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Abstract This paper studies an infrnitely·many server queue which has Markov renewal inputs and hyper· 

exponential service times. The stationary distributions of the number of busy servers both immediately before an 

arrival epoch and at an arbitrary time are obtained. These results can be applied to engineering telephone networks. 

1 . I ntroduct; on 

An infinite server queue with Markov renewal arrivals has potential 

applicability for telephone network planning in which the equivalent random 

method is used [7, 12]. Since Wilkinson and Bretschneider first proposed this 

method, it has been assumed that the service times of all customers are in­

dependent and identically distributed according to an exponential distribution. 

However, it is too restrictive to assume that the distribution is exponential. 

Burke has studied the equivalent random method ~n the case where the service 

time distribution is a unit: distribution [1]. The results of an analysis of 

field data indicate that the service time distribution is hyperexponential 

when its coefficient of variation is greater than one [8, 9]. Therefore, it 

seems that Burke's results cannot be directly applied to network planning 

because the unit service time distribution differs from the real service time 

distribution. When the equivalent random method is applied under the assump­

tion that the service time distribution is hyperexponential, an MR/H loo queue 
m 

having Markov renewal inputs and hyperexponential service times has an essen-

tial role. This is because the overflow process from the M/H Is/5 loss system 
m 

is Markov renewal process \10] and the overflow traffic cannot be characterized 

without analyzing the MR/H loo queue. In this paper, the r-th binomial moment 
m 
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Inrmitely Many Server Queue 339 

of the number of customers in a system in equilibrium immediately before a 

customer arrival epoch is analyzed using the embedded Markov chain method. 

Then, the relationship between the stationary state probabilities at an arbi­

trary time and the stationary state probabilities immediately before a customer 

arrival epoch is derived and the r-th binomial moment of the number of cus-­

tomers in the system at an arbitrary time is explicitly provided. These 

results are an extension of Franken's results [3]. Smith [5] has also extended 

Franken's results, but to a model with a mean service time which varies ac-­

cording to the type of customer. 

2. Stationary State Distribution Immediately Before a Customer Arrival Epoch 

Consider the following model: 

i) The customer arrival process is a Markov renewal process with a semi­

Markov kernel [2]: 

(2.1) 1 ;:;; d,S ;:;; n. 

The Laplace-Stieltjes transform of F(x) is written as 

(2.2) 1 :;; et.S :;; n, 

where 

J
oo -sx 

~ o(s) = e dF o(x) 
et" 0 et" 

ii) There are an infinite number of servers and each customer is served as 

soon as he arrives. The service times of all customers are independent 

and identically distributed according to the distribution 

(2.3) H(x) 
m -1l.X 

1 - I k.e ~ 
i=1 ~ 

The Laplace-Stieltjes transform of H(x) is written as 

(2.4) 

The stage 

stage .,. 
~ . 

denote the 

foo -sx 
n(s) = e dH(x). 

o 

whose mean sojourn time 

Let (to' 2
0
), (t 1 ' 2

1
), 

pairing of the customer 

is 
-1 

is hereafter lli referred to as "service 

(t 2n)' (to<tl < <t < ... ) ... , n' ... . .. 
n 

arrival epoch and an element in the kernel 

of the Markov renewal arrival process. Let y(tk-O) = (nI' n2 , ... , n
m

) denote 

that the number of customers in service stage i is n
i 

immediately before t
k

, 
m 

where i~1 n i is the total number of customers in the system. It is clear from 
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340 Fo Machihara 

the assumptions that the sequence (y(tk-O), Zk) (k=0,1,2, ... ) forms a homo­

geneous Markov chain which contains the transition probability of successive 

arrival points 

(2.5) 

IT~ClS) 0 

~1' ~2' ... , i 0 

m' 

:= p{y(t 1-0) n+ 

The probability that a customer arriving at tk will enter service stage ~ 

immediately after tk is k~ . Thus, (2.5) can be expressed as 

IT~ClS) 0 

i j1' j2' jm ~1 ' ~2' ...... , m; ...... , 

(2.6) 
f""[ I k (in (iR,~1) 
o R,=1 ~ j 1 ••• J ~ 

-j~~~x -~R,x i~+l-j~ 
e (l-e ) 

i -j1~lx -~lx i 1- j 1 
(om) e (l-e) 

Jm 

-j ~ x -~ x i -j 
e m m (1-e m) m m 

The stationary probability distribution can now be defined as follows: 

(2.7) lim P{Y(tn-0)=(j1' j2' ... , jm)' Zn=S}, 
J'l+OO 

The (r
1

, r
2

, ••• , rm)th binomial moment of the distribution 

(2.8) 

where we 

o } is denoted by: 
••. , J

m 

...... , 

(jm) 
r 

m 

define (~) = 0 
J 

r 
m 

p\S) 
J 1 ' 

for 

(lO 

j2' 

i<j. 

...... , jm 

From the definition of the transition probability (2.5), it is possible to 

obtain 

(2.9) 

(lO (lO co n 

I I 
i =0 Cl=l 

m 
(ClS) 

• IT 0 000 0 

i1 '~2"" '~m;J1 ,]2"",]m 
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The binomial moment (2.8) is given by the following theorem: 

Theorem 2.1. The (r
1
,rZ, ... ,rm)th binomial moment vector 

B 
r 1 ,r2 ,···,rm 

, ... , 

of the distribution {p~S) , , }(S=I,2, .•. ,n) is given by 
Jl'J 2 ,···,Jm 

(2.10) B = q 
0,0, ... ,0 

and 

(2.11 ) 

where q is an invariant probability vector of ~(O) which satisfies linear 

equations 

qHO) = q and qe
C 

= 1 (e=(I,I, ••. ,l). 

Proof: MUltiplying (2.9) by (;1)(;2) . .• (;m) and adding the results 
1 2 m 

341 

obtained by this multiplication for every jl,j2, ... ,jm' it follows from (2.6) 

and (2.8) that 

00 

(2.1Z) 

00 

n 

L L 
i =0 (l=1 

m 

-j ~ x -~ x i -j 
( j ) (i) m m (l-e m) m m}dF (x) m ,m e (lQ 
rm J m ,., 
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342 F. Machihara 

Here, for the transformation from the second term to the third term of (2.12) 

we use the relationships [6J 

and 

(i) + ( i ) 
r r-1 

Equation (2.12) gives 

m 

B I k (B + B 
r 1 ,r2 ,···,rm £=1 £ r

1
,··,r£, •• ,rm r 1,··,r£-1, .• ,rm) 

(2.13) 
m 

.<l>( I r.f!.) 
i=l ~ ~ 

m m 

= (Br1 , •. ,r£, .• ,r
m 

+ £I1 k£ Br1 , .. ,r£-1, .. ,r
m

)<l>(iI
1 

rif!i) 

and serves as a proof for (2.11). 

Equation (2.10) is self-evident. 

Equation (2.11) gives 

(2.14) 

£ = 1, 2, .•. , rn, 

The proof is as follows: 

Assume that 

(2.15) 

£ = 1, 2, ... , m. 

N = 1, 2, 

From (2.11) and (2.15), it is possible to obtain 

= k B 
.Q, (N-1 ) 0 H' (N-1) 0 U ' ... , 

N 
= kN q .n <l>(if!n) (I-<l> (if!n)-l 

;, ~=1 IC Tv 
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Next, define 

(2.16) B e 
r 1 ,r2 ,···,Tm 

c 

It is given from (2.10) and (2.11) that 

bO,O, .•• ,O 1, 

(2.17) 

9, = 1, 2, ... , m 

It should be noted that b ~ is equal to the N-th 
Nv 1t , N0 29,"'" NO mt 

binomial moment of the stationary distribution for the number of customers in 

service stage 9, immediately before an arrival epoch. This can also be obtained 

from the theory of the MR/M/co queue with markov renewal arrivals and exponen­

tial service times. Let us consider only the arrival instants in service 

stage t. These arrival instants are governed by Markov renewal process in 

which the Laplace-Stieltjes transform of the semi-Markov kernel is 

kt~(S)(I-(l-kt)~(s»-l (= L {(l-kt)~(S)}n kt~(s». 
n=O 

This satisfies the following relation: 

-1 -1 -1 
k9,~(S)(I-(l-k9,)~(s» [I-k9,~(S)(I-(l-k9,)~(s» ] 

-1 
k9,~(S)(I-~(S» . 

Since the service time distribution of customers in stage t is an exponential 

one with mean ~;1, (2.17) can also be obtained by substituting k9,~(i~t) 
(I-~(i~9,»-l into Si of Franken's equation (15) of Ref. [3]. 

3. Stationary State Distribution at an Arbitrary Time 

The stationary state distribution at an arbitrary time is defined by: 

0.1) lim p{y(t) = (jl' j2' ... , jm)}' 
t-+oo 

The (r 1, r 2 , ... , rm)th binomial moment of the distribution {p~. . } is 
]1']2""']m 

denoted by 
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(3.2) 

r~ = 0, 1, 

Theorem 3.1. The following relationship exists between b* 
r 1 ,r2 ,··· ,rm 

defined in (3.2) and b 
r 1 ,r2 ,···,rm 

B e C derived in the previous 
r 1 ,r2 ,···,rm 

section. 

(3.3) 

where v- 1 is the mean interarrival time, i.e., 

-1 d I C v = -q ds ~(s) s=Oe . 

Proof: The rate conservation principle [4] provides that 

vpo,o, ... ,o 

(3.4) 

Multiplying every equation of (3.4) of by (j1)(j2) 
r

1 
r

2 
(jm) and adding the 
r 

m 
results obtained by this multiplication for every j1' j2' ... , jm' it is 

possible to obtain 

co 00 

(3.5) 
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Since 

(j R,) 
. 1 

(j R, +1) = (h + ) (r +1) 
rR, r£+1 £ ' 

and 

(j R,) (j R,-1) + (j R, -1 ) 
rR, rR, rR,-1 ' 

it fo !lows that 

(3.6) 

m 

vb + I 11 «r +1)b* 
r 1 ' r 2' ••• , r m R,= 1 R, R, r 1 ' ••• , r R, + 1 , ••• , r m 

m 

vn_L_1 k n (br1 , ••• ,r
n 
••• ,r

m 
+ b ) 

JC JC JC r 1 , .. ·,rR,-1, ... ,r
m 

m 

+ I 
£=1 

Thus (3.3) is proved. 

345 

In particular, the first and second ;)inomial moments of the stationary 

distribution of the number of customers in the MR/H loo queue at an arbitrary 
m 

time, b*(1) and b*(2), are respectively provided by the following corollary: 

(3.7) 

and 

(3.8) 

Corollary 3.2. 

b*(1) = (:= I 
j1=0 

m 

I 
R,=1 

m 

I I j )p~ . ) 
j =0 R,= 1 R, ] 1 ' ••• , ] m 
m 
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where 

(3.9) b* 
o 1!/,"" ,om!/' 

and 

(3.10) b* 
20 1 !/, , ••• ,2 0 m!/' 

Proof: Equation (3.3) gives 

Thus (3.7) and (3.9) are derived. 

b*(2) can be represented as follows: 

(3.11 ) 
m 

I 
!/'=1 

From (3.3), it is possible to obtain 

b* 
oH +oln" •• , 0m~+omn 

(3.12) 

m-1 m 

I I 
!/'=1 n=!/'+l 

= v(k b + k b )/(~ + ~n)' 
!/, 0 1 n' ••• , 0 mn n 0 1 !/, , ••• ,om!/' !/, 

Hence, using (3.3) again, 

(3.13) 

Substituting (3.13) into 0.11), it is possible to obtain (3.8). 

Let us consider an infinite trunk group which is split into a finite 

first choice group with s servers and an infinite overflow group as shown in 

Fig. 1. Customers who find all serves busy in the first choice group overflow 

to the infinite overflow group. It is assumed that the arrival process is 

Poisson. Determining the stationary distribution of the number of customers 

in the overflow group at an arbitrary time, in particular the mean a, variance 

v and peakedness z(= v/a) of the number of customers, is basic to the method 

of engineering overflow groups in telephone networks. This method is called 

"the equivalent random method" originally proposed by Wilkinson [7] and 
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Bretschneider [12]. For the case where the service time distribution is an 

exponential one, a, v and z have been found by Kosten [11] and have already 

been used for engineering telephone networks. For the case where the service 

time distribution is a unit one, a, v and z have been found by Burke [1]. 

However, an analysis of the field data shows that the service time distribu­

tion is a 2-order hyperexponential one whose coefficient of variation is 

greater than 1 [8, 9]. Now, let us consider the first and second moments of 

the number of customers in the infinite overflow group for the case of 2-order 

hyperexponential service times, where the Poisson arrival rate is A and the 

service time distribution is defind by (2.3) for m = 2. 

First choice group Infinite overflow group 

Poisson_OO--­
input 

Figure 1. 

0-- 000----------
overflows 

Split Inftnite Server Group 

Theorem 3.3. [10] The overflow proc,=ss from the first-choice group, that 

is, the arrival process for the infinite overflow group is a Markov renewal one 

and the Laplace transform 4>s(s) of the s.:mi-Markov kernel can be represented by 

A 
oI>O(s) = S+A ' 

01> (s) = (I(n+1) - A-1Q (s)A 01> (s)A 
n n n, n-1 n'-l n-l, 

n = 1, 2, "', S, 

where I(n+l) is the (n+l x n+l) identify matrix, 

-1 ) AQ (s), 
n n 

Qn(s) «n+1 x n+1) matrix), 
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«n+1) x n matrix), 

and 

(n x (n+1) matrix). 

b(l)* and b(2)* can be derived by substituting ~s(s) into ~(s) in Corol­

lary 3.2. It is well kno~l that the stationary distribution of the number of 

customers in the first-choice group is independent of the service time distri­
·-1 

but ion for a given load A~ Thus, the blocking probability in this group is 

given by 

where 
-1 

~ 

Hence, the input rate to the infinite trunk group, v, is given by 

and thus 

-1 
v~ 

The variance v ~s provided by 

v = 2b*(2) + a - a 2 

Figure 2 shows the effect of the coefficient of variation of service time, 

cs' on peakedness of overflow streams, z. We fit a hyperexponential distri­

bution with balanced mean [13]. As Cs increases, z decreases monotonically. 
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N 

UJ a=8 

~ 2 ::::~L:.::L-:: __ _ 
'i;l -__ a=16 -------=-= 
Q) -- ...... --------------

~ :.:.:.:.----- ----- ;-20 -- ----
a=4 

s=10 

3 

Coefficient of variation of service time Cs 

Figure 2. Coefficient of Variation of Service Time VS Peakedness 

(a = A)1-1) 

4. Concl usion 

349 

An MR/H la> queue having Markov renewal inputs and hyperexponential service 
m 

times is analyzed. Stationary state distributions are derived at both the 

customer arrival epoch and an arbitrary time point. The most important meas­

ures, the mean and the variance of the number of customers in the system at an 

arbitrary time are explicitly represented. By applying these results to the 

equivalent random method, it is possible to engineer telephone networks under 

the assumption that the service time distribution is hyperexponential. 
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