for every q E Q i" 

In fact we see 

tlq ;§ n1/211 B -
q Df j (z) 

;§ n1/211 B -
q 

Df. (yq) 
1 

;§ 2n1/2 0' + n l / 2K'T 

;§ 11n1/2 0- /5. 

11 

11 

(by (B) of Lemma 3) 

+ n l / 2 11 Dfj(yq) - Dfj(z) 11 

(by (D) of Lemma I) 

(since K" ~ 0' /5) 

On the other hand we have 

tl q+1 
~ 

11 Bq+1 - Df j (z) 11 F 
~ ~ T 2 

11 B + (u - B S ) S / 11 S 11 q q q q q q 
~ T 

{B - Df. (z)} (I - s s / 11 
q 1 q q ;§ 11 

- Dfj(z) 11 F 

2 
Sq 11 ) 11 F 

(by (10» 

+ 11 u - Df. (z) S 11 / 11 S 11 q 1 q q 

;§ tJ q - (2 tJ q) -I r/J ~ + K max { 11 yq+1 - z 11 , 11 yq - z 11 } 

(by (E) of Lemma 1 and (D) of Lemma 3) 

;;a tJ q - (2 8 ) -I r/J ~ + K 11 yq - z 11 . 
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Thus we 

(4. 11) 

M Kojima & S. Shindo 

obtain 

() -1 ~ .-I 2 
(2 ) ~qEQi 'f'q 

~ :L q E Q. ( tJ q 
1 

+ K :L qE Q. 
1 

The first term of the right side is bounded because if ql is 

the first element of Q. and r E Q. is a finite number then 
1 1 

q~r(tJ q tJ q+l) 

"" tJ - tJr+l' 
ql 

It follows from (4.4) that the second term on the right side of 

the inequality (4.11) converges. Hence the left side of the 

inequality (4.11) also converges. This implies that 

(4. 12) lim r) "" o. 
q _ 00 and q E Q. q 

1 

Furthermore we see 

r)q 

11 {Hq - Df i (Z)} (yq+~ _ yq) 11 / 11 yq+l - yq 11 

11 -f. (yq) - Df. (z) (yq+l - yq) 11 / 11 yq+l - yq 11 (by (9» 
1 1 

11 f.(yq+l) 11 /11 yq+l - yqll 
1 

11 f.(yq+l)-f.(yq)-Df.(z) (yq+l_y
q ) 11 /11 yq+l_ y

q 11 
1 1 1 

Since the second term above converges zero as q- 00 along 

the subsequence Q
i

, (4.12) ensures that the first term 

(4.13) 11 f.(yq+l) 11 / 11 yq+l - yqll 
1 

00 along the subsequence Qi' Since converges zero as q­

f . (Z) "" 0 and Df. (Z) 
1 1 

is nonsingular, there exists a positive 

number fJ such that 

11 f. (yq+l) 11 
1 

11 f.(yq+l) - f.(z) 11 ~ fJ 11 yq+l - Z 11 • 
1 1 

Hence (4. 13) can be evaluated as 

11 f. (yq+l) 11 /11 q+l - yq 11 
1 

Y 

~ fJ 11 y 
q+l 

- Z 11 / 11 y 
q+l - yq 11 

~ fJ 11 y 
q+l 

- Z 11 / { 11 y q+l 
- Z 11 + 11 yq - Z 11 } 

fJ q+l 11 y --z 11 / 11 yq-z 11 )/{1+( 11 yq+l_z 11 / 11 yq-z 11 ) } 
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Thus (4.8) follows. 

(iil) Finally we prove that the whole sequence 

converges z Q-superlinearly. Let e be a positive number. 

It suffices to show that for some number N* the inequality 

(4. 14) 

369 

holds whenever q ~ N*. We have shown in (ii) above that (4.8) 

i E [* (z) . Hence, for each i E [* (z), we holds for every 

can take a number 

q E Q. and q ~ 
* .1 [ (z), there is a 

yq E U. for some 
1 

N*= max 

N . 
.1 

N .. 
.1 

such that the inequality (4.14) holds if 

On the other hand, by the definition of 

number N such that if 

[*(z). Define 

N then 

i E 

N. (i E 
.1 

If q ~ N* then we can find a number i E [* (z) such that 

yq E U .. Thus the inequality (4.14) holds for every q ~ N*. 
1 

This completes the proof. 

5. Numerical Examples 

In this section, we solve t,he following three problems 

to test the computational behavior of Algorithms EN and EQN. 

Each of them has a degenerate solution which lies on a common 

boundary of some different pieces, so the original Newton and 

quasi-Newton methods might have some difficulty in solving 

these problems. 

Problem 1. (Nonlinear Complementarity Problem) 

Consider the following nonlinear complementarity problem 

Find a solution x E R4 such that x ~ 0, f(x) ~ ° 
and xTf(X) = 0, where f : R4 _ R4 is a cl-mapPing given by 

fl (x) 
2 3xI + 2xI x2 + 2 

2x2 + x3 + 3x
4 

- 6, 

f2 (x) 
2 2 

lOX3 2x
4 

- 2, 2xI + xl + x2 + + 

f3 (x) 
2 3xI + xl x2 

2 + 2X
2 

+ 2x
3 

+ 9x
4 

- 9, 

f4 (x) 
2 2 

xl + 3x2 
+ 2X

3 
+ 3X

4 
- 3. 

This problem has a solution x* == (/6/2,0,0, 1/2) such that 
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£(x*) = (0, 2 +;6/2, 0, 0). This solution is degenerate since 

* * x3 = 0 and £3 (x ) = o. 

Problem 2. (2-dimensional System of PC! Equations) 

Consider the system of PC 1 equations F(x) = 

(£1 (x), £2(x» = 0, where 

£2 (x) 
{ 

-exp ( - xl - x 2 ) + 1 

{1 .- exp ( - xl) } / (1 - X
2

) 

This equation has a unique solution x (0,0) which lies on 

the boundary of two pieces, 

{ (xl' x 2 ) ; x2 ~ 0) . 

Problem 3. (3-person Noncooperative Game) 

o} and 

Let us consider a 3-person noncooperative game as 

illustrated in Figure 2. Each player i (i = 1,2,3) has two pure 

strategies i.1, i.2. In Figure 2, (a) shows the payoffs 

when player 3 takes the strategy 3.1, while (b) shows the 

payoffs when he takes the strategy 3.2. For example, if the 

players 1, 2, 3 take the strategies 1.1, 2.2, 3.1, respectively, 

they get the payoffs 4, 2 and 9, respectively. A mixed strategy 

of player i is denoted by (p.,l - p.), where p. is the 
1 1 1 

probability which he assigns to i.1. This game has two 

equilibrium points 

* w 

w 

(3/4,2/3,0) , 

( 1/2, 1/2, 1) . 

The problem of finding equilibrium points is represented as a 

system of PC 1 equations. (See Kojima, Okada and Shindoh [11] -for details.) The equilibrium point w corresponds to 

a degenerate solution of the system. 

We applied Algorithms EN and EQN to these problems with 

various ini tial poin~~s. Tables below show the number of 

iterations and the number of pieces which the generated 

sequence visited. The computer program was coded in Turbo Pascal 

and the runs were made on an NEC PC-9801 VM2 personal computer. 

Initial matrices in Algorithm EQN are generated by the 
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2. 1 2.2 2. 1 2.2 

0 4 0 2 

1.1 6 2 1. 1 1 0 

1 9 8 1 

2 2 1 0 

1.2 0 4 1.2 0 3 

3 7 6 5 

3. 1 3.2 

(a) (b) 

Figure 2. A 3-person noncooperative game 

difference approximation method. From these computational 

results, we see that Algorithms EN and EQN work effectively 

even if solutions to be computed are degenerate. 

6. Concluding Remark 

The following update formula is also well-known: 

+ (s - H u ) sT H / sT H u , 
P pp pp ppp HP+l Hp 

where sp = r 1 - xP, and up = i'(xP+ 1 ) - f(xP) and Hp is an 

approximate matrix of the inverse of the Jacobian matrix, 

Df- 1 (xP). (See, for example, Dennis and Mor~ [5], Luenberger 

[13].) Let H A-I. Then these formulae follow from 
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p p 
Algori thm QN and the Sherman-Morrison formula (Dennis and Mor{ 

[5] or Ortega and Rheinboldt [16]). 

We can extend the method above to the system of PC1 

equations in the similar way. The extension generates the same 

sequence as Algorithm EQN. Therefore the similar result as 

Theorem 3 holds. 
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Table 1. Computational results on Problem 1 

EN EQN 

Init. Point Iter. #Pieces Iter. #Pieces 

( 2, 2 2 2) 12 8 15 8 

( 1 -1 -1 1) 3 2 12 2 

( -1, 1 1, -1) 9 5 14 5 

(-2 -2 -2 -2) 10 6 17 6 

Table 2. Computational results on Problem 2 

EN EQN 
Init. Point Iter. #Pieces Iter. #Pieces 

(-1 -1) 4 2 27 2 

(-1 1) 4 1 14 2 

Table 3. Computational results on Problem 3 

EN EQN 
Init. Point Iter. #Pieces Iter. #Pieces 

(0.45 0.45 0.9 ) 3 2 3 2 

(0.27 0.3 1. 02) 3 2 4 2 
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